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The model checking problem is: Given a model and a specification in an ap-
propriate formal language, decide whether the model satisfies the specification.
From a logicians point of view this is easy: Just follow the – usually recursively
defined – semantics. However, as models get larger and specifications more
complex, one quickly reaches a point where manual computation becomes
unbearable. Moreover, even automatic implementations of semantics become
unusable if the set of states or possible worlds does not fit into the memory
of our computers or the recursive algorithms take too long.
These problems are addressed by symbolic model checking: Instead of naively
following a given semantics we try to represent the model and the specification
in a format which is as small as possible but still allows us to answer the
model checking problem. Various representation and abstraction techniques
for this have been developed, mainly for temporal logics.
For Dynamic Epistemic Logic – which appeals to logicians because it can
describe many situations and protocols in an intuitive manner – so far only
explicit model checkers were available. SMCDEL aims to close this gap.
Plans for future research are given in the last section of the report.
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Abstract

We present SMCDEL, a symbolic model checker for Dynamic Epistemic Logic (DEL) implemented
in Haskell. At its core is a translation of epistemic and dynamic formulas to boolean formulas which
are represented as Binary Decision Diagrams (BDDs). Ideas underlying this implementation have
been developed as joint work with Johan van Benthem, Jan van Eijck and Kaile Su [BEGS15].

The report is structured as follows.
In the first section we recapitulate the syntax and intended meaning of DEL and define a data

type for formulas. Section 2 describes the well-known semantics for DEL on Kripke models. We
give a minimal implementation of explicit model checking.

Section 3 introduces the idea of knowledge structures and contains the main functions of our
symbolic model checker. In Section 4 we give methods to go back and forth between the two
semantics, both for models and actions. This shows in which sense and why the semantics are
equivalent and why knowledge structures can be used to do symbolic model checking for S5 DEL,
also with its original semantics. To check that the implementations are correct we provide methods
for automated randomized testing in Section 5.

In Section 6 we show on concrete models how to use SMCDEL. We go through various examples
that are common in the literature both on DEL and model checking: Muddy Children, Drinking
Logicians, Dining Cryptographers and Russian Cards. These examples also suggest themselves as
benchmarks which we will do in Section 7 to compare the different versions of our model checker to
the existing tools DEMO-S5 and MCMAS.

The last section discusses future work, both on concrete improvements for SMCDEL and on
theoretical aspects of knowledge structures.

In the appendix we provide some installation guidelines, a helper functions module and an
implementation of a number triangle analysis of the Muddy Children problem [GS11].

The report is given in literate Haskell style, including all source code and the results of example
programs directly in the text. SCMDEL is released as free software under the GPL.
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1 The Language of Dynamic Epistemic Logic

This module defines the language of DEL. Keeping the syntax definition separate from the semantics
allows us to use the same language throughout the whole report, both for the explicit and the symbolic
model checkers.

module DELLANG where
import Data.List (nub ,intercalate ,(\\))
import Data.Maybe (fromJust)

Propositions and Agents are simply represented as integers in Haskell.

data Prp = P Int deriving (Eq,Ord ,Show)
instance Enum Prp where

toEnum = P
fromEnum (P n) = n

freshp :: [Prp] -> Prp
freshp [] = P 0
freshp prps = P (maximum (map fromEnum prps) + 1)

type Agent = Int
alice ,bob ,carol :: Agent
alice = 0
bob = 1
carol = 2

showAgent :: Agent -> String
showAgent 0 = "Alice"
showAgent 1 = "Bob"
showAgent 2 = "Carol"
showAgent n = "Ag " ++ show n

Definition 1. The language L(V ) for a set of propositions V and a finite set of agents I is given by

ϕ ::= > | ⊥ | p | ¬ϕ |
∧

Φ |
∨

Φ |
⊕

Φ | ϕ→ ϕ | ϕ↔ ϕ | ∀Pϕ | ∃Pϕ | Kiϕ | C∆ϕ | [!ϕ]ϕ | [!ϕ]∆ϕ

where p ∈ V , P ⊆ V , |P | < ω, Φ ⊆ LDEL, |Φ| < ω, i ∈ I and ∆ ⊂ I. We also write ϕ ∧ ψ for
∧
{ϕ,ψ}

and ϕ ∨ ψ for
∨
{ϕ,ψ}. The boolean formulas are those without Ki, C∆, [!ϕ] and [!ϕ]∆.

