nER

Bl

INSTITUTE FOR LOGIC,
LANGUAGE AND COMPUTATION

ILLC PhD Pilot Study

Name of PhD Candidate: Malvin Gattinger

Names of Supervisors: Jan van Eijck
Kaile Su
Date: May 31, 2015

This report about SMCDEL gives an exemplary overview of my work on
epistemic model checking during the first nine months as a PhD candidate at
the ILLC, from September 2014 to May 2015.

The model checking problem is: Given a model and a specification in an ap-
propriate formal language, decide whether the model satisfies the specification.
From a logicians point of view this is easy: Just follow the — usually recursively
defined — semantics. However, as models get larger and specifications more
complex, one quickly reaches a point where manual computation becomes
unbearable. Moreover, even automatic implementations of semantics become
unusable if the set of states or possible worlds does not fit into the memory
of our computers or the recursive algorithms take too long.

These problems are addressed by symbolic model checking: Instead of naively
following a given semantics we try to represent the model and the specification
in a format which is as small as possible but still allows us to answer the
model checking problem. Various representation and abstraction techniques
for this have been developed, mainly for temporal logics.

For Dynamic Epistemic Logic — which appeals to logicians because it can
describe many situations and protocols in an intuitive manner — so far only
explicit model checkers were available. SMCDFEL aims to close this gap.
Plans for future research are given in the last section of the report.

SMCDEL — An Implementation of Symbolic Model Checking for

Dynamic Epistemic Logic with Binary Decision Diagrams

Malvin Gattinger
ILLC, University of Amsterdam
malvin@w4eg.eu

Last Update: Monday 1%° June, 2015

Abstract

We present SMCDEL, a symbolic model checker for Dynamic Epistemic Logic (DEL) implemented
in Haskell. At its core is a translation of epistemic and dynamic formulas to boolean formulas which
are represented as Binary Decision Diagrams (BDDs). Ideas underlying this implementation have
been developed as joint work with Johan van Benthem, Jan van Eijck and Kaile Su [BEGS15].

The report is structured as follows.

In the first section we recapitulate the syntax and intended meaning of DEL and define a data
type for formulas. Section 2 describes the well-known semantics for DEL on Kripke models. We
give a minimal implementation of explicit model checking.

Section 3 introduces the idea of knowledge structures and contains the main functions of our
symbolic model checker. In Section 4 we give methods to go back and forth between the two
semantics, both for models and actions. This shows in which sense and why the semantics are
equivalent and why knowledge structures can be used to do symbolic model checking for S5 DEL,
also with its original semantics. To check that the implementations are correct we provide methods
for automated randomized testing in Section 5.

In Section 6 we show on concrete models how to use SMCDEL. We go through various examples
that are common in the literature both on DEL and model checking: Muddy Children, Drinking
Logicians, Dining Cryptographers and Russian Cards. These examples also suggest themselves as
benchmarks which we will do in Section 7 to compare the different versions of our model checker to
the existing tools DEMO-S5 and MCMAS.

The last section discusses future work, both on concrete improvements for SMCDEL and on
theoretical aspects of knowledge structures.

In the appendix we provide some installation guidelines, a helper functions module and an
implementation of a number triangle analysis of the Muddy Children problem [GS11].

The report is given in literate Haskell style, including all source code and the results of example
programs directly in the text. SCMDEL is released as free software under the GPL.

mailto:malvin@w4eg.eu

Contents

1 The Language of Dynamic Epistemic Logic

2 DEL Semantics on Kripke Models
2.1 Kripke Models
2.2 Action Models

3 DEL Semantics on Knowledge Structures
3.1 Knowledge Structures L
3.2 Knowledge Transformers

4 Connecting the two Semantics
4.1 From Knowledge Structures to Kripke Models
4.2 From Kripke Models to Knowledge Structures
4.3 From Action Models to Knowledge Transformers
4.4 From Knowledge Transformers to Action Models

5 Automated Testing
5.1 Generating random formulaso Lo
5.2 Testing equivalence of the two semantics
5.3 Public Announcements
5.4 Random Action Models

6 Examples
6.1 Knowledge and Meta-Knowledgeo L.
6.2 Minimization via Translation
6.3 Different Announcements
6.4 Muddy Children L
6.5 Drinking Logicians L o
6.6 Dining Cryptographers
6.7 Russian Cards e

7 Benchmarks
7.1 Muddy Children
7.2 Dining Cryptographers

8 Future Work
Appendix 1: Installation Guidelines
Appendix 2: Helper Functions

Appendix 3: Muddy Children on the Number Triangle

J

10
10
14

16
16
16
17
18

19
19
20
21
21

22
22
23
24
25
27
28
31

35
35
38

40

41

42

43

1 The Language of Dynamic Epistemic Logic

This module defines the language of DEL. Keeping the syntax definition separate from the semantics
allows us to use the same language throughout the whole report, both for the explicit and the symbolic
model checkers.

[]
| module DELLANG where

| import Data.List (nub,intercalate,(\\)) ‘
| import Data.Maybe (fromJust) ‘
L |

Propositions and Agents are simply represented as integers in Haskell.

data Prp = P Int deriving (Eq,0rd,Show)
instance Enum Prp where

toEnum = P
fromEnum (P n) = n
freshp :: [Prpl -> Prp
freshp [] = P O
freshp prps = P (maximum (map fromEnum prps) + 1)

type Agent = Int

alice,bob,carol :: Agent
alice =0

bob = il

carol = 2

showAgent :: Agent -> String
showAgent 0 = "Alice"
showAgent 1 = "Bob"

showAgent 2 = "Carol"
showAgent n = "Ag " ++ show n

Definition 1. The language L(V') for a set of propositions V and a finite set of agents I is given by

po=T|Llplw| NIV IPOle—¢lee | VPo|3Pp | Kip| Cap | [l¥le | ['0]ap

wherepe V, PCV, |P| <w, ® C Lpg, |P| <w,i€l and A C 1. We also write ¢ A for AN{p, ¥}
and @V) for \[{p,}. The boolean formulas are those without K;, Ca, [\¢] and [lo]a.

Hence, a formula can be (in this order): The constant top or bottom, an atomic proposition, a
negation, a conjunction, a disjunction, an exclusive or, an implication, a bi-implication, a universal or
existential quantification over a set of propositions, or a statement about knowledge, common-knowledge,
a public announcement or an announcement to a group.

Some of these connectives are inter-definable, for example ¢ <> ¥ and A{¢ — ¢, — ¥} are
equivalent according to all semantics which we will use here. Another example are Cy;¢ and K;ep.
Hence we could shorten Definition 1 and treat some connectives as abbreviations. This would lead
to brevity and clarity in the formal definitions, but also to a decrease in performance of our model
checking implementations. To continue with the example: If we have Binary Decision Diagrams (BDDs)
for ¢ and v, computing the BDD for ¢ <+ ¢ in one operation by calling the appropriate method of a
BDD package will be faster than rewriting it to a conjunction of two implications and then making
three calls to these corresponding functions of the BDD package.

Definition 2 (Whether-Formulas). We extend our language with abbreviations for “knowing whether”
and “announcing whether”:

Kl = \/{Kip, Ki(~¢)}
)y = Afe = L], ~p = [1-ely}
)iy = Ao = L), ~o = [1-ele}

In Haskell we represent formulas using the following data type. Note that — also for performance
reasons — also the three “whether” operators occur as primitives and not as abbreviations.

data Form =
Impl Form Form | Equi Form Form | Forall [Prp] Form | Exists
PubAnnounce Form Form | PubAnnounceW Form Form |

Announce [Agent] Form Form | AnnounceW [Agent] Form Form
deriving (Eq,Show)

Top | Bot | PrpF Prp | Neg Form | Conj [Forml | Disj [Form] |

Xor [Form] |
[Prp] Form
K Agent Form | Ck [Agent] Form | Kw Agent Form | Ckw [Agent] Form |

We often want to check the result of multiple announcements after each other. Hence we define an
abbreviation for such sequences of announcements using Haskells foldr function.

pubAnnounceStack :: [Form] -> Form -> Form
pubAnnounceStack = flip $ foldr PubAnnounce

pubAnnounceWhetherStack :: [Form] -> Form -> Form
pubAnnounceWhetherStack = flip $ foldr PubAnnounceW

The function substit below substitutes a formula for a proposition. As a safety measure this
method will fail whenever the proposition to be replaced occurs in a quantifier. All other cases are
done by recursion. The function substitSet applies multiple substitutions after each other. Note that

this is not the same as simultaneous substitution.

substit :: Prp -> Form -> Form -> Form
substit _ _ Top = Top
substit _ _ Bot = Bot
substit q psi (PrpF p) = if p==q then psi else PrpF p
substit q psi (Neg form) = Neg (substit q psi form)
substit q psi (Conj forms) = Conj (map (substit q psi) forms)
substit q psi (Disj forms) = Disj (map (substit q psi) forms)
substit q psi (Xor forms) = Xor (map (substit q psi) forms)
substit q psi (Impl f g) = Impl (substit q psi f) (substit q psi g)
substit q psi (Equi f g) = Equi (substit q psi f) (substit q psi g)
substit q psi (Forall ps f) = if q ‘elem‘ ps
then error ("substit failed: Substituens "++ show q ++ " in ’Forall " ++ show ps)

else Forall ps (substit q psi f)
substit q psi (Exists ps f) = if q ‘elem‘ ps

then error ("substit failed: Substituens " ++ show q ++ " in ’Exists " ++ show ps)
else Exists ps (substit q psi f)
substit q psi (K i f) = K i (substit q psi f)
substit q psi (Kw i f) = Kw i (substit q psi f)
substit q psi (Ck ags f) = Ck ags (substit q psi f)
substit q psi (Ckw ags f) = Ckw ags (substit q psi f)
substit q psi (PubAnnounce f g) = PubAnnounce (substit q psi f) (substit q psi g)
substit q psi (PubAnnounceW f g) = PubAnnounceW (substit q psi f) (substit q psi g)
substit q psi (Announce ags f g) = Announce ags (substit q psi f) (substit q psi g)
substit q psi (AnnounceW ags f g) = AnnounceW ags (substit q psi f) (substit q psi g)
substitSet :: [(Prp,Form)] -> Form -> Form
substitSet [1 f = f
substitSet ((q,psi):rest) f = substitSet rest (substit q psi f)

Another helper function allows us to replace propositions in a formula. In contrast to the previous
substitution function this one is simultaneous.

replPsInF :: [(Prp,Prp)] -> Form -> Form
replPsInF _ Top = Top
replPsInF _ Bot Bot

otherwise = PrpF p

replPsInF repl (PrpF p) | p ‘elem® map fst repl = PrpF (fromJust $ lookup p repl)
I
= Neg $ replPsInF repl f

replPsInF repl (Neg f)

replPsInF repl (Conj fs) = Conj $ map (replPsInF repl) fs
replPsInF repl (Disj fs) = Disj $ map (replPsInF repl) fs
replPsInF repl (Xor fs) = Xor $ map (replPsInF repl) fs
replPsInF repl (Impl f g) = Impl (replPsInF repl f) (replPsInF repl g)
replPsInF repl (Equi f g) = Equi (replPsInF repl f) (replPsInF repl g)

replPsInF repl (Forall ps f) = Forall (map (fromJust . flip lookup repl) ps) (replPsInF
repl f)

replPsInF repl (Exists ps f) = Exists (map (fromJust . flip lookup repl) ps) (replPsInF
repl f)

replPsInF repl (K i f) = K i (replPsInF repl f)

replPsInF repl (Kw i f) = Kw i (replPsInF repl f)

replPsInF repl (Ck ags f) = Ck ags (replPsInF repl f)

replPsInF repl (Ckw ags f) = Ckw ags (replPsInF repl f)

replPsInF repl (PubAnnounce f g) = PubAnnounce (replPsInF repl f) (replPsInF repl g)

replPsInF repl (PubAnnounceW f g) = PubAnnounceW (replPsInF repl f) (replPsInF repl g)

replPsInF repl (Announce ags f g) = Announce ags (replPsInF repl f) (replPsInF repl g)

replPsInF repl (AnnounceW ags f g) = AnnounceW ags (replPsInF repl f) (replPsInF repl g)

The following helper function gets all propositions occurring in a formula.

propsInForm :: Form -> [Prpl

propsInForm Top = [1

propsInForm Bot = [1

propsInForm (PrpF p) = [p]

propsInForm (Neg f) = propsInForm f

propsInForm (Conj fs) = nub $ concatMap propsInForm fs
propsInForm (Disj fs) = nub $ concatMap propsInForm fs
propsInForm (Xor fs) = nub $ concatMap propsInForm fs
propsInForm (Impl f g) = nub $ concatMap propsInForm [f,g]
propsInForm (Equi f g) = nub $ concatMap propsInForm [f,g]
propsInForm (Forall ps f) = nub $§ ps ++ propsInForm f
propsInForm (Exists ps f) = nub $ ps ++ propsInForm f
propsInForm (K _ f) = propsInForm f

propsInForm (Kw _ f) = propsInForm f

propsInForm (Ck _ f) = propsInForm f

propsInForm (Ckw _ f) = propsInForm f

propsInForm (Announce _ f g) = nub $ propsInForm f ++ propsInForm g
propsInForm (AnnounceW _ f g) = nub $ propsInForm f ++ propsInForm g
propsInForm (PubAnnounce f g) = nub $ propsInForm f ++ propsInForm g
propsInForm (PubAnnounceW f g) = nub $ propsInForm f ++ propsInForm g
propsInForms :: [Form] -> [Prp]

propsInForms fs = nub $ concatMap propsInForm fs

texProp :: Prp -> String

texProp (P 0) = " p "

texProp (P n) = " p_{" ++ show n ++ "} "

texPropSet :: [Prp] -> String

texPropSet [] = " \\varnothing "

texPropSet ps = "\\{" ++ intercalate "," (map texProp ps) ++ "\\}"

The following algorithm simplifies a formula using boolean equivalences. For example it removes
double negations and “bubbles up” L and T in conjunctions and disjunctions respectively.

simplify :: Form -> Form
simplify f = if simStep f == f then f else simplify (simStep f)
simStep :: Form -> Form
simStep Top = Top
simStep Bot = Bot
simStep (PrpF p) = PrpF p
simStep (Neg Top) = Bot
simStep (Neg Bot) = Top
simStep (Neg (Neg f)) = simStep f
simStep (Neg f) = Neg $ simStep f
simStep (Conj []) = Top
simStep (Conj [£f]) = simStep f
simStep (Conj fs) | Bot ‘elem‘ fs = Bot
| otherwise = Conj (nub $ map simStep (filter (Top /=) fs))
simStep (Disj [1) = Bot
simStep (Disj [£f]) = simStep f
simStep (Disj fs) | Top ‘elem‘ fs = Top
| otherwise = Disj (nub $ map simStep (filter (Bot /=) f£fs))
simStep (Xor []) = Bot
simStep (Xor [£f]) = Neg $ simStep f

simStep (AnnounceW ags f g)

simStep (Xor fs) = Xor (map simStep fs)

simStep (Impl Bot _) = Top

simStep (Impl _ Top) = Top

simStep (Impl Top f) = simStep f

simStep (Impl f Bot) = Neg (simStep f)

simStep (Impl £ g) = Impl (simStep f) (simStep g)

simStep (Equi Top f) = simStep f

simStep (Equi Bot f) = Neg (simStep f)

simStep (Equi f Top) = simStep f

simStep (Equi f Bot) = Neg (simStep f)

simStep (Equi f g) = Equi (simStep f) (simStep g)

simStep (Forall ps f) = Forall ps (simStep f)

simStep (Exists ps f) = Exists ps (simStep f)

simStep (K a f) = K a (simStep f)

simStep (Kw a f) = Kw a (simStep f)

simStep (Ck ags f) = Ck ags (simStep f)

simStep (Ckw ags f) = Ckw ags (simStep f)

simStep (PubAnnounce Top f) = simStep f

simStep (PubAnnounce Bot _) = Top

simStep (PubAnnounce f g) = PubAnnounce (simStep f) (simStep g)
simStep (PubAnnounceW f g) = PubAnnounceW (simStep f) (simStep g)
simStep (Announce ags f g) = Announce ags (simStep f) (simStep g)

= AnnounceW ags (simStep f) (simStep g)

We end this module with a small helper function to abbreviate that exactly a given subset of a set

of propositions is true.

booloutofForm [Prp]
booloutofForm ps qgqs =

-> [Prp]
Conj $ [PrpF p |

-> Form

p <- ps 1 ++ [Neg $ PrpF r

| r <- gs \\ ps 1]

2 DEL Semantics on Kripke Models

We start with a quick summary of the standard semantics for DEL on Kripke models. The module of
this section provides a very simple explicit state model checker. It is mainly provided as a basis for the
translation methods in Section 4 and not meant to be used in practice otherwise. A more advanced and
user-friendly explicit state model checker for DEL is DEMO from [Eij14] which we will also use later on.

module KRIPKEDEL where

import Data.List (intercalate)
import DELLANG

import KRIPKEVIS

import HELP (alleq,fusion,apply)

2.1 Kripke Models

Definition 3. A Kripke model for n agents is a tuple M = (W, m,Ky,--- ,K,), where W is a set
of worlds, 7 associates with each world a truth assignment to the primitive propositions, so that
m(w)(p) € {T, L} for each world w and primitive proposition p, and K1, - , Ky, are binary accessibility
relations on W. By convention, WM ICZM and ™ are used to refer to the components of M. We omit
the superscript M if it is clear from context. Finally, let CK[be the transitive closure of | J;ca ICZM.