Hence, a formula can be (in this order): The constant top or bottom, an atomic proposition, a
negation, a conjunction, a disjunction, an exclusive or, an implication, a bi-implication, a universal or
existential quantification over a set of propositions, or a statement about knowledge, common-knowledge,
a public announcement or an announcement to a group.

Some of these connectives are inter-definable, for example ϕ ↔ ψ and
∧
{ψ → ϕ,ϕ → ψ} are

equivalent according to all semantics which we will use here. Another example are C{i}ϕ and Kiϕ.
Hence we could shorten Definition 1 and treat some connectives as abbreviations. This would lead
to brevity and clarity in the formal definitions, but also to a decrease in performance of our model
checking implementations. To continue with the example: If we have Binary Decision Diagrams (BDDs)
for ϕ and ψ, computing the BDD for ϕ↔ ψ in one operation by calling the appropriate method of a
BDD package will be faster than rewriting it to a conjunction of two implications and then making
three calls to these corresponding functions of the BDD package.

Definition 2 (Whether-Formulas). We extend our language with abbreviations for “knowing whether”
and “announcing whether”:

K?
i ϕ :=

∨
{Kiϕ,Ki(¬ϕ)}

[?!ϕ]ψ :=
∧
{ϕ→ [!ϕ]ψ,¬ϕ→ [!¬ϕ]ψ}

[?!ϕ]Iψ :=
∧
{ϕ→ [!ϕ]ψ,¬ϕ→ [!¬ϕ]ψ}
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In Haskell we represent formulas using the following data type. Note that – also for performance
reasons – also the three “whether” operators occur as primitives and not as abbreviations.

data Form =
Top | Bot | PrpF Prp | Neg Form | Conj [Form] | Disj [Form] | Xor [Form] |
Impl Form Form | Equi Form Form | Forall [Prp] Form | Exists [Prp] Form |
K Agent Form | Ck [Agent] Form | Kw Agent Form | Ckw [Agent] Form |
PubAnnounce Form Form | PubAnnounceW Form Form |
Announce [Agent] Form Form | AnnounceW [Agent] Form Form
deriving (Eq ,Show)

We often want to check the result of multiple announcements after each other. Hence we define an
abbreviation for such sequences of announcements using Haskells foldr function.

pubAnnounceStack :: [Form] -> Form -> Form
pubAnnounceStack = flip $ foldr PubAnnounce

pubAnnounceWhetherStack :: [Form] -> Form -> Form
pubAnnounceWhetherStack = flip $ foldr PubAnnounceW

The function substit below substitutes a formula for a proposition. As a safety measure this
method will fail whenever the proposition to be replaced occurs in a quantifier. All other cases are
done by recursion. The function substitSet applies multiple substitutions after each other. Note that
this is not the same as simultaneous substitution.

substit :: Prp -> Form -> Form -> Form
substit _ _ Top = Top
substit _ _ Bot = Bot
substit q psi (PrpF p) = if p==q then psi else PrpF p
substit q psi (Neg form) = Neg (substit q psi form)
substit q psi (Conj forms) = Conj (map (substit q psi) forms)
substit q psi (Disj forms) = Disj (map (substit q psi) forms)
substit q psi (Xor forms) = Xor (map (substit q psi) forms)
substit q psi (Impl f g) = Impl (substit q psi f) (substit q psi g)
substit q psi (Equi f g) = Equi (substit q psi f) (substit q psi g)
substit q psi (Forall ps f) = if q ‘elem ‘ ps