A pointed Kripke model is a pair (M, w) consisting of a Kripke model and a world w € WM. A
model M 1is called an S5 Kripke model iff, for every i, ICZM is an equivalence relation. A model M is
called finite iff WM is finite.

The following data types capture Definition 3 in Haskell. Possible worlds (a.k.a. states) are
represented by integers. Equivalence relations are modeled as partitions, i.e. lists of lists of states.

type State = Int

type Partition = [[Statell]

type Assignment = [(Prp,Bool)]

data KripkeModel = KrM [State] [(Agent,Partition)] [(State,Assignment)] deriving (Show)
type PointedModel = (KripkeModel,State)

Definition 4. Semantics for L(V') on pointed Kripke models are given inductively as follows.

1. (M, w) = piff T (w)(p) = T.

2. (M,w) =~ iff not (M,w) [= ¢

3. (M,w) =@ Nt iff (M, w) = ¢ and (M, w) = ¢

4. (M,w) = K iff for all w' € W, if wKMw', then (M,w') = .

5. (M,w) = Cay iff for all w' € W, if wCXw', then (M,w') = ¢

6. (M,w) = [Y]e iff (M,w) = implies (M¥,w) = ¢ where MY is a new Kripke model defined by

the set WM .= fw e WM | (M, w) =}, the relations le‘M =KMn (WM*)2 and the valuation
MY — M
7 (w) = 7Y (w).
7. (M,w) E [Y]ap iff (M,w) [= 1 implies that also (Mﬁ, (1,w)) = ¢ where ZMwA is defined by
(a) WM = {(1,w) |we WM and (M,w) ¢} U{(0,w) | we WM}
A
(b) For (b,w) and (V/,w') in WMﬁ, ifi € A, let (b,w)ICZMw (v, w') iff b = b and wkMw'. If
A
i ¢ A, then let (b,w)lCle v, w') iff wkMw'.
(c) For each (b,w) € WMo, 7M3 (b, w)) := 7 (w).

These semantics can be translated to a model checking function eval in Haskell at follows. Note
the typical recursion: All cases besides constants and atomic propositions call eval again.

eval :: PointedModel -> Form -> Bool

eval _ Top = True

eval _ Bot = False

eval (KrM _ _ val, cur) (PrpF p) = apply (apply val cur) p

eval pm (Neg form) = not $ eval pm form

eval pm (Conj forms) = all (eval pm) forms

eval pm (Disj forms) = any (eval pm) forms

eval pm (Xor forms) = odd $ length (filter id $ map (eval pm) forms)
eval pm (Impl f g) = not (eval pm f) || eval pm g

eval pm (Equi f g) = eval pm f == eval pm g

eval pm (Forall ps
singleForall g p

) = eval pm (foldl singleForall f ps) where
Conj [substit p Top g, substit p Bot g 1]
eval pm (Exists ps f) = eval pm (foldl singleExists f ps) where
singleExists g p Disj [substit p Top g, substit p Bot g]
eval (m@(KrM _ rel _),w) (K ag form) = all (\w’ -> eval (m,w’) form) vs where
vs = concat $ filter (elem w) (apply rel ag)
eval (m@(KrM _ rel _),w) (Kw ag form) = alleq (\w’ -> eval (m,w’) form) vs where
vs = concat $ filter (elem w) (apply rel ag)
eval (m@(KrM rel _),w) (Ck ags form) = all (\w’ -> eval (m,w’) form) vs where

I Ho

vs = concat $ filter (elem w) ckrel
ckrel = fusion $ concat [apply rel i | i <- ags]
eval (m@(KrM _ rel _),w) (Ckw ags form) = alleq (\w’ -> eval (m,w’) form) vs where
vs = concat $ filter (elem w) ckrel
ckrel = fusion $ concat [apply rel i | i <- ags]
eval pm (PubAnnounce forml form2) =
not (eval pm forml) || eval (pubAnnounce pm forml) form2

eval pm (PubAnnounceW forml form2) =
if eval pm forml
then eval (pubAnnounce pm forml) form2
else eval (pubAnnounce pm (Neg forml)) form2
eval pm (Announce ags forml form2) =
not (eval pm forml) || eval (announce pm ags formil) form2
eval pm (AnnounceW ags forml form2) =
if eval pm forml
then eval (announce pm ags forml) form2
else eval (announce pm ags (Neg forml)) form2

Public and group announcements are functions which take a pointed model and give us a new
one. Because eval already checks whether an announcement is truthful before executing it we let the
following two functions raise an error in case the announcement is false on the given model.

pubAnnounce :: PointedModel -> Form -> PointedModel
pubAnnounce pm@(m@(KrM sts rel val), cur) form =
if eval pm form then (KrM newsts newrel newval, cur)
else error "pubAnnounce failed: Liar!"

where
newsts = filter (\s -> eval (m,s) form) sts
nrel i = filter ([]/=) $ map (filter (‘elem® newsts)) (apply rel i)
newrel = [(i, nrel i) | i <- map fst rel]
newval = filter (\p -> fst p ‘elem® newsts) val
announce :: PointedModel -> [Agent] -> Form -> PointedModel

announce pm@(m@(KrM sts rel val), cur) ags form =
if eval pm form then (KrM newsts newrel newval, newcur)
else error "announce failed: Liar!"
where
tocopy = filter (\s -> eval (m,s) form) sts
addsts = map (maximum sts +) [1..(length tocopy)]
copyto = zip tocopy addsts
copyof = zip addsts tocopy

mapif = concatMap (\s -> [apply copyto s | s ‘elem‘ tocopyl)

nrel i | i ‘elem‘ ags = apply rel i ++ filter ([]/=) (map mapif (apply rel i))
| otherwise = map (\ec -> ec ++ mapif ec) (apply rel i)

newsts = sts ++ addsts

newrel = [(i, nrel i) | i <- map fst rel]

newval = val ++ [(s,apply val $ apply copyof s) | s <- addsts]

newcur = apply copyto cur

With a few lines we can also visualize our models using KRIPKEVIS [Gat14]. To see what the output
looks like, see Sections 6.1 and 6.2.

showVal :: Assignment -> String
showVal ass = case filter snd ass of
[] _> un
ps -> "$" ++ intercalate "," (map (texProp.fst) ps) ++ "$"
myDispModel :: PointedModel -> I0 ()
myDispModel (KrM w r v, cur) = dispModel show showAgent showVal "" (VisModel w r v cur)
myTexModel :: PointedModel -> String -> I0 String
myTexModel (KrM w r v, cur) = texModel show showAgent showVal "" (VisModel w r v cur)

2.2 Action Models

To model epistemic change in general we implement action models [BMS98|. For now we only consider
S5 action models without factual change.

Definition 5. An action model is a tuple A = (A, R, pre) where A is a set of action tokens, R = (R;)er
18 a family of equivalence relations on A and pre is a function from A to LpgL, defining the precondition
pre(a) of each a € A.

type PointedActionModel = (ActionModel,State)

|
data ActionModel = ActM [State] [(State,Form)] [(Agent,Partition)] deriving (Show)
J

Definition 6. The product update with an action model ((A, R, pre),) is a function that maps Kripke
models to Kripke models and is defined as follows:

(W, R, V) — (W' R V') where
W= {(w,a) e W x A | wE pre(a)}
(w, @) R}(v, B) iff wR;v and aR;f3
V(w,a) :=V(w)

We write M for the result of updating M with A.

productUpdate :: PointedModel -> PointedActionModel -> PointedModel

productUpdate pm@(m@(KrM oldstates oldrel oldval), oldcur) (ActM actions precon actrel,
faction) =

let

startcount = maximum oldstates + 1
copiesOf (s,a) = [(s, a, a * startcount + s) | eval (m, s) (apply precon a)]
newstatesTriples = concat [copiesOf (s,a) | s <- oldstates, a <- actions]
newstates = map (\(_,_,x) -> x) newstatesTriples

newval map (\(s,_,t) -> (t, apply oldval s)) newstatesTriples

listFor ag cartProd (apply oldrel ag) (apply actrel ag)

newPartsFor ag [cartProd as bs | (as,bs) <- listFor ag]

translSingle pair = filter (‘elem‘ newstates) $ map (\(_,_,x) -> x) $ copiesOf pair
transEqClass concatMap translSingle

nTransPartsFor ag filter (\x-> x/=[]) $ map transEqClass (newPartsFor ag)

[

newrel = [(a, nTransPartsFor a) | a <- map fst oldrel]
((_,_,newcur):_) = copiesOf (oldcur,faction)
factTest = apply precon faction
cartProd xs ys = [(x,y) | x <- xs, y <- ys]

in case (map fst oldrel == map fst actrel, eval pm factTest) of
(False, _) -> error "productUpdate failed: Agents of KrM and ActM are not the same!"
(_, False) -> error "productUpdate failed: Actual precondition is false!"

-> (KrM newstates newrel newval, newcur)

3 DEL Semantics on Knowledge Structures

In this section we implement an alternative semantics for £(V) and show how it allows a symbolic
model checking algorithm. Our model checker can be used with four different BDD packages, two of
which are written in other languages than Haskell and therefore have to be used via bindings:

i) CacBDD [LSX13|, a modern BDD package with dynamic cache management implemented in C++.
We use it via the library HasCacBDD |Gatlba| which provides Haskell-to-C-to-C++ bindings.

ii) CUDD [Som12|, probably the best-known BDD library which is used many in other model checkers,
including MCMAS [LQR15], MCK [GvdM04] and NuSMV [CCGT02]. It is implemented in C and
we use it via the binding library hBDD [Gam14].

iii) robbed |Rav14|, an advanced Haskell library working with reduced and ordered BDDs.

iv) NooBDD |Gatl5b|, a simple and naive Haskell library for non-reduced ordered BDDs.

The corresponding Haskell modules are called KNSCAC, KNSCUDD, KNSROB and KNSNOO. For now we
focus on the CacBDD variant as it can be seen in the beginning of this module.

module KNSCAC where

import Data.HasCacBDD hiding (Top,Bot)

import Data.HasCacBDD.Visuals

import Data.List (sort,intercalate, (\\))
import System.IO (hPutStr, hGetContents)
import System.Process (runInteractiveCommand)
import HELP (alleq,apply,rtc)

import DELLANG

We first link the boolean part of our language definition to functions of the BDD package. The
following translates boolean formulas to BDDs and evaluates them with respect to a given set of true
atomic propositions. The function will raise an error if it is given an epistemic or dynamic formula.

boolBdd0f :: Form -> Bdd
boolBdd0f Top top
boolBdd0f Bot bot
boolBdd0f (PrpF (P n)) var n

boolBdd0f (Neg form)
boolBdd0f (Conj forms)
boolBdd0f (Disj forms)
boolBdd0f (Impl f g)

neg$ boolBdd0f form

conSet $ map boolBddOf forms

disSet $ map boolBdd0Of forms

imp (boolBddOf f) (boolBddOf g)

boolBdd0f (Equi f g) equ (boolBddOf f) (boolBddOf g)

boolBdd0f (Forall ps f) boolBdd0f (foldl singleForall f ps) where
singleForall g p = Conj [substit p Top g, substit p Bot g]

boolBdd0f (Exists ps f) = boolBdd0f (foldl singleExists f ps) where
singleExists g p = Disj [substit p Top g, substit p Bot g]

L | (| | N | N | A [[}

boolBddOf _ = error "boolBddO0f failed: Not a boolean formula."
boolEval :: [Prpl -> Form -> Bool
boolEval truths form = result where
values = map (\(P n) -> (n, P n ‘elem‘ truths)) (propsInForm form)
bdd = restrictSet (boolBdd0f form) values
result | bdd==top = True
| bdd==bot = False
| otherwise = error "boolEval failed: BDD leftover."

3.1 Knowledge Structures

Knowledge structures are a compact representation of S5 Kripke models. Their set of states is defined by
a boolean formula and instead of epistemic relations we use observational variables. More explanations
and proofs that they are indeed equivalent to S5 Kripke models can be found in [BEGS15].

10

Definition 7. Fiz n agents. A knowledge structure is a tuple F = (V,0,01,...,0,) where V is a
finite set of propositional variables, 0 is a boolean formula over V and for each agent i, O; C V.

Set V' is the vocabulary of F. Formula 0 is the state law of F. It determines the set of states of F
and may only contain boolean operators. The variables in O; are called agent i’s observable variables.
An assignment over V| given as the set of true propositions, that satisfies 0 is called a state of F. Any
knowledge structure only has finitely many states. Given a state s of F, we say that (F,s) is a scene
and define the local state of an agent i at s as s N O;.

Given a knowledge structure (V,0,01,---,0,) and a set V of subsets of V', we use &y to denote a
relation between two assignments s,s' on V satisfying 6 such that (s,s") € &y iff there exists a P € V
with sN P = s' N P. We use & to denote the transitive closure of &y. Let VA = {O; | i € A}. We then
have (s,s") € Ey, iff there exists an i € A with sNO; = s' N O;.

In our data type for knowledge structures we represent the state law 6 not as a formula but as a
Binary Decision Diagram.

data KnowStruct = KnS [Prp] Bdd [(Agent,[Prpl)] deriving (Eq,Show)
type KnState = [Prpl

type Scenario = (KnowStruct ,KnState)
statesOf :: KnowStruct -> [KnState]
states0f (KnS props lawbdd _) = map (sort.translate) resultlists where
resultlists = map (map convToProp) $ allSatsWith (map (\(P n) -> n) props) lawbdd :: [I[(

Prp, Bool)]l
convToProp (n,bool) = (P n,bool)
translate 1 = map fst (filter snd 1)

numberOfStates :: KnowStruct -> Int
number0fStates (KnS ps lawbdd _) = satCountWith (map (\(P n) -> n) ps) lawbdd

restrictState :: KnState -> [Prp] -> KnState

restrictState s props = filter (‘elem‘ props) s

seteq :: Ord a => Eq a => [a] -> [al] -> Bool

seteq as bs = sort as == sort bs

shareknow :: KnowStruct -> [[Prpl] -> [(KnState,KnState)]

shareknow kns sets = filter rel [(s,t) | s <- statesOf kns, t <- statesOf kns] where

rel (x,y) = or [seteq (restrictState x set) (restrictState y set) | set <- sets]

comknow :: KnowStruct -> [Agent] -> [(KnState,KnState)]
comknow kns@(KnS _ _ obs) ags = rtc $ shareknow kns (map (apply obs) ags)

Definition 8. Semantics for DEL on scenes are defined inductively as follows.

1. (F,s) E=piff sE=p.

2. (F,s) E g iff not (F,s) =

3. (F,s) E o N iff (F,s) = and (F,s) =

4. (F,8) E Kip iff for all s of F, if sNO; = s NO;, then (F,s') E ¢.

5. (F,s) E Cay iff for all s" of F, if (s,8') € &, then (F,s') | .

6. (F,s) = []p iff (F,s) = implies (F¥,s) = ¢ where ||| 7 is given by Definition 9 and

]Tw = (VZQ’K H#ﬂLF7()17"'7()n)

7. (F,s) = [W]ap iff (F,s) = ¢ implies (F5,s U {py}) |E ¢ where py is a a new propositional
variable, ||| 7 is given by Definition 9 and

Fi = (VUlpe}, 0 A oy = [1¥]15), 01+, Op)
where O} := U{py} if i € A and O} := O; otherwise.

11

Whenever (F,s) E ¢ holds we say that ¢ is true at s in F. If this is the case for all states s of F, then
we say @ 1s valid on F and write F E .

The following function eval implements these semantics. An important warning: This function is
not a symbolic algorithm! It is a direct translation of Definition 8. In particular it calls states0f which
means that the set of stats is explicitly generated. The symbolic counterpart of eval is evalViaBdd,
see below.

eval :: Scenario -> Form -> Bool

eval _ Top = True

eval _ Bot = False

eval (_,s) (PrpF p) = p ‘elem® s

eval (kns,s) (Neg form) = not $ eval (kns,s) form

eval (kns,s) (Conj forms) = all (eval (kns,s)) forms

eval (kns,s) (Disj forms) = any (eval (kns,s)) forms

eval (kns,s) (Xor forms) = odd $ length (filter id $ map (eval (kns,s)) forms)

eval scn (Impl £ g) = not (eval scn f) || eval scn g

eval scn (Equi f g) = eval scn f == eval scn g

eval scn (Forall ps f) = eval scn (foldl singleForall f ps) where
singleForall g p = Conj [substit p Top g, substit p Bot g]

eval scn (Exists ps f) = eval scn (foldl singleExists f ps) where
singleExists g p = Disj [substit p Top g, substit p Bot g]

eval (kns@(XnS _ _ obs),s) (K i form) = all (\s’ -> eval (kns,s’) form) theres where

theres = filter (\s’ -> seteq (restrictState s’ oi) (restrictState s o0i)) (statesOf kns)
oi = apply obs i

eval (kns@(KnS _ obs),s) (Kw i form) = alleq (\s’ -> eval (kns,s’) form) theres where
theres = filter (\s’ -> seteq (restrictState s’ oi) (restrictState s o0i)) (statesO0f kns)
oi = apply obs i

eval (kns,s) (Ck ags form) = all (\s’ -> eval (kns,s’) form) theres where
theres = filter (\s’ -> (sort s, sort s’) ‘elem‘ comknow kns ags) (statesOf kns)

eval (kns,s) (Ckw ags form) = alleq (\s’ -> eval (kns,s’) form) theres where
theres = filter (\s’ -> (sort s, sort s’) ‘elem‘ comknow kns ags) (statesOf kns)

eval (kns,s) (PubAnnounce forml form2) =
not (eval (kns, s) forml) || eval (pubAnnounce kns forml, s) form2

eval (kns,s) (PubAnnounceW forml form2) =
if eval (kns, s) formil
then eval (pubAnnounce kns forml, s) form2
else eval (pubAnnounce kns (Neg forml), s) form2
eval (kns@(KnS props _ _),s) (Announce ags forml form2) =
not (eval (kns, s) forml) || eval (announce kns ags forml, freshp props : s) form2
eval (kns,s) (AnnounceW ags forml form2) =
if eval (kns, s) formil
then eval (announce kns ags forml, s) form2
else eval (announce kns ags (Neg forml), s) form2

We also have to define how knowledge structures are changed by public and group announcements.
The following functions correspond to the last two points of Definition 8.

pubAnnounce :: KnowStruct -> Form -> KnowStruct
pubAnnounce kns@(KnS props lawbdd obs) psi = KnS props newlawbdd obs where
newlawbdd = con lawbdd (bdd0Of kns psi)

pubAnnounceOnScn :: Scenario -> Form -> Scenario
pubAnnounceOnScn (kns,s) psi = if eval (kns,s) psi
then (pubAnnounce kns psi,s)
else error "Liar!"

announce :: KnowStruct -> [Agent] -> Form -> KnowStruct
announce kns@(KnS props lawbdd obs) ags psi = KnS newprops newlawbdd newobs where
proppsi@(P k) = freshp props
newprops = proppsi:props
newlawbdd = con lawbdd (imp (var k) (bdd0f kns psi))
newobs = [(i, apply obs i ++ [proppsi | i ‘elem‘ ags]) | i <- map fst obs]

The following definition and its implementation bdd0f is the key idea for symbolic model checking
DEL: Given a knowledge structure F and a formula ¢, it generates a BDD which represents a boolean
formula that on F is equivalent to ¢. In particular, this function does not generate longer and longer

12

formulas. It only makes calls to itself, the announcement functions and the boolean operations provided
by the BDD package.

Definition 9. Given any knowledge structure F = (V,0,01,---,0,) and any DEL formula ¢, we
define a boolean formula ||| .

1. For any primitive formula, ||p||F := p.
For negation, let |- £ := =||¢|| £

For conjunction, let |y A a7 == |1l A [zl 7.

For knowledge, let | K| =YV \ O;)(0 — ||¢| 7).

A S

For common knowledge, let ||Cat||r := gfpA where A is the following operator on boolean
formulas given and gfpA denotes its greatest fized point:

Aa) = |[gllz A A\ YV O0i)(0 —)
€A

6. For public announcements, let ||[Y]E||7 = ||¥]|l7 — ||€]| zw-

7. For group announcements, let ||[Y]AllF == ||[¢]|l 7 — (||§H]__K)(p#)

where F¥ and]:K are as given by Definition 8.

bdd0f :: KnowStruct -> Form -> Bdd

bdd0f _ Top = top

bdd0f _ Bot = bot

bdd0f _ (PrpF (P n)) = var n

bdd0f kns (Neg form) = neg $ bddOf kns form

bdd0f kns (Conj forms) = conSet $ map (bdd0f kns) forms
bdd0f kns (Disj forms) = disSet $ map (bdd0f kns) forms
bdd0f kns (Xor forms) = xorSet $ map (bddOf kns) forms
bdd0f kns (Impl f g) = imp (bdd0f kns f) (bddOf kns g)
bdd0f kns (Equi f g) = equ (bdd0f kns f) (bdd0f kns g)

bdd0f kns (Forall ps f) = forallSet (map fromEnum ps) (bddOf kns f)
bdd0f kns (Exists ps f) = existsSet (map fromEnum ps) (bdd0f kns f)
bdd0f kns@(KnS allprops lawbdd obs) (K i form) =
forallSet otherps (imp lawbdd (bdd0f kns form)) where
otherps = map (\(P n) -> n) $ allprops \\ apply obs i
bdd0f kns@(KnS allprops lawbdd obs) (Kw i form) =
disSet [forallSet otherps (imp lawbdd (bddOf kns f)) | f <- [form, Neg form]] where
otherps = map (\(P n) -> n) $ allprops \\ apply obs i
bdd0f kns@(KnS allprops lawbdd obs) (Ck ags form) = gfp lambda where
lambda z = conSet $ bddOf kns form : [forallSet (otherps i) (imp lawbdd z) | i <- ags]
otherps i = map (\(P n) -> n) $ allprops \\ apply obs i
bdd0f kns (Ckw ags form) = dis (bdd0f kns (Ck ags form)) (bdd0f kns (Ck ags (Neg form)))
bdd0f kns@(KnS props _ _) (Announce ags forml form2) =
imp (bdd0f kns forml) (restrict bdd2 (k,True)) where
bdd2 = bdd0f (announce kns ags forml) form2
(P k) = freshp props
bdd0f kns@(KnS props _ _) (AnnounceW ags forml form2) =
ifthenelse (bddO0f kns forml) bdd2a bdd2b where
bdd2a = restrict (bdd0f (announce kns ags forml) form2) (k,True)
bdd2b = restrict (bdd0f (announce kns ags forml) form2) (k,False)
(P k) = freshp props
bdd0f kns (PubAnnounce forml form2) = imp (bdd0f kns forml) newform2 where
newform2 = bdd0f (pubAnnounce kns forml) form2
bdd0f kns (PubAnnounceW forml form2) =
ifthenelse (bdd0f kns forml) newform2a newform2b where
newform2a = bdd0f (pubAnnounce kns formil) form2
newform2b = bdd0f (pubAnnounce kns (Neg forml)) form2

Given these definitions, a proof by induction on ¢ gives us the following Theorem.

13

Theorem 10. Definition 9 preserves and reflects truth. That is, for any formula ¢ and any scene
(F,s) we have that (F,s) = ¢ iff s = |¢ll#-

Knowing that the translation is correct we can now define the symbolic evaluation function
evalViaBdd. Note that it has exactly the same type and thus takes the same input as eval.

evalViaBdd :: Scenario -> Form -> Bool
evalViaBdd (kns@(KnS allprops _ _),s) f = bool where
bool | b==top = True
| b==bot = False
| otherwise = error ("evalViaBdd failed: BDD leftover:\n" ++ show b)
b =
list =

restrictSet (bdd0f kns f) list
[(n, (P n) ‘elem‘ s) | (P n) <- allprops]

Moreover, we have the following theorem which allows us to check the validity of a formula on a
knowledge structure simply by checking if its boolean equivalent is implied by the state law.

Theorem 11. Definition 9 preserves and reflects validity. That is, for any formula ¢ and any knowledge
structure F with the state law 6 we have that F |= ¢ iff 0 — ||¢|| 7 is a boolean tautology.

validViaBdd :: KnowStruct -> Form -> Bool
validViaBdd kns@(KnS lawbdd _) f = top == lawbdd ‘imp‘ bddOf kns f

3.2 Knowledge Transformers

For now our language is restricted to two kinds of events — public and group announcements. However,
the symbolic model checking method can be extended to cover other epistemic events. What action
models (see Definition 5) are to Kripke models, the following knowledge transformers are to knowledge
structures. The analog of product update is knowledge transformation.

Definition 12. A knowledge transformer for a given vocabulary V is a tuple X = (V*,07,04,...,0,)
where V' is a set of atomic propositions such that V N\ VT = @, 07 is a possibly epistemic formula
over VUV™T and O; C V™ for all agents i. An event is a knowledge transformer together with a subset
x C VT, written as (X, x).

The knowledge transformation of a knowledge structure F = (V,0,01,...,0,) with a knowledge
transformer X = (V*,0%,07,...,0%) for V is defined by:

FYX =V UV oA|0T70,U0f,...,0,U0)
Given a scene (F,s) and an event (X, z) we define (F,s)®®) .= (F¥ sUz).

The two kinds of events discussed above fit well into this general definition: The public announcement
of ¢ is the event ((@,¢,d,...,d),2) and the announcement of ¢ to A is given by (({py},pp, —
0, 0F,...,08),{p,}) where O = {p,} if i € A and O] = @ otherwise.

Note that #* does not have to be a boolean formula. This is similar to preconditions in action
models which can also be arbitrary formulas. Still, applying a knowledge transformer to a knowledge
structure again yields a knowledge structure in which the set of states is determined by the state law
which has to be a purely boolean formula. Hence, in Definition 12 we not just take the conjunction of ¢
and 0% but instead use the boolean equivalent of #*. This formula will be equivalent on the previous,
but not necessarily on the new structure. Again this fits to the established action model framework:
Truthful announcements can be unsuccessful in the sense that after something is publicly announced it
is not true anymore. Famous examples are the so-called Moore sentences of the form “It snows and you
don’t know it.”

Our usage of Definition 9 in Definition 12 is somewhat special: Whenever rewriting an epistemic
statement, propositions in V1 are ignored. For example, to rewrite K; we quantify over V' \ O; and

14

not over VUV \ O; U O; as one might first think. The latter would yield boolean equivalents with
respect to F% but we need a boolean formula that was equivalent to the precondition before the action
occurred.

In the implementation we can see that the elements of addprops are shifted to a large enough index
so that they become disjoint with props.

data KnowTransf = KnT [Prp] Form [(Agent,[Prpl)] deriving (Eq,Show)
type Event = (KnowTransf ,KnState)

knowTransform :: Scenario -> Event -> Scenario
knowTransform (kns@(KnS props lawbdd obs),s) (KnT addprops addlaw eventobs, eventfacts) =
(KnS (props ++ map snd shiftrel) newlawbdd newobs, s++shifteventfacts) where
shiftrel = zip addprops [(freshp props)..]
newobs = [(i , sort $ apply obs i ++ map (apply shiftrel) (apply eventobs i)) | i <-
map fst obs]
shiftaddlaw = replPsInF shiftrel addlaw
newlawbdd = con lawbdd (bdd0f kns shiftaddlaw)
shifteventfacts = map (apply shiftrel) eventfacts

We end this module with helper functions to generate I¥TEX code that shows a knowledge structure,
including a BDD of the state law. See Section 6 for examples of what the output looks like.

texBDD :: Bdd -> I0 String
texBDD b = do
(i,0,_,_) <- runInteractiveCommand "dot2tex --figpreamble=\"\\huge\" --figonly -traw"

hPutStr i (genGraph b)
hGetContents o

texStructure :: Scenario -> String -> I0 String
texStructure (KnS props lawbdd obs, state) filename = do
lawbddtex <- texBDD lawbdd
let fullstring = " \\left(\n"
++ texPropSet props ++ ", "
++ " \\begin{array}{1} \\scalebox{0.4}{"++lawbddtex++"} \\end{array}\n "
++ ", \\begin{array}{1}\n"
++ intercalate " \\\\\n " (map (\(_,o0s) -> (texPropSet os)) obs)
++ "\\end{array}\n"
++ " \\right) , " ++ texPropSet state
_ <- writeFile ("tmp/" ++ filename ++ ".tex") fullstring
return ("Structure was TeX’d to"++filename)

15

4 Connecting the two Semantics

In this module we define and implement translation methods to connect the semantics from the two
previous sections. This essentially allows us to switch back and forth between explicit and symbolic
model checking methods.

module SYMDEL where

import Control.Arrow (second)

import Data.List (groupBy,sort,(\\))
import DELLANG

import KNSCAC

import KRIPKEDEL

import HELP (apply,powerset)

Lemma 13. Suppose we have a knowledge structure F = (V',0,01,--- ,0,) and a finite S5 Kripke
model M = (W, mt,Kq,---, K1) with a set of primitive propositions V. C V'. Furthermore, suppose we
have a function g : W — P(V') such that

C1 For all wy,ws € W, and all i such that 1 < i <n, we have g(w1) N O; = g(wa) N O; iff w1 Kjw,.
C2 For allw € W andv € V, we have v € g(w) iff 7(w)(v) = true.
C3 For every s C V', s is a state of F iff s = g(w) for some w € W.

Then, for every formula ¢ over V we have (F,g(w)) = ¢ iff (M,w) = ¢.