then error ("substit failed: Substituens "++ show q ++ " in ’Forall " ++ show ps)
else Forall ps (substit q psi f)

substit q psi (Exists ps f) = if q ‘elem ‘ ps
then error ("substit failed: Substituens " ++ show q ++ " in ’Exists " ++ show ps)
else Exists ps (substit q psi f)

substit q psi (K i f) = K i (substit q psi f)
substit q psi (Kw i f) = Kw i (substit q psi f)
substit q psi (Ck ags f) = Ck ags (substit q psi f)
substit q psi (Ckw ags f) = Ckw ags (substit q psi f)
substit q psi (PubAnnounce f g) = PubAnnounce (substit q psi f) (substit q psi g)
substit q psi (PubAnnounceW f g) = PubAnnounceW (substit q psi f) (substit q psi g)
substit q psi (Announce ags f g) = Announce ags (substit q psi f) (substit q psi g)
substit q psi (AnnounceW ags f g) = AnnounceW ags (substit q psi f) (substit q psi g)

substitSet :: [(Prp ,Form)] -> Form -> Form
substitSet [] f = f
substitSet ((q,psi):rest) f = substitSet rest (substit q psi f)

Another helper function allows us to replace propositions in a formula. In contrast to the previous
substitution function this one is simultaneous.

replPsInF :: [(Prp ,Prp)] -> Form -> Form
replPsInF _ Top = Top
replPsInF _ Bot = Bot
replPsInF repl (PrpF p) | p ‘elem ‘ map fst repl = PrpF (fromJust $ lookup p repl)

| otherwise = PrpF p
replPsInF repl (Neg f) = Neg $ replPsInF repl f
replPsInF repl (Conj fs) = Conj $ map (replPsInF repl) fs
replPsInF repl (Disj fs) = Disj $ map (replPsInF repl) fs
replPsInF repl (Xor fs) = Xor $ map (replPsInF repl) fs
replPsInF repl (Impl f g) = Impl (replPsInF repl f) (replPsInF repl g)
replPsInF repl (Equi f g) = Equi (replPsInF repl f) (replPsInF repl g)
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replPsInF repl (Forall ps f) = Forall (map (fromJust . flip lookup repl) ps) (replPsInF
repl f)

replPsInF repl (Exists ps f) = Exists (map (fromJust . flip lookup repl) ps) (replPsInF
repl f)

replPsInF repl (K i f) = K i (replPsInF repl f)
replPsInF repl (Kw i f) = Kw i (replPsInF repl f)
replPsInF repl (Ck ags f) = Ck ags (replPsInF repl f)
replPsInF repl (Ckw ags f) = Ckw ags (replPsInF repl f)
replPsInF repl (PubAnnounce f g) = PubAnnounce (replPsInF repl f) (replPsInF repl g)
replPsInF repl (PubAnnounceW f g) = PubAnnounceW (replPsInF repl f) (replPsInF repl g)
replPsInF repl (Announce ags f g) = Announce ags (replPsInF repl f) (replPsInF repl g)
replPsInF repl (AnnounceW ags f g) = AnnounceW ags (replPsInF repl f) (replPsInF repl g)

The following helper function gets all propositions occurring in a formula.

propsInForm :: Form -> [Prp]
propsInForm Top = []
propsInForm Bot = []
propsInForm (PrpF p) = [p]
propsInForm (Neg f) = propsInForm f
propsInForm (Conj fs) = nub $ concatMap propsInForm fs
propsInForm (Disj fs) = nub $ concatMap propsInForm fs
propsInForm (Xor fs) = nub $ concatMap propsInForm fs
propsInForm (Impl f g) = nub $ concatMap propsInForm [f,g]
propsInForm (Equi f g) = nub $ concatMap propsInForm [f,g]
propsInForm (Forall ps f) = nub $ ps ++ propsInForm f
propsInForm (Exists ps f) = nub $ ps ++ propsInForm f
propsInForm (K _ f) = propsInForm f
propsInForm (Kw _ f) = propsInForm f
propsInForm (Ck _ f) = propsInForm f
propsInForm (Ckw _ f) = propsInForm f
propsInForm (Announce _ f g) = nub $ propsInForm f ++ propsInForm g
propsInForm (AnnounceW _ f g) = nub $ propsInForm f ++ propsInForm g
propsInForm (PubAnnounce f g) = nub $ propsInForm f ++ propsInForm g
propsInForm (PubAnnounceW f g) = nub $ propsInForm f ++ propsInForm g

propsInForms :: [Form] -> [Prp]
propsInForms fs = nub $ concatMap propsInForm fs

texProp :: Prp -> String
texProp (P 0) = " p "
texProp (P n) = " p_{" ++ show n ++ "} "

texPropSet :: [Prp] -> String
texPropSet [] = " \\ varnothing "
texPropSet ps = "\\{" ++ intercalate "," (map texProp ps) ++ "\\}"

The following algorithm simplifies a formula using boolean equivalences. For example it removes
double negations and “bubbles up” ⊥ and > in conjunctions and disjunctions respectively.

simplify :: Form -> Form
simplify f = if simStep f == f then f else simplify (simStep f)

simStep :: Form -> Form
simStep Top = Top
simStep Bot = Bot
simStep (PrpF p) = PrpF p
simStep (Neg Top) = Bot
simStep (Neg Bot) = Top
simStep (Neg (Neg f)) = simStep f
simStep (Neg f) = Neg $ simStep f
simStep (Conj []) = Top
simStep (Conj [f]) = simStep f
simStep (Conj fs) | Bot ‘elem ‘ fs = Bot

| otherwise = Conj (nub $ map simStep (filter (Top /=) fs))
simStep (Disj []) = Bot
simStep (Disj [f]) = simStep f
simStep (Disj fs) | Top ‘elem ‘ fs = Top

| otherwise = Disj (nub $ map simStep (filter (Bot /=) fs))
simStep (Xor []) = Bot
simStep (Xor [f]) = Neg $ simStep f
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simStep (Xor fs) = Xor (map simStep fs)
simStep (Impl Bot _) = Top
simStep (Impl _ Top) = Top
simStep (Impl Top f) = simStep f
simStep (Impl f Bot) = Neg (simStep f)
simStep (Impl f g) = Impl (simStep f) (simStep g)
simStep (Equi Top f) = simStep f
simStep (Equi Bot f) = Neg (simStep f)
simStep (Equi f Top) = simStep f
simStep (Equi f Bot) = Neg (simStep f)
simStep (Equi f g) = Equi (simStep f) (simStep g)
simStep (Forall ps f) = Forall ps (simStep f)
simStep (Exists ps f) = Exists ps (simStep f)
simStep (K a f) = K a (simStep f)
simStep (Kw a f) = Kw a (simStep f)
simStep (Ck ags f) = Ck ags (simStep f)
simStep (Ckw ags f) = Ckw ags (simStep f)
simStep (PubAnnounce Top f) = simStep f
simStep (PubAnnounce Bot _) = Top
simStep (PubAnnounce f g) = PubAnnounce (simStep f) (simStep g)
simStep (PubAnnounceW f g) = PubAnnounceW (simStep f) (simStep g)
simStep (Announce ags f g) = Announce ags (simStep f) (simStep g)
simStep (AnnounceW ags f g) = AnnounceW ags (simStep f) (simStep g)

We end this module with a small helper function to abbreviate that exactly a given subset of a set
of propositions is true.

booloutofForm :: [Prp] -> [Prp] -> Form
booloutofForm ps qs = Conj $ [ PrpF p | p <- ps ] ++ [ Neg $ PrpF r | r <- qs \\ ps ]
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2 DEL Semantics on Kripke Models