4.1 From Knowledge Structures to Kripke Models

Definition 14. For any knowledge structure F = (V,0,01,---,0,,), we define the Kripke model
M(F) = (W, n,Kq,---,Ky) as follows

1. W is the set of all states of F,
2. for each w € W, let the assignment m(w) be w itself and
3. for each agent i and all w,w' € W, let wk;w' iff wNO; =w' N O;.

Theorem 15. For any scene F,s and any formula ¢ we have (F,s) = ¢ iff (M (F),s) = ¢.

knsToKripke :: Scenario -> PointedModel
knsToKripke (kns@(KnS ps _ obs),curs) =
if curs ‘elem‘ statesOf kns
then (KrM worlds rel val, cur)
else error "knsToKripke failed: Invalid state."

where
lav = zip (statesO0f kns) [0..(length (statesOf kns)-1)]
val = map (\(s,n) -> (n,state2kripkeass s)) lav where

state2kripkeass s = map (\p -> (p, p ‘elem‘ s)) ps
rel = [(i,rfor i) | i <- map fst obs]
rfor i = map (map snd) (groupBy (\ (x,_) (y,_) -> x==y) (sort pairs)) where
pairs = map (\s -> (restrictState s (apply obs i), apply lav s)) (statesO0f kns)
worlds map fst val
cur apply lav curs

4.2 From Kripke Models to Knowledge Structures

Definition 16. For any S5 model M = (W, m, K1, - ,K,) we define a knowledge structure F(M) as
follows. For each i, write y1, ...,V for the equivalence classes given by K; and let l; := ceiling(logy k;).
Let O; be a set of I; many fresh primitive propositions. This yields the sets of observational variables
O1,...,0,, all disjoint to each other. If agent i has a total relation, i.e. only one equivalence class,

16

then we have O; = @. Enumerate k; many subsets of O; as O, ... ,O%i and define the function
gi : W = P(0;) by gi(w) := O,y where y(w) is the K-equivalence class of w. Let V' := V' Uy, Oi
and define g : W — P(V') by

g(w)={veV n(w) () =TIu [gw)

0<i<n

Let V7 be the set of atomic propositions and their negations from V'. Now let

O ::/\{\/Q] Q C V' and g(w)):\/QfOTalleW}
Finally, let F(M) := (V',0p,01,...,0,).

Theorem 17. For any finite S5 pointed Kripke model (M,w) and every formula ¢, we have that
(M, w) = @ iff (F(M),g(w)) = ¢

kripkeToKns :: PointedModel -> Scenario
kripkeToKns (KrM worlds rel val, cur) = (KnS ps theta obs, curs) where
v map fst $ apply val cur

ags = map fst rel

newpstart = fromEnum $ freshp v -- start counting new propositions here

amount i = ceiling (logBase 2 (fromIntegral $ length (apply rel i)) :: Float) -- |0_il

newpstep = maximum [amount i | i <- ags]

newps i = map (\k -> P (newpstart + (newpstep*i) +k)) [0..(amount i - 1)] -- 0_i

copyrel i = zip (apply rel i) (powerset (newps i)) -- label equiv.classes with P(0_1i)

gag i w = snd $ head $ filter (\(ws,_) -> elem w ws) (copyrel i)

g w = filter (apply (apply val w)) v ++ concat [gag i w | i <- ags]

fWith set = [Disj [if p ‘elem® psubset then PrpF p else Neg $ PrpF p | p <- set 1 |
psubset <- powerset set] -- build a finite state law

formulas = concat [fWith set | set <- powerset ps]

glotrue f = and [boolEval (g w) f | w<-worlds]

ps = v ++ concat [newps i | i <- ags 1]

theta = boolBdd0f $ Conj (filter glotrue formulas) -- convert state law to a BDD

obs = [(i,newps i) | i<- ags 1]

curs = sort $§ g cur

4.3 From Action Models to Knowledge Transformers

For any S5 action model there is an equivalent knowledge transformer and vice versa. The translations
are similar to Definitions 14 and 16 and their soundness also follows from Lemma 13. The implementation
below works on pointed models, to simplify tracking the actual world and action.

Definition 18. The function Trf maps an S5 action model A = (A, (K;)icr, pre) to a transformer as
follows. For any two sets of propositions A and B, we abbreviate “of the propositions in B, exactly those
in A are true”, i.e. let AC B:= NAANN{-p|pe€ B\ A}. Let P be a finite set of fresh propositions
such that there is an injective g : A — P(P) and let

@ == {(g(a) C P) — pre(a) | a € A}

Now, for each i: Write A/KC; for the set of equivalence classes induced by IC;. Let O;r be a finite set of
fresh propositions such that there is an injective g; : A/K; — P(O}) and let

P; = {(gi(a) CO;)— (\/(Q(G) EP)> lae A/]Ci}

aco

Finally, define Trf(A) := (VF,0%,0{,...,0%) where VI := PUJ;c; P; and 07 := ® A \;c; @i

17

Theorem 19. For any pointed Kripke model (M, w), any pointed action model (A,) and any ¢ over
the vocabulary of M we have:

M x A, (w,0) F ¢ <= FM)™A (gw)Uga(a)) E ¢
where g and g4 are from the construction of F(M) and Trf(A), respectively.

actionToEvent :: PointedActionModel -> Event

actionToEvent (ActM actions precon actrel, faction) = (KnT eprops elaw eobs, efacts) where
ags = map fst actrel
eprops = actionprops ++ actrelprops
(P fstnewp) = freshp $ propsInForms (map snd precon)
actionprops = [P fstnewp..P maxactprop] -- new props to distinguish all actions
maxactprop = fstnewp + ceiling (logBase 2 (fromIntegral $ length actiomns) :: Float) -1
copyactprops = zip actions (powerset actionprops)
actforms = [Impl (booloutofForm (apply copyactprops a) actionprops) (apply precon a)

| a <- actions] -- connect the new propositions to the preconditions
actrelprops = concat [newps i | i <- ags] -- new props to distinguish actions for i
actrelpstart = maxactprop + 1
newps i = map (\k -> P (actrelpstart + (newpstep#*i) +k)) [0..(amount i - 1)]
amount i = ceiling (logBase 2 (fromIntegral $ length (apply actrel i)) :: Float)
newpstep = maximum [amount i | i <- ags]
copyactrel i = zip (apply actrel i) (powerset (newps i)) -- actrelprops <-> actionprops
actrelfs i = [Impl (booloutofForm (apply (copyactrel i) as) (newps i)) (Disj [adesc al
a<-as]) | as <- apply actrel i] where adesc a = booloutofForm (apply copyactprops a)
actionprops

actrelforms = concatMap actrelfs ags
factsFor i = snd $ head $ filter (\(as,_) -> elem faction as) (copyactrel i)
efacts = apply copyactprops faction ++ concatMap factsFor ags
elaw = simplify $ Conj (actforms ++ actrelforms)
eobs = [(i,newps i) | i<- ags]

4.4 From Knowledge Transformers to Action Models

Definition 20. The function Act maps a given Knowledge Transformer X = (V* 0%, 0F,...,0;) to
an action model as follows. First, let the set of actions be A :=P(V™T). Second, for any two actions

a,B € A, let aR;B iff anNOf = BNO;. Third, for any «, let pre(a) := 6T (%) (Vi\a) Finally, let
Act(X) := (A, (R;)icr, pre).

Theorem 21. For any scene (F,s), any event (X,z) and any formula ¢ over the vocabulary of F we
have:

(F,s)) o = (M(F) x Act(X)), (s,2) E ¢

Note that this definition of Act can yield action models with contradictions as preconditions. In the
implementation below we remove all actions where pre(a) = L.

eventToAction’ :: Event -> PointedActionModel
eventToAction’ (KnT eprops eform eobs, efacts) = (ActM actions precon actrel, faction)
where
actions = [0..(2 = length eprops - 1)]
actlist = zip (powerset eprops) actions
precon = [(a, simplify $ preFor ps) | (ps,a) <- actlist] where
preFor ps = substitSet (zip ps (repeat Top) ++ zip (eprops\\ps) (repeat Bot)) eform
actrel = [(i,rFor i) | i <- map fst eobs] where
rFor i = map (map snd) (groupBy (\ (x,_.) (y,_.) -> x==y) (pairs i))
pairs i = sort $ map (\(set,a) -> (restrictState set $ apply eobs i,a)) actlist
faction = apply actlist efacts
eventToAction :: Event -> PointedActionModel
eventToAction (KnT eprops eform eobs, efacts) = (ActM actions precon actrel, faction) where
(ActM _ precon’ actrel’, faction) = eventToAction’ (KnT eprops eform eobs, efacts)
precon = filter (\(_,f) -> f/=Bot) precon’ -- remove actions w/ contradictory precon
actions = map fst precon
actrel = map (second fltr) actrel’
fltr r = filter ([]1/=) $ map (filter (‘elem‘ actions)) r

18

5 Automated Testing

This module provides automated randomized testing to check our implementations for correctness.
We generate random formulas and then evaluate them on Kripke models and knowledge structures of
which we already know that they are equivalent. The test algorithm then checks whether the different
methods we implemented agree on the result.

module TEST where

import System.Random (getStdRandom,randomR)
import DELLANG

import KNSCAC

import KRIPKEDEL

import SYMDEL

import EXAMPLES

Some global settings for the tests in this section:

mypropsindex, myagsindex, mycomplexity, myconlength :: Int
mypropsindex = 2 -- maximum index of atomic props
myagsindex = 2 -- maximum index of agents

mycomplexity = 4 -- maximum complexity of formulas
myconlength = 2 -- maximum number of conjuncts

5.1 Generating random formulas

getRandomInt :: Int -> I0 Int
getRandomInt n = getStdRandom (randomR (0,n))

getRandomGroup :: I0 [Agent]
getRandomGroup = do
n <- getRandomInt 2
case n of 0 -> return [alice]
1 -> return [bob]
-> return [alice,bob]

getRandomF :: I0 Form
getRandomF = do d <- getRandomInt mycomplexity
getRandomForm d

getRandomForm :: Int -> I0 Form
getRandomForm O = do
n <- getRandomInt 4
case n of 0 -> return Top
1 -> return Bot
-> do m <- getRandomInt mypropsindex
return (PrpF (P m))

getRandomForm d = do
n <- getRandomInt 9
case n of

0 -> do m <- getRandomInt mypropsindex
return (PrpF (P m))

1 -> do f <- getRandomForm (d-1)
return (Neg f)

2 -> do f <- getRandomForm (d-1)

g <- getRandomForm (d-1)
return (Impl f g)

3 -> do m <- getRandomInt myconlength
fs <- getRandomForms (d-1) m
return (Conj fs)

4 -> do m <- getRandomInt myconlength
fs <- getRandomForms (d-1) m
return (Disj fs)

5 -> do i <- getRandomInt myagsindex
f <- getRandomForm (d-1)
return (K i f)

6 -> do i <- getRandomInt myagsindex

19

f <- getRandomForm (d-1)
return (Kw i f)
7 -> do ags <- getRandomGroup
f <- getRandomForm (d-1)
return (Ck ags f)
8 -> do ags <- getRandomGroup
f1 <- getRandomForm (d-1)
f2 <- getRandomForm (d-1)
return (Announce ags f1 f£2)
-> do f1 <- getRandomForm (d-1)
f2 <- getRandomForm (d-1)
return (PubAnnounce f1 £2)

getRandomForms :: Int -> Int -> I0 [Form]
getRandomForms _ 0 = return []
getRandomForms d n = do f <- getRandomForm d
fs <- getRandomForms d (n-1)
return (f:fs)

5.2 Testing equivalence of the two semantics

The following creates a Kripke model and a knowledge structure which are equivalent to each other by
Lemma 13. In this model/structure Alice knows everything and the other agents do not know anything.
The function test checks for a given number of random formulas whether the implementations of the
different semantics and translation methods agree on whether the formula holds on the model and the

structure.
mymodel :: PointedModel
mymodel = (KrM ws rel (zip ws table), 0) where
WS = [0..(2"(mypropsindex+1) -1)]

rel = (alice, map (:[1) ws) : [(i,[ws]) | i <- [1..myagsindex]]
table = foldl buildTable [[]J] [P k | k<- [0..mypropsindex]]
buildTable partrows p = [(p,v):pr | v <-[True,Falsel, pr<-partrows]

myscn :: Scenario

myscn = (KnS ps (boolBdd0f Top) ((alice,ps):[(i,[]) | i<-[1..myagsindex]]) , ps)
where ps = [P 0 .. P mypropsindex]

singleTest :: I0 (Bool, Bool)

singleTest = do
f <- getRandomF
-- print f -- uncomment this to show formulas while testing.

singleTestWith f

singleTestWith :: Form -> IO (Bool, Bool)
singleTestWith f = do
let a = KRIPKEDEL.eval mymodel f -- evaluate directly on Kripke
let b = KNSCAC.eval myscn f -- evaluate directly on KNS
let c = KNSCAC.evalViaBdd myscn f -- evaluate boolean equivalent on KNS
let d = KRIPKEDEL.eval (knsToKripke myscn) f -- evaluate on corresponding Kripke
let e = KNSCAC.eval (kripkeToKns mymodel) f -- evaluate on corresponding KNS
if or [a/=b,b/=c,c/=d,d/=e]
then do putStr $ "Problem: " ++ show f ++ "\n " ++ show (a,b,c,d,e) ++"\n\n"
return (True,a)
else return (False,a)
test :: Int -> I0 ()
test n = do (problems,truths) <- testLoop O O n
putStrLn $ show problems ++ " problems among " ++ show n ++ " formulas out of
which " ++ show truths ++" were true."
testLoop :: Int -> Int -> Int -> I0 (Int,Int)

testLoop p t 0 = return (p,t)
testLoop p t n do (prob,res) <- singleTest
testLoop (if prob then p + 1 else p) (if res then t + 1 else t) (n-1)

20

5.3 Public Announcements

We can do public announcements in various ways. The following test checks that the result of all three
methods is the same.

pubAnnounceTest :: IO Bool
pubAnnounceTest = do
n <- getRandomInt mypropsindex
let f = PrpF (P n)
g <- getRandomF
print (PubAnnounce f g)
let a = KRIPKEDEL.eval mymodel (PubAnnounce f g)
putStr $ show a
let b = KNSCAC.eval (kripkeToKns mymodel) (PubAnnounce f g)
putStr $ show b
let ¢ = KNSCAC.eval (knowTransform (kripkeToKns mymodel) (actionToEvent (
pubAnnounceAction [0,1] £))) g

print c
if a/=b || b/=c
then do putStr $ "Problem: " ++ show g ++ "\n "++ show (a,b,c) ++"\n\n"
return False
else return True

5.4 Random Action Models

This generates a random action model with four actions. To ensure that it is compatible with all models
the actual action token has T as precondition. The other three action tokens have random formulas as
preconditions. Similar to the model above the first agent can tell the actions apart and everyone else
confuses them.

getRandomAction :: I0 PointedActionModel
getRandomAction = do
[f,g,h] <- getRandomForms 2 3
return (ActM [0..3] [(0,Top),(1,£f),(2,g),(3,h)]
¢ (o,C000],01],02],0311):0(k,[[0..3]1]) | k<-[1..myagsindex]), 0)

singleActionTest :: IO Bool
singleActionTest = do
myact <- getRandomAction
f <- getRandomForm 3
let a = KRIPKEDEL.eval (productUpdate mymodel myact) f
let b = KNSCAC.evalViaBdd (knowTransform (kripkeToKns mymodel) (actionToEvent myact)) £

if a /= b
then do putStr $ "Problem: " ++ show myact
++ "\n action: " ++ show (actionToEvent myact)
++ "\n form: " ++ show f
++ "\n res: " ++ show (a,b) ++ "\n\n"

return True
else return False

actionTest :: Int -> IO ()
actionTest n = do
problems <- actionTestLoop O n
putStrLn $ show problems ++ " problems among " ++ show n ++ " formula/action pairs."
actionTestLoop :: Int -> Int -> I0 Int
actionTestLoop p 0 = return p
actionTestLoop p n = do

problem <- singleActionTest
actionTestLoop (if problem then p+1 else p) (n-1)

21

6 Examples

This section shows how to use our model checker on concrete cases. We start with some toy examples
and then deal with famous puzzles and protocols from the literature.

module EXAMPLES where

import Data.List (delete,intersect,(\\))
import Data.Maybe (fromJust)

import DELLANG

import KNSCAC

import KRIPKEDEL

import SYMDEL

6.1 Knowledge and Meta-Knowledge

In the following Kripke model, Bob knows that p is true and Alice does not. Still, Alice knows that
Bob knows whether p. This is because in all worlds that Alice confuses with the actual world Bob
either knows that p or he knows that not p.

modelA :: PointedModel
modelA = (KrM [0,1] [(0,[[0,1]]),(1,[[0],[1]11)] [(o,[(P 0,True)]), (1,[(P O,False)]) 1, 0)
|

0 Alice

Figure 1: modelA

>>> map (KRIPKEDEL.eval modelA) [K bob (PrpF (P 0)), K alice (PrpF (P 0))]
[True,False]
0.98 seconds

>>> KRIPKEDEL.eval modelA (K alice (Kw bob (PrpF (P 0))))
True
0.96 seconds

In a slightly different model with three states, again Bob knows that p is true and Alice does not. And
additionally here Alice does not even know whether Bob knows whether p.

modelB :: PointedModel
modelB = (KrM [0,1,2] [(0,[[0,1,2]]),(1,[[0],[1,211)]1 [(O,[(P 0,True)]), (1,[(P 0,True)l),
(2,[(P 0,False)]) 1, 0) \
|

Figure 2: modelB

>>> KRIPKEDEL.eval modelB (K bob (PrpF (P 0)))
True

0.93 seconds

22

>>> KRIPKEDEL.eval modelB (Kw alice (Kw bob (PrpF (P 0))))
False

0.94 seconds

Let us see how such meta-knowledge (or in this case: meta-ignorance) is reflected in knowledge
structures. Both knowledge structures contain one additional observational variable:

knsA, knsB :: Scenario
knsA kripkeToKns modelA
knsB kripkeToKns modelB

knsA = | {p,p2}, Ap, p2}

knsB = {p,pz}, 7{pap2}

The only difference is in the state law of the knowledge structures. Remember that this component
determines which assignments are states of this knowledge structure. In our implementation this is not
a formula but a BDD, hence we show its graph here. The BDD in knsA demands that the propositions
p and ps have the same value. Hence knsA has just two states while knsB has three:
>>> let (structA,foo) = knsA in statesOf structA

([P 0,P 2],[]]

1.11 seconds

>>> let (structB,foo) = knsB in statesOf structB
([P ol,[P 0,P 2],[]]
1.08 seconds

6.2 Minimization via Translation

Consider the following Kripke model where 0 and 1 are bisimilar — it is redundant.

redundantModel :: PointedModel

redundantModel = (KrM [0,1,2] [(0,[[0,1,2]1]),(1,[[0,1],[211>] [(O,[(P O0,True)l), (1,[(P O,
True)l), (2,[(P 0,False)]) 1, 0)

Figure 3: redundantModel

If we transform this model to a knowledge structure, we get the following:

23

myKNS = kripkeToKns redundantModel

myKNS :: Scenario
]

myKNS = | {p,p2},

Moreover, if we transform this knowledge structure back to a Kripke Model, we get a model which is
bisimilar to the first one but has only two states — the redundancy is gone. This shows how knowledge
structures can be used to find smaller bisimilar models.

]
minimizedModel :: PointedModel ‘
minimizedModel = knsToKripke myKNS ‘

|

0 Alice
D, P2

Figure 4: minimizedModel

6.3 Different Announcements

We can represent a public announcement as an action model and then get the corresponding knowledge
transformer.

[
‘pubAnnounceAction :: [Agent] -> Form -> PointedActionModel

|
| pubAnnounceAction ags f = (ActM [0] [(0,£)] [(i,[[011) | i <- ags 1, O) ‘
‘examplePaAction :: PointedActionModel ‘
‘examplePaAction = pubAnnounceAction [0,1] (PrpF (P 0)) ‘
L |

>>> examplePaAction
(ActM [0] [(0,PrpF (P 0))] [(0,[[0]1),(1,[[0]1)],0)

0.95 seconds

>>> actionToEvent examplePaAction
(KnT [1 (PrpF (P 0)) [(0,[1),(1,[1D1,01)

0.97 seconds

Similarly a group announcement can be defined as an action model with two states. The automatically
generated equivalent knowledge transformer uses two atomic propositions which at first sight seems
different from how we defined group announcements on knowledge structures.

groupAnnounceAction :: [Agent] -> [Agent] -> Form -> PointedActionModel
groupAnnounceAction everyone listeners f = (ActM [0,1] [(0,f),(1,Top)] actrel, O0)
where actrel = [(i,[[0],[1]]) | i <- listeners]
++ [(i,[[0 , 111) | i <- everyone \\ listeners]

exampleGroupAnnounceAction :: PointedActionModel
exampleGroupAnnounceAction = groupAnnounceAction [0,1] [0] (PrpF (P 0))

24

>>> exampleGroupAnnounceAction
(ActM [0,1] [(0,PrpF (P 0)),(1,Top)] [(O,[[0],[111),(1,[[0,1]11)],0)
0.93 seconds

>>> actionToEvent exampleGroupAnnounceAction

(KnT [P 1,P 2] (Conj [Impl (PrpF (P 1)) (PrpF (P 0)),Impl (PrpF (P 2)) (PrpF (P

1)) ,Impl (Neg (PrpF (P 2))) (Neg (PrpF (P 1))),Disj [PrpF (P 1),Neg (PrpF (P 1))11)
[co,p 21),(1, 11, [P 1,P 2])

0.89 seconds

But it is not hard to check that this is equivalent to the definition. Consider the 8 formula of this
transformer, namely A{p1 — p1,p2 — p1, P2 — —p1,p1 V —p1}. This is equivalent to p; <> p2 and the
actual event is given by both p; and ps being added to the current state, equivalent to the normal
announcement. There is no canonical way to avoid such redundancy as long as we use the general
two-step process in Definition 18 to translate action models to knowledge transformers.

We can also turn this knowledge transformer back to an action model. The result is the same as the
action model we started with up to a renaming of action 1 to 3.
>>> eventToAction (actionToEvent exampleGroupAnnounceAction)

(ActM [0,3] [(0,PrpF (P 0)),(3,Top)] [(0,[[3],[011),(1,[[0,311)1,0)
0.90 seconds

6.4 Muddy Children

We now model the story of the muddy children which is known in many versions. See for example
[Lit53], [FHMV95, p. 24-30] or [DHKO07, p. 93-96]. Our implementation treats the general case for n
children out of which m are muddy, but we focus on the case of three children who are all muddy. As
usual, all children can observe whether the others are muddy but do not see their own face. This is
represented by the observational variables: Agent 1 observes po and ps, agent 2 observes p; and p3 and
agent 3 observes p; and po.

mudScnInit :: Int -> Int -> Scenario

mudScnInit n m = (KnS mudProps (boolBdd0f Top) [(i,delete (P i) mudProps) | i <- [1..n]
], [P1 .. P m]) where mudProps = [P 1 .. P nl]

myMudScnInit :: Scenario

myMudScnInit = mudScnInit 3 3

{p2,p3}
myMUdscnInit = {p17p27p3}7) {p17p3} 7{p17p27p3}
{p1,p2}
The following parameterized formulas say that child number i knows whether it is muddy and that
none out of n children knows its own state, respectively:

knows :: Int -> Form
knows i = Kw i (PrpF $ P i)

nobodyknows :: Int -> Form
nobodyknows n = Conj [Neg $ knows i | i <- [1..n]]

Now, let the father announce that someone is muddy and check that still nobody knows their own
state of muddiness.

father :: Int -> Form
father n = Disj (map PrpF [P 1 .. P n])

]
mudScn0 :: Scenario
mudScn0 = pubAnnounceOnScn myMudScnInit (father 3) ‘

|

25

{p2,p3}
’ {p17p3} ?{p17p27p3}
{plapz}

mudScn0 = {p1,p2,p3}a

>>> evalViaBdd mudScn0O (nobodyknows 3)
True

1.07 seconds

If we update once with the fact that nobody knows their own state, it is still true:

|
mudScnl :: Scenario ‘
mudScnl = pubAnnounceOnScn mudScnO (nobodyknows 3) ‘

|

{p27p3}
) {P1,P3} ,{pl,P2,p3}
{plapz}

mudScnl = {pl,pz,pg},

>>> evalViaBdd mudScnl (nobodyknows 3)
True

1.06 seconds

However, one more round is enough to make everyone know that they are muddy. We get a knowledge
structure with only one state, marking the end of the story.

mudScn2 :: Scenario
mudKns2 :: KnowStruct
mudScn2@ (mudKns2,_) = pubAnnounceOnScn mudScnl (nobodyknows 3)

;Df {p2,ps}
mudScn2 = {p17p27p3}5 E E) {p17p3} 7{plap27p3}
v A{ppe}

R

>>> evalViaBdd mudScn2 (Conj [knows i | i <- [1..3]])
True

1.04 seconds

>>> KNSCAC.statesOf mudKns2
[[P 1,P 2,P 3]]
1.05 seconds

We also make heavy use of the muddy children example in the benchmarks in section 7.

26

6.5 Drinking Logicians

Three logicians — all very thirsty — walk into a bar and get asked “Does everyone want a beer?”. The
first two reply "I don’t know”. After this the third person says "yes”.

This story is somewhat dual to the muddy children: In the initial state here the agents only know
their own piece of information and nothing about the others. The important reasoning here is that an
announcement of “I don’t know whether everyone wants a beer.” implies that the person making the

announcement wants beer. Because if not, then she would know that not everyone wants beer.
We formalize the situation — generalized to n logicians in a knowledge structure as follows. Let P;
represent that logician 7 wants a beer.

thirstyScene
thirstyScene n

myThirstyScene
myThirstyScene

Int -> Scenario

(KnS [P 1..P n] (boolBddOf Top) [(i,[P il) | i <- [1..n] 1, [P 1..P nl)

Scenario
thirstyScene 3

{p1}
myThirstyScene = | {p1,p2,p3}, » {p2}
{ps}

a{plap27p3}

We check that nobody knows whether everyone wants beer, but after all but one agent have announced

that they do not know, the agent n knows that everyone wants beer. As a formula:

A

)

S(KEAR) A DKD AP REL N\ PO | K A\ P
k k k k

thirstyF Int -> Form
thirstyF n = Conj [Conj [doesNotKnow k | k <- [1..n]]
, pubAnnounceStack [doesNotKmow i | i<-[1..(n-1)]] $ K n allWantBeer]
where
allWantBeer Conj [PrpF $ P k | k <- [1..n]]

doesNotKnow i

thirstyCheck ::
thirstyCheck n

Int

Neg $ Kw i allWantBeer

-> Bool

evalViaBdd (thirstyScene n) (thirstyF n)

>>> thirstyCheck 3

THREE LOGICIANS WALK INTO A BAR...

>>> thirstyCheck 100
True

1.28 seconds

>>> thirstyCheck 200
True

1.95 seconds

>>> thirstyCheck 400
True

5.56 seconds

27

True DOES EVERYONE spikedmath.com

1.11 seconds WANT BEER? . m
>>> thirstyCheck 10 @ U @ - @ V

True . — 2

1.09 seconds

http://spikedmath.com/445.html

http://spikedmath.com/445.html

6.6 Dining Cryptographers

We model the scenario described in [Cha88]: Three cryptographers went out to have diner. After a
lot of delicious and expensive food the waiter tells them that their bill has already been paid. The
cryptographers are sure that either it was one of them or the NSA. They want to find what is the
case but if one of them paid they do not want that person to be revealed. To accomplish this, they
use the following protocol: For every pair of cryptographers a coin is flipped in such a way that only
those two see the result. Then they announce whether the two coins they saw were different or the
same. But, there is an exception: If one of them paid, then this person says the opposite. After these
announcements are made, the cryptographers can infer that the NSA paid iff the number of people

saying that they saw the same result on both coins is even.

The following function generates a knowledge structure to model this story. Given an index 0, 1, 2, or

3 for who paid and three boolean values for the random coins we get the corresponding scenario.

dcScnInit :: Int -> (Bool,Bool,Bool) -> Scenario
dcScnInit payer (b1,b2,b3) = (KnS props law obs , truths) where
props = [P O -- The NSA paid
, P 1 -- Alice paid
, P2 -- Bob paid
, P 3 -- Charlie paid
, P 4 -- shared bit of Alice and Bob
, P 5 -- shared bit of Alice and Charlie
, P 6] -- shared bit of Bob and Charlie
law = boolBddOf $ Conj [someonepaid, notwopaid]
obs = [(1,[P 1, P 4, P 5])

, (2,[P 2, P 4, P 6])
, (3,[p 3, P 5, P 6])]
truths = [P payer] ++ [P 4 | b1] ++ [P 5 | b2] ++ [P 6 | b3]

dcScnl :: Scenario
dcScnl = dcScnInit 1 (True,True,False)

The set of possibilities is limited by two conditions: Someone must have paid but no two people

(including the NSA) have paid:

someonepaid, notwopaid :: Form
someonepaid = Disj (map (PrpF . P) [0..3])
notwopaid = Conj [Neg $ Conj [PrpF $ P x, PrpF $ P y] | x<-[0..3], y<-[(x+1)..3] 1]

In this scenario Alice paid and the random coins are 1, 1 and 0:

{P1,P47p5}
s {p27p4’p6} a{p17p47p5}
{p3;ps,p6}

deSenl = | {p,p1,p2,P3, P4, 05, D6}

Every agent computes the Xor of all three variables he knows:

reveal :: Int -> Form

reveal 1 = Xor (map PrpF [P 1, P 4, P 5])
reveal 2 = Xor (map PrpF [P 2, P 4, P 6])
reveal = Xor (map PrpF [P 3, P 5, P 6])

28

>>> map (evalViaBdd dcScnl) [reveal 1, reveal 2, reveal 3]
[True,True,Truel
1.16 seconds

Now these three facts are announced:

dcScn2
dcScn2 = pubAnnounceOnScn dcScnl (Conj [reveal 1, reveal 2, reveal 3])

Scenario

{p17p47p5}
) {p27p4ap6}
{p3:ps.p6}

dcScn2 = {p7p17p27p37p47p57p6}7 7{p17p47p5}

And now everyone knows whether the NSA paid for the dinner or not:

everyoneKnowsWhetherNSApaid :: Form
everyoneKnowsWhetherNSApaid = Conj [Kw i (PrpF $ P 0) | i <- [1..3] 1]

>>> evalViaBdd dcScn2 everyoneKnowsWhetherNSApaid
True
1.09 seconds

Further more, it is only known to Alice that she paid:
>>> evalViaBdd dcScn2 (K 1 (PrpF (P 1)))
True

1.07 seconds

>>> evalViaBdd dcScn2 (K 2 (PrpF (P 1)))
False
1.09 seconds

>>> evalViaBdd dcScn2 (K 3 (PrpF (P 1)))
False

1.12 seconds

To check all of this in one formula we use the “announce whether” operator. Furthermore we
parameterize the last check on who actually paid, i.e. if one of the three agents paid, then the other
two do not know this.