We start with a quick summary of the standard semantics for DEL on Kripke models. The module of
this section provides a very simple explicit state model checker. It is mainly provided as a basis for the
translation methods in Section 4 and not meant to be used in practice otherwise. A more advanced and
user-friendly explicit state model checker for DEL is DEMO from [Eij14] which we will also use later on.

module KRIPKEDEL where
import Data.List (intercalate)
import DELLANG
import KRIPKEVIS
import HELP (alleq ,fusion ,apply)

2.1 Kripke Models

Definition 3. A Kripke model for n agents is a tuple M = (W,π,K1, · · · ,Kn), where W is a set
of worlds, π associates with each world a truth assignment to the primitive propositions, so that
π(w)(p) ∈ {>,⊥} for each world w and primitive proposition p, and K1, · · · ,Kn are binary accessibility
relations on W . By convention, WM , KMi and πM are used to refer to the components of M . We omit
the superscript M if it is clear from context. Finally, let CM∆ be the transitive closure of

⋃
i∈∆KMi .

A pointed Kripke model is a pair (M,w) consisting of a Kripke model and a world w ∈ WM . A
model M is called an S5 Kripke model iff, for every i, KMi is an equivalence relation. A model M is
called finite iff WM is finite.

The following data types capture Definition 3 in Haskell. Possible worlds (a.k.a. states) are
represented by integers. Equivalence relations are modeled as partitions, i.e. lists of lists of states.

type State = Int
type Partition = [[ State]]
type Assignment = [(Prp ,Bool)]
data KripkeModel = KrM [State] [(Agent ,Partition)] [(State ,Assignment)] deriving (Show)
type PointedModel = (KripkeModel ,State)

Definition 4. Semantics for L(V ) on pointed Kripke models are given inductively as follows.

1. (M,w) |= p iff πM (w)(p) = >.

2. (M,w) |= ¬ϕ iff not (M,w) |= ϕ

3. (M,w) |= ϕ ∧ ψ iff (M,w) |= ϕ and (M,w) |= ψ

4. (M,w) |= Kiϕ iff for all w′ ∈W , if wKMi w′, then (M,w′) |= ϕ.

5. (M,w) |= C∆ϕ iff for all w′ ∈W , if wCM∆ w′, then (M,w′) |= ϕ.

6. (M,w) |= [ψ]ϕ iff (M,w) |= ψ implies (Mψ, w) |= ϕ where Mψ is a new Kripke model defined by
the set WMψ

:= {w ∈WM | (M,w) |= ψ}, the relations KMψ

i := KMi ∩ (WMψ
)2 and the valuation

πM
ψ

(w) := πM (w).

7. (M,w) |= [ψ]∆ϕ iff (M,w) |= ψ implies that also (M∆
ψ , (1, w)) |= ϕ where M∆

ψ is defined by

(a) WM∆
ψ := {(1, w) | w ∈WM and (M,w) |= ψ} ∪ {(0, w) | w ∈WM}

(b) For (b, w) and (b′, w′) in WM∆
ψ , if i ∈ ∆, let (b, w)K

M∆
ψ

i (b′, w′) iff b = b′ and wKMi w′. If

i /∈ ∆, then let (b, w)K
M∆
ψ

i (b′, w′) iff wKMi w′.