nobodyknowsWhoPaid
nobodyknowsWhoPaid

dcCheckForm :: Form

Form
Conj

[Impl (PrpF (P 1)) (Conj [Neg $ K 2 (PrpF $ P 1), Neg $ K 3 (PrpF $ P 1) 1)
, Impl (PrpF (P 2)) (Conj [Neg $ K 1 (PrpF $ P 2), Neg $ K 3 (PrpF $ P 2) 1)
, Impl (PrpF (P 3)) (Conj [Neg $ K 1 (PrpF $ P 3), Neg $ K 2 (PrpF $ P 3) 1) 1]

dcCheckForm = PubAnnounceW (reveal 1) $ PubAnnounceW (reveal 2) $ PubAnnounceW (reveal 3) §$
Conj [everyoneKnowsWhetherNSApaid, nobodyknowsWhoPaid]

29

>>> evalViaBdd dcScnl dcCheckForm
True

1.13 seconds

We can also check that formula is valid on the whole knowledge structure. This means the protocol is
secure not just for the particular instance where Alice paid and the random bits (i.e. flipped coins) are
as stated above but for all possible combinations of payers and bits/coins.

dcValid :: Bool
dcValid = validViaBdd dcStruct dcCheckForm where (dcStruct,_) = dcScnil

The whole check runs within a fraction of a second:
>>> dcValid

True

1.13 seconds

A generalized version of the protocol for more than 3 agents uses exclusive or instead of odd/even.
The following implements this general case for n dining cryptographers and we will it for a benchmark
in Section 7.2. Note that we need Z?:_lli = % many shared bits. This distinguishes the Dining
Cryptographers from the Muddy Children and the Drinking Logicians example where the number of

propositions needed to model the situation was just the number of agents.

genSomeonepaid :: Int -> Form
genSomeonepaid n = Disj (map (PrpF . P) [0..n])

genNotwopaid :: Int -> Form
genNotwopaid n = Conj [Neg $ Conj [PrpF $ P x, PrpF $ P y 1 | x<-[0..n], y<-[(x+1)..n]]

genDcKnsInit :: Int -> KnowStruct
genDcKnsInit n = KnS props law obs where
props = [P 0] -- The NSA paid
++ [(P 1) .. (P n) 1 -- agent i paid

++ sharedbits
law = boolBdd0f $ Conj [genSomeonepaid n, genNotwopaid nl]
obs = [(i, obsfor i) | i<-[1..n] 1]

sharedbitLabels = [[k,1] | k <- [1..n], 1 <- [1..n], k<1] -- n(n-1)/2 shared bits

sharedbitRel = zip sharedbitLabels [(P $ n+1) ..]

sharedbits = map snd sharedbitRel

obsfor i = P i : map snd (filter (\(label,_) -> i ‘elem‘ label) sharedbitRel)
genEveryoneKnowsWhetherNSApaid :: Int -> Form

genEveryoneKnowsWhetherNSApaid n = Conj [Kw i (PrpF $ P 0) | i <- [1..n]]

genDcReveal :: Int -> Int -> Form
genDcReveal n i = Xor (map PrpF (fromJust $ lookup i obs)) where (KnS
genDcKnsInit n

obs) =

genNobodyknowsWhoPaid :: Int -> Form
genNobodyknowsWhoPaid n =
Conj [Impl (PrpF (P i)) (Conj [Neg $ K k (PrpF $ P i) | k <- delete i [1..mn] 1) | i <-
[1..n] 1]

genDcCheckForm :: Int -> Form
genDcCheckForm n =
pubAnnounceWhetherStack [genDcReveal n i | i<-[1..n] 1 $
Conj [genEveryoneKnowsWhetherNSApaid n, genNobodyknowsWhoPaid n]

genDcValid :: Int -> Bool
genDcValid n = validViaBdd (genDcKnsInit n) (genDcCheckForm n)

For example, we can check the protocol for 4 dining cryptographers.
>>> genDcValid 4
True

1.07 seconds

30

6.7 Russian Cards

As a second case study we analyze the Russian Cards problem. One of its first logical treatments is [Dit03]
and the problem has since gained notable attention as an intuitive example of information-theoretically
(in contrast to computationally) secure cryptography [CFDFDST15, DG14].

The basic version of the problem is this: Seven cards, enumerated from 0 to 6, are distributed between
Alice, Bob and Carol such that Alice and Bob both receive three cards and Carol one card. It is
common knowledge which cards exist and how many cards each agent has. Everyone knows their own
but not the others’ cards. The goal of Alice and Bob now is to learn each others cards without Carol
learning their cards. They are only allowed to communicate via public announcements.

We begin implementing this situation by defining the set of players and the set of cards. To describe
a card deal with boolean variables, we let Pj encode that agent £ modulo 3 has card roor(%). For
example, P;7 means that agent 2, namely Carol, has card 5 because 17 = (3 * 5) + 2. The function
hasCard in infix notation allows us to write more natural statements. We also use aliases alice, bob

and carol for the agents.

rcPlayers, rcCards :: [Int]

rcPlayers = [alice,bob,carol]

rcCards = [0..6]

rcProps :: [Prpl

rcProps = [P k | k <-[0..((length rcPlayers * length rcCards)-1)] 1]
hasCard :: Agent -> Int -> Form

hasCard i n = PrpF (P (3 * n + i))

>>> carol ‘hasCard‘ 5
PrpF (P 17)
0.95 seconds

We now describe which deals of cards are allowed. For a start, all cards have to be given to at least
one agent but no card can be given to two agents.

allCardsGiven, allCardsUnique :: Form
allCardsGiven = Conj [Disj [i ‘hasCard® n | i <- rcPlayers] | n <- rcCards]
allCardsUnique = Conj [Neg $ isDouble n | n <- rcCards] where
isDouble n = Disj [Conj [x ‘hasCard® n, y ‘hasCard‘ n] | x <- rcPlayers, y <-
rcPlayers, x/=y, x<=y]

Moreover, Alice, Bob and Carol should get at least three, three and one card, respectively. As there
are only seven cards in total this already implies that they can not have more.

distribute331 :: Form
distribute331 = Conj [aliceAtLeastThree, bobAtLeastThree, carolAtLeastOne] where
aliceAtLeastThree = Disj [Conj (map (alice ‘hasCard‘) [x, y, z]) | x<-rcCards, y<-
rcCards, z<-rcCards, x/=y, x/=z, y/=z]
bobAtLeastThree = Disj [Conj (map (bob ‘hasCard‘) [x, y, z]) | x<-rcCards, y<-rcCards, z
<-rcCards, x/=y, x/=z, y/=z 1]
carolAtLeastOne = Disj [carol ‘hasCard‘ k | k<-[0..6] 1]

We can now define the initial knowledge structure. The state law describes all possible distributions
using the three conditions we just defined. As a default deal we give the cards {0, 1,2} to Alice, {3,4,5}
to Bob and {6} to Carol.

rusSCN :: Scenario

rusSCN = (KnS rcProps law [(i, obs i) | i <- rcPlayers], defaultDeal) where
law = boolBdd0f $ Conj [allCardsGiven, allCardsUnique, distribute331]
obs i = [P (3*k+i) | k<-[0..6]]
defaultDeal = [P O,P 3,P 6,P 10,P 13,P 16,P 20]

31

The initial knowledge structure for Russian Cards looks as follows. The BDD describing the state law
is generated within less than a second but drawing it is more complicated and the result quite huge:

I——
\ N
[[N
| —— B | N\
! AN N
- 7 I | /
\ I —) | TN ! \
~ T N
T /N /N / / /
i - - - | _ SR P Ay ! \ i
N /1 — X 1 AN N\
N \ / I | /5 A e \
- TN A M \ R
Nt N N AT |
| /A /N n \ R
[N T A L T i
N AT | RN A
I \ RRRER EREERRERRR
= SSUNSNINES SN\ Nt === S

Many different solutions for Russian Cards exist. Here we will focus on so-called five-hands protocols
(and their extensions with six or seven hands) which are also used in [DHMRO06|: First Alice makes
an announcement of the form “My hand is one of these: ...”. If her hand is 012 she could for example
take the set {012,034, 056, 135,146, 236}. It can be checked that this announcement does not tell Carol
anything, independent of which card it has. In contrast, Bob will be able to rule out all but one of the
hands in the list because of his own hand. Hence the second and last step of the protocol is that Bob
says which card Carol has. For example, if Bob’s hand is 345 he would finish the protocol with “Carol
has card 6.”.

To verify this protocol with our model checker we first define the two formulas for Alice saying "My
hand is one of 012, 034, 056, 135 and 246." and Bob saying "Carol holds card 6". Note we prefix the
statements with knowledge operators. This reflects that Alice and Bob make the announcements and
thus the real announcement is "Alice knows that one of her cards is 012, 034, 056, 135 and 246." and
"Bob knows that Carol holds card 6.".

aAnnounce :: Form
aAnnounce = K alice $ Disj [Conj (map (alice ‘hasCard ‘) hand) |
hand <- [[0,1,2], [0,3,4], [0,5,6], [1,3,5], [2,4,6]] 1]

bAnnounce :: Form
bAnnounce = K bob (carol ‘hasCard® 6)

To describe the goals of the protocol we need formulas about the knowledge of the three agents: Alice
should know Bob’s cards, Bob should know Alice’s cards, and Carol should be ignorant, i.e. not know
for any card that Alice or Bob has it. Note that Carol will still know for one card that neither Alice
and Bob have them, namely his own. This is why we use K’ (which is Kw in Haskell) for the first two
but only the plain K for the last condition.

aKnowsBs, bKnowsAs, cIgnorant :: Form
aKnowsBs = Conj [alice ‘Kw‘ (bob ‘hasCard‘ k) | k<-rcCards]
bKnowsAs = Conj [bob ‘Kw‘ (alice ‘hasCard‘ k) | k<-rcCards]

cIgnorant = Conj $ concat [[Neg $ K carol $ alice ‘hasCard‘ i
, Neg $ K carol $ bob ‘hasCard® i] | i<-rcCards]

We can now check how the knowledge of the agents changes during the communication, i.e. after the
first and the second announcement. First we check that Alice says the truth.

rcCheck :: Int -> Form
rcCheck 0 = aAnnounce

After Alice announces five hands, Bob knows Alice’s card and this is common knowledge among them.

rcCheck 1
rcCheck 2

PubAnnounce aAnnounce bKnowsAs
PubAnnounce aAnnounce (Ck [0,1] bKnowsAs)

And Bob knows Carol’s card. This is entailed by the fact that Bob knows Alice’s cards.

32

[
| rcCheck 3 = PubAnnounce aAnnounce (K 1 (PrpF (P 20)))

Carol remains ignorant of Alice’s and Bob’s cards, and this is common knowledge.

[
‘rcCheck 4 = PubAnnounce aAnnounce (Ck [0,1,2] cIgnorant)
L

After Bob announces Carol’s card, it is common knowledge among Alice and Bob that they know

each others cards and Carol remains ignorant.

rcCheck 5 = PubAnnounce aAnnounce (PubAnnounce bAnnounce (Ck [0,1] aKnowsBs))
rcCheck 6 = PubAnnounce aAnnounce (PubAnnounce bAnnounce (Ck [0,1] bKnowsAs))
rcCheck _ = PubAnnounce aAnnounce (PubAnnounce bAnnounce (Ck [0,1,2] cIgnorant))
rcAllChecks :: Bool

rcAllChecks = evalViaBdd rusSCN (Conj (map rcCheck [0..71))

Verifying this protocol for the fixed deal 012|345|6 with our symbolic model checker takes about one
second. Moreover, checking multiple protocols in a row does not take much longer because the BDD
package caches results. Compared to that, the DEMO implementation from [DHMRO06| needs 4 seconds

to check one protocol.

>>> EXAMPLES.rcAllChecks
True
1.05 seconds

We can not just verify but also find all protocols based on a set of five, six or seven hands, using the
following combination of manual reasoning and brute-force. The following function checkSet takes a

set of cards and returns whether it can safely be used by Alice.

checkSet :: [[Int]] -> Bool
checkSet set = all (evalViaBdd rusSCN) fs where
aliceSays = K alice (Disj [Conj $ map (alice ‘hasCard‘) h | h <- set])
bobSays = K bob (carol ‘hasCard‘ 6)
fs = [aliceSays
, PubAnnounce aliceSays bKnowsAs
, PubAnnounce aliceSays (Ck [alice,bob] bKnowsAs)
, PubAnnounce aliceSays (Ck [alice,bob,carol] cIgnorant)

, PubAnnounce aliceSays (PubAnnounce bobSays (Ck [0,1,2] cIgnorant))]

possibleHands :: [[Int]]
possibleHands = [[x,y,z] | x <- rcCards, y <- rcCards, z <-rcCards, x <y, y < z]
pickHands :: [[Int]] -> Int -> [[[Int] 1 1]

pickHands _ 0 = [[[1 11
pickHands unused 1 = [[h] | h <- unused]
pickHands unused n = concat [[h:hs | hs <- pickHands (myfilter h unused) (n-1)]
unused] where
myfilter h = filter (\xs -> length (h ‘intersect® xs) < 2 && h < xs)

, PubAnnounce aliceSays (PubAnnounce bobSays (Ck [0,1] $ Conj [aKnowsBs, bKnowsAs]))

| h <-

The last line includes two important restrictions to the set of possible lists of hands that we will
consider. First, Proposition 32 in [Dit03] tells us that safe announcements from Alice never contain
“crossing” hands, i.e. two hands which have more than one card in common. Second, without loss of
generality we can assume that the hands in her announcement are lexicographically ordered. This

leaves us with 1290 possible lists of five, six or seven hands of three cards.

allHandLists :: [[[Int]l 1 1]
allHandLists = concatMap (pickHands possibleHands) [5,6,7]

>>> length allHandLists
1290
1.10 seconds

33

Which of these are actually safe announcements that can be used by Alice? We can find them by
checking 1290 instances of checkSet above. Our model checker can filter out the 102 safe announcements
within seconds, generating and verifying the same list as in [Dit03, Figure 3| where it was manually
generated.

*EXAMPLES > mapM_ print (sort (filter checkSet allHandLists))
(to,t,21,0,3,41,[0,5,61,[1,3,5],[1,4,6]1,[2,3,6]]
(ro,t+,21,0,3,41,(0,5,61,[1,3,51,[1,4,61,[2,3,6]1,[2,4,511
(to,t,21,0,3,41,0,5,61,[1,3,5],[1,4,6]1,[2,4,5]]
(to,t,21,0,3,41,[0,5,61,[1,3,5],[2,3,6]1,[2,4,5]1]

rco,1,21,10,5,61,01,3,61,[1,4,5]1,[2,3,5]1,[2,4,611]
(to,t,21,fo,5,61,01,3,6],[2,4,6]1,[3,4,5]]
rco,t1,21,[0,5,61,01,4,5]1,[2,3,5],([3,4,61]
[co,1,21,[0,5,61,01,4,6]1,[2,3,6],[3,4,5]1]

(3.39 secs, 825215584 bytes)

>>> length (filter checkSet allHandLists)
102
2.60 seconds

34

7 Benchmarks

We now provide two different benchmarks for SMCDEL. All measurements were done under 64-bit
Debian GNU /Linux 8.0 with kernel 3.16.0-4 running on an Intel Core i3-2120 3.30GHz processor and
4GB of memory. Code was compiled with GHC 7.8.3 and g++ 4.9.2.