(c) For each (b, w) ∈WM∆
ψ , πM

∆
ψ ((b, w)) := πM (w).
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These semantics can be translated to a model checking function eval in Haskell at follows. Note
the typical recursion: All cases besides constants and atomic propositions call eval again.

eval :: PointedModel -> Form -> Bool
eval _ Top = True
eval _ Bot = False
eval (KrM _ _ val , cur) (PrpF p) = apply (apply val cur) p
eval pm (Neg form) = not $ eval pm form
eval pm (Conj forms) = all (eval pm) forms
eval pm (Disj forms) = any (eval pm) forms
eval pm (Xor forms) = odd $ length (filter id $ map (eval pm) forms)
eval pm (Impl f g) = not (eval pm f) || eval pm g
eval pm (Equi f g) = eval pm f == eval pm g
eval pm (Forall ps f) = eval pm (foldl singleForall f ps) where

singleForall g p = Conj [ substit p Top g, substit p Bot g ]
eval pm (Exists ps f) = eval pm (foldl singleExists f ps) where

singleExists g p = Disj [ substit p Top g, substit p Bot g ]
eval (m@(KrM _ rel _),w) (K ag form) = all (\w’ -> eval (m,w’) form) vs where

vs = concat $ filter (elem w) (apply rel ag)
eval (m@(KrM _ rel _),w) (Kw ag form) = alleq (\w’ -> eval (m,w’) form) vs where

vs = concat $ filter (elem w) (apply rel ag)
eval (m@(KrM _ rel _),w) (Ck ags form) = all (\w’ -> eval (m,w’) form) vs where

vs = concat $ filter (elem w) ckrel
ckrel = fusion $ concat [ apply rel i | i <- ags ]

eval (m@(KrM _ rel _),w) (Ckw ags form) = alleq (\w’ -> eval (m,w’) form) vs where
vs = concat $ filter (elem w) ckrel
ckrel = fusion $ concat [ apply rel i | i <- ags ]

eval pm (PubAnnounce form1 form2) =
not (eval pm form1) || eval (pubAnnounce pm form1) form2

eval pm (PubAnnounceW form1 form2) =
if eval pm form1

then eval (pubAnnounce pm form1) form2
else eval (pubAnnounce pm (Neg form1)) form2

eval pm (Announce ags form1 form2) =
not (eval pm form1) || eval (announce pm ags form1) form2

eval pm (AnnounceW ags form1 form2) =
if eval pm form1

then eval (announce pm ags form1) form2
else eval (announce pm ags (Neg form1)) form2

Public and group announcements are functions which take a pointed model and give us a new
one. Because eval already checks whether an announcement is truthful before executing it we let the
following two functions raise an error in case the announcement is false on the given model.

pubAnnounce :: PointedModel -> Form -> PointedModel
pubAnnounce pm@(m@(KrM sts rel val), cur) form =

if eval pm form then (KrM newsts newrel newval , cur)
else error "pubAnnounce failed: Liar!"

where
newsts = filter (\s -> eval (m,s) form) sts
nrel i = filter ([]/=) $ map (filter (‘elem ‘ newsts)) (apply rel i)
newrel = [ (i, nrel i) | i <- map fst rel ]
newval = filter (\p -> fst p ‘elem ‘ newsts) val

announce :: PointedModel -> [Agent] -> Form -> PointedModel
announce pm@(m@(KrM sts rel val), cur) ags form =

if eval pm form then (KrM newsts newrel newval , newcur)
else error "announce failed: Liar!"

where
tocopy = filter (\s -> eval (m,s) form) sts
addsts = map (maximum sts +) [1..( length tocopy)]
copyto = zip tocopy addsts
copyof = zip addsts tocopy
mapif = concatMap (\s -> [apply copyto s | s ‘elem ‘ tocopy ])
nrel i | i ‘elem ‘ ags = apply rel i ++ filter ([]/=) (map mapif (apply rel i))

| otherwise = map (\ec -> ec ++ mapif ec) (apply rel i)
newsts = sts ++ addsts
newrel = [ (i, nrel i) | i <- map fst rel ]
newval = val ++ [ (s,apply val $ apply copyof s) | s <- addsts ]
newcur = apply copyto cur
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With a few lines we can also visualize our models using KRIPKEVIS [Gat14]. To see what the output
looks like, see Sections 6.1 and 6.2.

showVal :: Assignment -> String
showVal ass = case filter snd ass of

[] -> ""
ps -> "$" ++ intercalate "," (map (texProp.fst) ps) ++ "$"

myDispModel :: PointedModel -> IO ()
myDispModel (KrM w r v, cur) = dispModel show showAgent showVal "" (VisModel w r v cur)

myTexModel :: PointedModel -> String -> IO String
myTexModel (KrM w r v, cur) = texModel show showAgent showVal "" (VisModel w r v cur)

2.2 Action Models

To model epistemic change in general we implement action models [BMS98]. For now we only consider
S5 action models without factual change.

Definition 5. An action model is a tuple A = (A,R, pre) where A is a set of action tokens, R = (Ri)i∈I
is a family of equivalence relations on A and pre is a function from A to LDEL, defining the precondition
pre(α) of each α ∈ A.

data ActionModel = ActM [State] [(State ,Form)] [(Agent ,Partition)] deriving (Show)
type PointedActionModel = (ActionModel ,State)

Definition 6. The product update with an action model ((A,R, pre), α) is a function that maps Kripke
models to Kripke models and is defined as follows:

(W,R, V ) 7→ (W ′,R′, V ′) where
W ′ := {(w,α) ∈W ×A | w � pre(α)}
(w,α)R′i(v, β) iff wRiv and αRiβ
V ′(w,α) := V (w)

We writeMA for the result of updatingM with A.

productUpdate :: PointedModel -> PointedActionModel -> PointedModel
productUpdate pm@(m@(KrM oldstates oldrel oldval), oldcur) (ActM actions precon actrel ,

faction) =
let

startcount = maximum oldstates + 1
copiesOf (s,a) = [ (s, a, a * startcount + s) | eval (m, s) (apply precon a) ]
newstatesTriples = concat [ copiesOf (s,a) | s <- oldstates , a <- actions ]
newstates = map (\(_,_,x) -> x) newstatesTriples
newval = map (\(s,_,t) -> (t, apply oldval s)) newstatesTriples
listFor ag = cartProd (apply oldrel ag) (apply actrel ag)
newPartsFor ag = [ cartProd as bs | (as,bs) <- listFor ag ]
translSingle pair = filter (‘elem ‘ newstates) $ map (\(_,_,x) -> x) $ copiesOf pair
transEqClass = concatMap translSingle
nTransPartsFor ag = filter (\x-> x/=[]) $ map transEqClass (newPartsFor ag)
newrel = [ (a, nTransPartsFor a) | a <- map fst oldrel ]
((_,_,newcur):_) = copiesOf (oldcur ,faction)
factTest = apply precon faction
cartProd xs ys = [ (x,y) | x <- xs, y <- ys ]

in case ( map fst oldrel == map fst actrel , eval pm factTest ) of
(False , _) -> error "productUpdate failed: Agents of KrM and ActM are not the same!"
(_, False) -> error "productUpdate failed: Actual precondition is false!"
_ -> (KrM newstates newrel newval , newcur)
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3 DEL Semantics on Knowledge Structures

In this section we implement an alternative semantics for L(V ) and show how it allows a symbolic
model checking algorithm. Our model checker can be used with four different BDD packages, two of
which are written in other languages than Haskell and therefore have to be used via bindings:

i) CacBDD [LSX13], a modern BDD package with dynamic cache management implemented in C++.
We use it via the library HasCacBDD [Gat15a] which provides Haskell-to-C-to-C++ bindings.

ii) CUDD [Som12], probably the best-known BDD library which is used many in other model checkers,
including MCMAS [LQR15], MCK [GvdM04] and NuSMV [CCG+02]. It is implemented in C and
we use it via the binding library hBDD [Gam14].

iii) robbed [Rav14], an advanced Haskell library working with reduced and ordered BDDs.

iv) NooBDD [Gat15b], a simple and naive Haskell library for non-reduced ordered BDDs.