7.1 Muddy Children

In this section we compare the performance of different model checking approaches to the muddy
children example from Section 6.4.

e SMCDEL with different BDD packages: CacBDD, CUDD, ROBBed and NooBdd.
e DEMO-S5, a version of the epistemic model checker DEMO optimized for S5 [Eij07, Eij14].

e MCTRIANGLE, an ad-hoc implementation of [GS11|, see Appendix 1 on page 43.

module Main (main) where

import Control.Monad

import Data.List

import Data.Time (getCurrentTime, NominalDiffTime, diffUTCTime)
import System.Environment (getArgs)

import System.IO0 (stdout, hSetBuffering, BufferMode(NoBuffering))
import DELLANG

import EXAMPLES

import qualified DEMO_S5

import qualified KNSCAC

import qualified KNSCUDD

import qualified KNSROB

import qualified KNSNOO

import qualified MCTRIANGLE

This benchmark compares how long it takes to answer the following question: "For n children, when
m of them are muddy, how many announcements of »Nobody knows their own state.« are needed to let
at least one child know their own state?". For this purpose we recursively define the formula to be
checked and a general loop function which uses a given model checker to find the answer.

checkForm :: Int -> Int -> Form
checkForm n 0 = nobodyknows n
checkForm n k = PubAnnounce (nobodyknows n) (checkForm n (k-1))
findNumberWith :: (Int -> Int -> a, a -> Form -> Bool) -> Int -> Int -> Int
findNumberWith (start,evalfunction) n m = loop O where
loop count = if evalfunction (start n m) (PubAnnounce (father n) (checkForm n count))

then loop (count+1)
else count

mudPs :: Int -> [Prp]
mudPs n = [P 1 .. P n]

We now instantiate this function with the evalViaBdd function from our four different versions of
SMCDEL, linked to the different BDD packages.

findNumberCacBdd :: Int -> Int -> Int
findNumberCacBdd = findNumberWith (cacMudScnInit ,KNSCAC.evalViaBdd) where
cacMudScnInit n m = (KNSCAC.KnS (mudPs n) (KNSCAC.boolBdd0Of Top) [(i,delete (P i) (
mudPs n)) | i <- [1..n] 1, [P 1 .. P m])

findNumberCUDD :: Int -> Int -> Int
findNumberCUDD = findNumberWith (cuddMudScnInit ,KNSCUDD.evalViaBdd) where
cuddMudScnInit n m = (KNSCUDD.KnS (mudPs n) (KNSCUDD.boolBddOf Top) [(i,delete (P i) (
mudPs n)) | i <- [1..n] 1, [P 1 .. P m])

findNumberRobBdd :: Int -> Int -> Int

35

findNumberRobBdd = findNumberWith (robMudScnInit ,KNSROB.evalViaBdd) where

robMudScnInit n m = (KNSROB.KnS (mudPs n) (KNSROB.boolBddOf Top) [(i,delete (P i) (
mudPs n)) | i <- [1..n] 1, [P 1 .. P m])

findNumberNooBdd :: Int -> Int -> Int
findNumberNooBdd = findNumberWith (nooMudScnInit ,KNSNOO.evalViaBdd) where

nooMudScnInit n m = (KNSNOO.KnS (mudPs n) (KNSNOO.boolBddOf Top) [(i,delete (P i) (
mudPs n)) | i <- [1..n] 1, [P 1 .. P m])

However, for an explicit state model checker like DEMO-S5 we can not use the same loop function
because we want to hand on the current model to the next step instead of computing it again and again.

mudDemoKrpInit :: Int -> Int -> DEMO_S5.EpistM [Booll
mudDemoKrpInit n m = DEMO_S5.Mo states agents [] rels points where
states = DEMO_S5.bTables n
agents = map DEMO_S5.Ag [1..n]
rels = [(DEMO_S5.Ag i, [[tabl++[Truel++tab2,tabl++[False]l++tab2] |
tabl <- DEMO_S5.bTables (i-1),

tab2 <- DEMO_S5.bTables (n-i) 1) | i <- [1..n]]

points = [replicate (n-m) False ++ replicate m Truel
findNumberDemo :: Int -> Int -> Int
findNumberDemo n m = findNumberDemoLoop n m O start where

start = DEMO_S5.upd_pa (mudDemoKrpInit n m) (DEMO_S5.fatherN n)

findNumberDemoLoop :: Int -> Int -> Int -> DEMO_S5.EpistM [Bool] -> Int
findNumberDemoLoop n m count curMod =
if DEMO_S5.isTrue curMod (DEMO_S5.dont n)

then findNumberDemoLoop n m (count+1) (DEMO_S5.upd_pa curMod (DEMO_S5.dont n))
else count

Also the number triangle approach to the Muddy Children puzzle has to be treated separately. See
|[GS11] and Appendix 1 on page 43 for the details. Here the formula nobodyknows does not depend on
the number of agents and therefore the loop function does not have to pass on any variables.

findNumberTriangle :: Int -> Int -> Int
findNumberTriangle n m = findNumberTriangleLoop O start where
start = MCTRIANGLE.update (MCTRIANGLE.mcModel (n-m,m)) (MCTRIANGLE.Qf MCTRIANGLE.some)

findNumberTriangleLoop :: Int -> MCTRIANGLE.McModel -> Int
findNumberTriangleLoop count curMod =
if MCTRIANGLE.eval curMod MCTRIANGLE.nobodyknows

then findNumberTriangleLoop (count+1) (MCTRIANGLE.update curMod MCTRIANGLE.nobodyknows)
else count

The following functions loop over all the solution methods we defined and generate a table of timing
results. The resulting program takes a maximum runtime as a parameter. If a solution method takes

longer than this limit then it will not be used for the following instances of the problem with a higher
number of agents.

timeWith :: Int -> Int -> (Int -> Int -> Int) -> I0 NominalDiffTime
timeWith n m function = do
start <- getCurrentTime
if function n m == (m - 1)
then do end <- getCurrentTime
return (end ‘diffUTCTime ¢ start)
else error "Wrong result."

mainLoop :: [(Bool, Int -> Int -> Int)] -> [Int]l -> Int -> I0 Q)
mainLoop _ [] _ = putStrLn "'
mainLoop fs (m:mns) limit = do

putStr $ show n ++ "\t"
results <- mapM (\(bit,f) ->
if bit then do
result <- timeWith n n f
putStr $ init (show result) ++ replicate (9 - length (show result)) 20’ ++ "\t"
return result
else do

36

putStr "nan \t"
return O
) fs
putStrLn ""
let newfs = map (\((bit,f),t) -> (bit && (t<= fromIntegral limit), f)) (zip fs results)
when (any fst newfs) $ mainLoop newfs ns limit

main :: IO ()
main = do
hSetBuffering stdout NoBuffering
putStrLln $ "Initializing CacBDD: 40==" ++ show (findNumberCacBdd 41 41)
putStrLn $ "Initializing CUDD: 40==" ++ show (findNumberCUDD 41 41)
putStrLn $ "n\t" ++ concatMap (++ "\t") ["TRIANGLE","KNSCAC ","KNSCUDD "]-- "KNSROB b,
KNSNOO " ,"DEMO-S5 "]

let allfs = [findNumberTriangle, findNumberCacBdd, findNumberCUDD]-- findNumberRobBdd,
findNumberNooBdd , findNumberDemo]
args <- getArgs
case args of
[aInteger] | [(n,_)] <- reads alnteger ->
mainLoop (zip (repeat True) allfs) ([3..40]++[50,60,70,80,90,100]) n
-> error "Please give a maximum runtime as an argument."

104 L T T T T T T T T T T T]

10° f

10% | 1

10 1 :

109 E

< i]

= L |
o}

g 1071 ; 4 .

- g i 1

L / %, - B

1072 1 i BN £

B /] "///./// B

i ry P 1

1073 g [,/ o | and —o— DEMO-S5 E

i : Pag —=~ SMCDEL/NooBdd | |

104 | T —e—SMCDEL/ROBBeD | |

o —— SMCDEL/CUDD |

R —+— SMCDEL/CacBDD | |

10 g -e- Number Triangle E

L I I I I I I I I I I |

|
0 10 20 30 40 50 60 70 80 90 100
Number of children (all muddy)

Figure 5: Benchmark Results on a logarithmic scale.

As expected we can see in Figure 5 that SMCDFEL is faster than the explicit model checker DEMO.
We can also see that the choice of the BDD package affects the performance. With the naive package
NooBdd (which does not not find and identify isomorphic subtrees etc.) our model checker is almost as
slow as DEMO-S5. Somewhat better but still becoming slow above 40 agents is the ROBBeD package
written in pure Haskell. The two highly developed packages with elaborate memory management give

37

us the best performance for SMCDEL, with a slightly better performance of CacBDD compared to
CUDD. It is important to note that this difference and the performance in general also depends on
the binding libraries we use. Especially concerning memory management and garbage collection there
should be room for improvement.

Finally, the number triangle approach from [GS11| is way faster than all others, especially for large
numbers of agents. This is not surprising, though: Both the model and the formula which are checked
here are smaller and the semantics was specifically adapted to the muddy children example. Concretely,
the size of the model is linear in the number of agents and the length of the formula is constant. It will
be subject to future work if the idea underlying this approach — the identification of agents in the same
informational state — can be generalized to other protocols or ideally the full DEL language.

7.2 Dining Cryptographers
Muddy Children has also been used to benchmark MCMAS [LQR15| but the formula checked there

concerns the correctness of behavior and not how many rounds are needed. Moreover, the interpreted
system semantics of model checkers like MCMAS are very different from DEL. Still, connections between
DEL and temporal logics have been studied and translations are available [BGHP09, DHR13|.

A protocol which fits nicely into both frameworks are the Dining Cryptographers [Cha88| which we
implemented in Section 6.6. We will now use it to measure the performance of SMCDEL in a way that
is more similar to [LQR15].

module Main (main) where

import Control.Monad (when)

import Data.Time (diffUTCTime,getCurrentTime ,NominalDiffTime)
import System.Environment (getArgs)

import System.I0 (hSetBuffering,BufferMode (NoBuffering),stdout)
import DELLANG

import KNSCAC

import EXAMPLES (genDcKnsInit,genDcReveal)

The following statement was also checked with MCMAS in [LQR15].

“If cryptographer 1 did not pay the bill, then after the announcements are made, he knows
that no cryptographers paid, or that someone paid, but in this case he does not know who
did.”

Following ideas and conventions from [BGHP09, DHR13| we can formalize it in DEL as

n

—p1 — (1] <K1(/\ —pi) V (Kl(\/ pi) A /\(ﬂKlpi)>>
=2

i=1 =2

where p; says that agent ¢ paid and !vy is the announcement whether the number of agents which
announced a 1 is odd, i.e. ¥ := @, P{p | Agent i can observe p}.

genDcCheckForm :: Int -> Form
genDcCheckForm n = Impl (Neg (PrpF
PubAnnounceW (Xor [genDcReveal n
Disj [K 1 (Conj [Neg $ PrpF $
, Conj [K 1 (Disj [PrpF
, Conj [Neg $ K 1

P 1)) $

| i<-[1..n] 1) $

k | k <- [1..n] 1)

Pk | k <- [2..n] 1)

PrpF $ P k) | k <- [2..n] 1 11

~ ¥ U H &4

genDcValid :: Int -> Bool
genDcValid n = validViaBdd (genDcKnsInit n) (genDcCheckForm n)

dcTimeThis :: Int -> I0 NominalDiffTime
dcTimeThis n = do
start <- getCurrentTime
let mykns@(KnS props _ _) = genDcKnsInit n
putStr $ show (length props) ++ "\t"

38

putStr $ show (length $ show mykns) ++ "\t"
putStr $ show (length $ show $ genDcCheckForm n) ++ "\t"
if genDcValid n then do
end <- getCurrentTime
return (end ‘diffUTCTime ¢ start)
else
error "Wrong result."

mainLoop :: [Int] -> Int -> I0 ()
mainLoop [] _ = putStrLn ""
mainLoop (n:ns) limit = do

putStr $ show n ++ "\t"

result <- dcTimeThis n

print result

when (result <= fromIntegral limit) $ mainLoop ns limit

main :: IO ()
main = do

args <- getArgs

hSetBuffering stdout NoBuffering

case args of

[aInteger] | [(n,_)] <- reads alnteger -> do

putStrLln $ "n" ++ "\tn(prps)"++ "\tsz (KNS)"++ "\tsz(frm)" ++ "\ttime"
mainLoop (3:(5 : map (10%) [1..]1)) n
-> error "Please give a maximum runtime as an argument."

The program outputs the following table which shows (i) the number of cryptographers, (ii) the
number of propositions used, (iii) the length of the knowledge structure, (iv) the length of the formula
and (v) the time in seconds needed by SMCDEL to check it.

n n(prps) sz (KNS) sz(frm) time

3 7 211 331 0.142654s
5 16 473 633 0.000622s
10 56 1634 1825 0.001898s
20 211 6457 6247 0.009982s
30 466 14512 13357 0.031843s
40 821 25667 23067 0.079768s
50 1276 40750 35929 0.179073s
60 1831 59770 51949 0.334907s
70 2486 82190 70769 0.571617s
80 3241 108010 92389 0.891703s
90 4096 137230 116809 1.3617s
100 5051 169951 144031 1.839588s
110 6106 207036 174071 2.605375s
120 7261 247621 206911 3.328267s
130 8516 291706 242551 4.266749s
140 9871 339291 280991 5.65589s
150 11326 394354 324883 6.653351s
160 12881 453604 372033 8.139113s
170 14536 516654 422183 10.38303s

These results are satisfactory: While MCMAS already needs more than 10 seconds to check the
interpreted system for 50 or more dining cryptographers (see [LQR15, Table 4]), SMCDEL can deal
with the case of up to 160 agents in less time.

39

8 Future Work

We are planning to extend SMCDEL and continue our research in the following ways.

Non-S5 Models

Currently SMCDEL can only work on models where the epistemic accessibility relation is an equivalence
relation. This is because only those can be described by sets of observational variables. And in fact not
even every S5 relation on distinctly valuated worlds can be modeled with observational variables — this
is why our translation procedure in Definition 16 has to use additional atomic propositions.

To overcome this limitation, we will generalize the definition of knowledge structures. Using well-known
methods from temporal model checking, arbitrary relations can also be represented as BDDs. Remember
that in a knowledge structure we can identify states with boolean assignments and those are just sets of
propositions. Hence a relation on states with unique valuations can be seen as a relation between sets
of propositions. We can therefore represent it with the BDD of a characteristic function on a double
vocabulary, as described in [CGP99, Section 5.2]. Intuitively, we construct (the BDD of) a formula
which is true exactly for the pairs of boolean assignments that are connected by the relation.

Increase Usability

Concerning the usability of SMCDEL, two desiderata come to mind. First, our language syntax is
globally fixed and contains only one enumerated set of atomic propositions. In contrast, the model
checker DEMO(-S5) allows the user to parameterize the valuation function and the language according
to her needs. For example, the muddy children can be represented with worlds of the type [Bool], a
list indicating their status. To allow symbolic model checking on Kripke models specified in this way
we have to map user specified propositions to variables in the BDD package. In parallel, formulas using
the general syntax should be translated to BDDs.

Second, our model checker currently is only usable as a Haskell module. But ideally, the user should
not have to know Haskell and only basic knowledge about DEL should be required to use it. This can
be achieved with a stand-alone executable of the model checker that reads a simple text-file containing
the description of a model and one or more formulas to be checked. As a first step towards this goal we
will write a parser for human-readable DEL formulas, similar to one already used in the online model
checker for Epistemic Crypto Logic (https://is.gd/eclonline).

SAT Solving

Instead of representing boolean functions with BDDs also SAT solvers are being used in model checking
for temporal logics and provide an alternative approach for system verification. In our case we could
do the following: Instead of translating DEL formulas to boolean formulas represented as BDDs we
translate them to conjunctive or disjunctive normal forms of boolean formulas. These — probably very
lengthy — boolean formulas can then be fed into a SAT solver, or in case we need to know whether they
are tautologies, their negation.

Abstraction and Modal Logic

Epistemic and temporal logics have been connected before and also concrete translation methods have
been proposed, see [BGHP09, DHR13|. Also similar to our observational variables are the “mental
programs”’ recently presented in [CS15|. These and other ideas could also be implemented and their
performance and applicability be compared to our approach.

Another direction would be to lift the symbolic representations of Kripke models for epistemic logics
to modal logic in general and explore whether this gives new insights or better complexity results. A
concrete example will be to enable symbolic methods for Epistemic Crypto Logic [EG15]. Our methods
could then also be used to analyze cryptographic protocols.

40

https://is.gd/eclonline

Appendix 1: Installation Guidelines

Currently SMCDEL is supported to run on the Haskell Platform 2014.2 under Linux. The following

shell commands will install HasCacBDD (including CacBDD) and then SMCDEL.

git clone https://github.com/m4lvin/HasCacBDD.git
cd HasCacBDD
make all

git clone https://github.com/m4lvin/SMCDEL.git
cd SMCDEL
make

One can then run ghci EXAMPLES to explore the examples from Section 6:

*EXAMPLES > modelA
(KrM [0,1] [(0o,[[0,1]]),(t1,[[0],[1]11)]1 [COo,[(P O,True)]),(1,[(P O,False)])],0)
*EXAMPLES > modelB

(KrM [0,1,2] [(o,[[0,1,2]1]),(1,[[0],[1,211)] [CO,[(P O,True)]),(1,[(P O0,True)l),(2,[(P O,
False)]1)1,0)

To use SMCDEL with other BDD packages these have to be installed first. The following git repositories

include some patches and adjusted Makefiles for the other three BDD packages.
e https://github.com/m4lvin/hBDD
e https://github.com/m4lvin/robbed

e https://github.com/m4lvin/NooBDD

The modules KNSCUDD, KNSROB and KNSNOO can then be built with make otherbdds in the
SMCDEL folder. More information to reproduce the benchmarks and other experimental modules can

be found in the Makefile.

41

https://github.com/m4lvin/hBDD
https://github.com/m4lvin/robbed
https://github.com/m4lvin/NooBDD

Appendix 2: Helper Functions

module HELP (alleq,apply,powerset,restrict,rtc,Erel,bl,fusion) where
import Data.List (nub,union,foldl’,(\\))

type Rel a b = [(a,b)]
type Erel a = [[all
alleq :: Eq a => (a -> Bool) -> [al -> Bool

alleq _ [1 = True
alleq f (x:xs) = all (f x ==) (map f xs)

apply :: Show a => Show b => Eq a => Rel a b -> a -> b
apply rel left = case lookup left rel of
Nothing -> error ("apply: Relation " ++ show rel ++ " not defined at " ++ show left)

(Just this) -> this

powerset :: [a]l -> [[all
powerset [] = [[]1]
powerset (x:xs) = map (x:) pxs ++ pxs where pxs = powerset xs
concatRel :: Eq a => Rel a a -> Rel a a -> Rel a a
concatRel r s = nub [(x,z) | (x,y) <- r, (w,z) <- s, y == w]
1lfp :: Eq a => (a -> a) -> a -> a
1fp £ x | x == f x = x
| otherwise = 1fp f (f x)
dom :: Eq a => Rel a a -> [al]

dom r = nub (foldr (\ (x,y) -> ([x,yl++)) [1)

restrict :: Ord a => [al] -> Erel a -> Erel a
restrict domain = nub . filter (/= []) . map (filter (‘elem‘ domain))
rtc :: Eq a => Rel a a -> Rel a a
rtc r = 1fp (\ s -> s ‘union® concatRel r s) [(x,x) | x <- dom r]
merge :: Ord a => [a] -> [al -> [a]
merge xs [] = xs
merge [] ys = ys
merge (x:xs) (y:ys) = case compare x y of
EQ -> x : merge xs ys

LT -> x : merge xs (y:ys)
GT -> y : merge (x:xs) ys

mergel :: Ord a => [[al]l -> [al
mergel = foldl’ merge []

overlap :: Ord a => [a]l -> [al] -> Bool
overlap [] _ = False

overlap _ [] = False

overlap (x:xs) (y:ys) = case compare x y of

EQ -> True
LT -> overlap xs (y:ys)
GT -> overlap (x:xs) ys

bl :: Eq a => Erel a -> a -> [a]
bl r x = head (filter (elem x) r)

fusion :: Ord a => [[al]l] -> Erel a
fusion [1 = []
fusion (b:bs) = let

cs = filter (overlap b) bs

xs mergel (b:cs)

ds = filter (overlap xs) bs

in
if cs == ds
then xs : fusion (bs \\ cs)
else fusion (xs : bs)

42

Appendix 3: Muddy Children on the Number Triangle

This module implements [GS11]. The main idea is to not distinguish children who are in the same state
which also means that their observations are the same. The number triangle can then be used to solve
the Muddy Children puzzle on a Kripke frame with less worlds than needed in the classical analysis,
namely 2n + 1 instead of 2" for n children.

[]
| module MCTRIANGLE where \
L |

We start with two type definitions: States are pairs of integers indicating how many children are
(clean,muddy). A muddy children model consists of three things: A list of observational states, a list of
factual states and a current state.

(Int,Int)
McM [State]

type State
data McModel

[State] State deriving Show

Next are functions to create a muddy children model, to get the available successors of a state in a
model, to get the observational state of an agent and to get all states deemed possible by an agent.

mcModel State -> McModel
mcModel cur@(c,m) = McM ostates fstates cur where
total = c + m
ostates = [((total-1)-m’>,m’) | m?><-[0..(total-1)]] -- observational states
fstates = [(total-m?, m’) | m?><-[0..total]] -- factual states
posFrom :: McModel -> State -> [Statel
posFrom (McM _ fstates _) (oc,om) = filter (‘elem‘ fstates) [(oc+l,om), (oc,om+1)]
obsFor McModel -> Bool -> State
obsFor (McM _ _ (curc,curm)) False = (curc-1,curm)
obsFor (McM _ _ (curc,curm)) True = (curc,curm-1)
posFor McModel -> Bool -> [State]

posFor m muddy = posFrom m $ obsFor m muddy

Note that instead of naming or enumerating agents we only distinguish two kinds, the muddy and
non-muddy ones, represented by Haskells constants True and False which allow pattern matching.
The following is a type for quantifiers on the number triangle, instantiated by some.

type Quantifier State -> Bool

some Quantifier

some (_,b) b >0

The paper does not give a formal language definition, so here is our suggestion:
oim ol N QI K, | K

where ® ranges over finite sets of formulas, b over {0,1} and @ over generalized quantifiers.

data McFormula

Neg McFormula
Conj [McFormulal
Qf Quantifier
KnowSelf Bool
NotKnowSelf Bool --

negations

conjunctions

quantifiers

all b agents DO know their status
all b agents DON’T know their status

Note that when there are no agents of kind b, the formulas KnowSelf b and NotKnowSelf b are both
true. Hence Neg (KnowSelf b) and NotKnowSelf b are not the samel!

Below are the formulas for “Nobody knows their own state.” and “Everybody knows their own state.”
Note that in contrast to the standard DEL language these formulas are independent of how many
children there are. This is due to our identification of agents with the same state and observations.

43

nobodyknows ,everyoneKnows :: McFormula
nobodyknows = Conj [NotKnowSelf False, NotKnowSelf True]
everyoneKnows = Conj [KnowSelf False, KnowSelf True]

The semantics for our minimal language are implemented as follows.

eval :: McModel -> McFormula -> Bool

eval m (Neg f) = not $§ eval m f

eval m (Conj fs) = all (eval m) fs

eval (McM _ _ s) (Qf q) = q s

eval m@(McM _ _ (_,curm)) (KnowSelf True) = curm== |l length (posFor m True) == 1
eval m@(McM _ (curc,_)) (KnowSelf False) = curc==0 || length (posFor m False) == 1
eval m@(McM _ _ (_,curm)) (NotKnowSelf True) = curm==0 || length (posFor m True) == 2
eval m@(McM _ _ (curc,_)) (NotKnowSelf False) = curc==0 || length (posFor m False) == 2

The four nullary knowledge operators can be thought of as “All agents who are (not) muddy do (not)
know their own state.” Hence they are vacuously true whenever there are no such agents. If there are,
the agents do know their state iff they consider only one possibility (i.e. their observational state has
only one successor).

Finally, we need a function to update models with a formula:

update :: McModel -> McFormula -> McModel
update (McM ostates fstates cur) f =
McM ostates’ fstates’ cur where
fstates’ = filter (\s -> eval (McM ostates fstates s) f) fstates
ostates’ = filter (not . null . posFrom (McM [] fstates’ cur)) ostates

The following function shows the update steps of the puzzle, given an actual state:

step :: State -> Int -> McModel
step s 0 = update (mcModel s) (Qf some)
step s n = update (step s (n-1)) nobodyknows

showme :: State -> I0 ()
showme s@(_,m) = mapM_ (\n -> putStrLn $ show n ++ ": " ++ show (step s n)) [0..(m-1)]

*MCTRIANGLE> showme (1,2)
mO: McM [(2,0),(1,1),(0,2)] [(2,1),(1,2),(0,3)] (1,2)
mi: McM [(1,1),(0,2)] [(1,2),(0,3)] (1,2)

44

References

[BEGS15]

[BGHP09)

[BMS98]

|CCGT02

|[CFDFDST15]

[CGPYY]

[Cha8s|

[CS15]

IDG14]

[DHKO7]

[DHMRO6]

[DHR13)]

[Dit03]

[EG15]

[Eij07]

[Eij14]

[FHMV95]

Johan van Benthem, Jan van Eijck, Malvin Gattinger, and Kaile Su. Symbolic Model
Checking for Dynamic Epistemic Logic. Forthcoming., 2015.

Johan van Benthem, Jelle Gerbrandy, Tomohiro Hoshi, and Eric Pacuit. Merging
frameworks for interaction. Journal of Philosophical Logic, 38(5):491-526, 2009.

Alexandru Baltag, Lawrence S. Moss, and Slawomir Solecki. The logic of public
announcements, common knowledge, and private suspicions. In I. Bilboa, editor,

TARK’98, pages 43-56, 1998.

Alessandro Cimatti, Edmund Clarke, Enrico Giunchiglia, Fausto Giunchiglia, Marco
Pistore, Marco Roveri, Roberto Sebastiani, and Armando Tacchella. Nusmv 2: An
opensource tool for symbolic model checking. In Computer Aided Verification, pages
359-364. Springer, 2002.

Andrés Cordon-Franco, Hans van Ditmarsch, David Fernandez-Duque, and Fernando
Soler-Toscano. A geometric protocol for cryptography with cards. Designs, Codes and
Cryptography, 74(1):113-125, 2015.

E. M. Clarke, O. Grumberg, and D. A. Peled. Model Checking. The MIT Press,
Cambridge, Massachusetts, USA, 1999.

David Chaum. The dining cryptographers problem: Unconditional sender and recipient
untraceability. Journal of Cryptology, 1(1):65-75, 1988.

Tristan Charrier and Frangois Schwarzentruber. Arbitrary public announcement logic
with mental programs. In Proceedings of the 2015 International Conference on Au-
tonomous Agents and Multiagent Systems, pages 1471-1479. IFAAMAS, 2015.

David Fernadndez Duque and Valentin Goranko. Secure aggregation of distributed
information. CoRR, abs/1407.7582, 2014.

Hans van Ditmarsch, Wiebe van der Hoek, and Barteld Kooi. Dynamic epistemic logic,
volume 1. Springer Heidelberg, 2007.

Hans van Ditmarsch, Wiebe van der Hoek, Ron van der Meyden, and Ji Ruan. Model
Checking Russian Cards. Electr. Notes Theor. Comput. Sci., 149(2):105-123, 2006.

Hans van Ditmarsch, Wiebe van der Hoek, and Ji Ruan. Connecting dynamic epistemic
and temporal epistemic logics. Logic Journal of IGPL, 21(3):380-403, 2013.

Hans van Ditmarsch. The russian cards problem. Studia Logica, 75(1):31-62, 2003.

Jan van Eijck and Malvin Gattinger. Elements of epistemic crypto logic (extended
abstract). In Proceedings of the 14th International Conference on Autonomous Agents

and Multiagent Systems (AAMAS 2015). IFAAMAS, 2015.

Jan van Eijck. DEMO—a demo of epistemic modelling. In Interactive Logic. Selected
Papers from the Tth Augustus de Morgan Workshop, London, volume 1, pages 303-362,
2007.

Jan van Eijck. DEMO-S5. Technical report, CWI, 2014.

Ronald Fagin, Joseph Y Halpern, Yoram Moses, and Moshe Y Vardi. Reasoning about
knowledge, volume 4. MIT press Cambridge, 1995.

45

|Gam14|
|Gat14]

|Gat1bal
|Gat15b]
[GS11]

|GvdMO04]

[Lit53]

[LQR15]|

[LSX13|

[Rav14]

[Som12]

Peter Gammie. hbdd. https://github.com/peteg/hBDD, 2011, updated 2014.

Malvin Gattinger. Kripkevis, a haskell module to visualize kripke frames. Technical
report, 2014.

Malvin Gattinger. Hascacbdd. https://github.com/m4lvin/HasCacBDD, 2015.
Malvin Gattinger. Noobdd. https://github.com/m41lvin/NooBDD, 2015.

Nina Gierasimczuk and Jakub Szymanik. A note on a generalization of the Muddy
Children puzzle. In Krzysztof R. Apt, editor, TARK’11, pages 257-264. ACM, 2011.

Peter Gammie and Ron van der Meyden. Mck: Model checking the logic of knowledge.
In Computer Aided Verification, pages 479-483. Springer, 2004.

J.E. Littlewood. A Mathematician’s Miscellany. Methuen, London, 1953.

Alessio Lomuscio, Hongyang Qu, and Franco Raimondi. MCMAS: an open-source
model checker for the verification of multi-agent systems. International Journal on
Software Tools for Technology Transfer, pages 1-22, 2015.

Guanfeng Lv, Kaile Su, and Yanyan Xu. CacBDD: A BDD Package with Dynamic
Cache Management. In Proceedings of the 25th International Conference on Computer
Aided Verification, CAV’13, pages 229-234, Berlin, Heidelberg, 2013. Springer-Verlag.

Tristan Ravitch. robbed. https://github.com/travitch/robbed, 2011, updated 2014.

Fabio Somenzi. CUDD: CU Decision Diagram Package Release 2.5.0, 2012.

46

https://github.com/peteg/hBDD
https://github.com/m4lvin/HasCacBDD
https://github.com/m4lvin/NooBDD
https://github.com/travitch/robbed

	The Language of Dynamic Epistemic Logic
	DEL Semantics on Kripke Models
	Kripke Models
	Action Models

	DEL Semantics on Knowledge Structures
	Knowledge Structures
	Knowledge Transformers

	Connecting the two Semantics
	From Knowledge Structures to Kripke Models
	From Kripke Models to Knowledge Structures
	From Action Models to Knowledge Transformers
	From Knowledge Transformers to Action Models

	Automated Testing
	Generating random formulas
	Testing equivalence of the two semantics
	Public Announcements
	Random Action Models

	Examples
	Knowledge and Meta-Knowledge
	Minimization via Translation
	Different Announcements
	Muddy Children
	Drinking Logicians
	Dining Cryptographers
	Russian Cards

	Benchmarks
	Muddy Children
	Dining Cryptographers

	Future Work
	Appendix 1: Installation Guidelines
	Appendix 2: Helper Functions
	Appendix 3: Muddy Children on the Number Triangle