The corresponding Haskell modules are called KNSCAC, KNSCUDD, KNSROB and KNSNOO. For now we
focus on the CacBDD variant as it can be seen in the beginning of this module.

module KNSCAC where
import Data.HasCacBDD hiding (Top ,Bot)
import Data.HasCacBDD.Visuals
import Data.List (sort ,intercalate ,(\\))
import System.IO (hPutStr , hGetContents)
import System.Process (runInteractiveCommand)
import HELP (alleq ,apply ,rtc)
import DELLANG

We first link the boolean part of our language definition to functions of the BDD package. The
following translates boolean formulas to BDDs and evaluates them with respect to a given set of true
atomic propositions. The function will raise an error if it is given an epistemic or dynamic formula.

boolBddOf :: Form -> Bdd
boolBddOf Top = top
boolBddOf Bot = bot
boolBddOf (PrpF (P n)) = var n
boolBddOf (Neg form) = neg$ boolBddOf form
boolBddOf (Conj forms) = conSet $ map boolBddOf forms
boolBddOf (Disj forms) = disSet $ map boolBddOf forms
boolBddOf (Impl f g) = imp (boolBddOf f) (boolBddOf g)
boolBddOf (Equi f g) = equ (boolBddOf f) (boolBddOf g)
boolBddOf (Forall ps f) = boolBddOf (foldl singleForall f ps) where

singleForall g p = Conj [ substit p Top g, substit p Bot g ]
boolBddOf (Exists ps f) = boolBddOf (foldl singleExists f ps) where

singleExists g p = Disj [ substit p Top g, substit p Bot g ]
boolBddOf _ = error "boolBddOf failed: Not a boolean formula."

boolEval :: [Prp] -> Form -> Bool
boolEval truths form = result where

values = map (\(P n) -> (n, P n ‘elem ‘ truths)) (propsInForm form)
bdd = restrictSet (boolBddOf form) values
result | bdd==top = True

| bdd==bot = False
| otherwise = error "boolEval failed: BDD leftover."

3.1 Knowledge Structures

Knowledge structures are a compact representation of S5 Kripke models. Their set of states is defined by
a boolean formula and instead of epistemic relations we use observational variables. More explanations
and proofs that they are indeed equivalent to S5 Kripke models can be found in [BEGS15].
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Definition 7. Fix n agents. A knowledge structure is a tuple F = (V, θ,O1, . . . , On) where V is a
finite set of propositional variables, θ is a boolean formula over V and for each agent i, Oi ⊆ V .

Set V is the vocabulary of F . Formula θ is the state law of F . It determines the set of states of F
and may only contain boolean operators. The variables in Oi are called agent i’s observable variables.
An assignment over V , given as the set of true propositions, that satisfies θ is called a state of F . Any
knowledge structure only has finitely many states. Given a state s of F , we say that (F , s) is a scene
and define the local state of an agent i at s as s ∩Oi.

Given a knowledge structure (V, θ,O1, · · · , On) and a set V of subsets of V , we use EV to denote a
relation between two assignments s, s′ on V satisfying θ such that (s, s′) ∈ EV iff there exists a P ∈ V
with s ∩ P = s′ ∩ P . We use E∗V to denote the transitive closure of EV . Let V∆ = {Oi | i ∈ ∆}. We then
have (s, s′) ∈ EV∆

iff there exists an i ∈ ∆ with s ∩Oi = s′ ∩Oi.

In our data type for knowledge structures we represent the state law θ not as a formula but as a
Binary Decision Diagram.

data KnowStruct = KnS [Prp] Bdd [(Agent ,[Prp])] deriving (Eq,Show)
type KnState = [Prp]
type Scenario = (KnowStruct ,KnState)

statesOf :: KnowStruct -> [KnState]
statesOf (KnS props lawbdd _) = map (sort.translate) resultlists where

resultlists = map (map convToProp) $ allSatsWith (map (\(P n) -> n) props) lawbdd :: [[(
Prp , Bool)]]

convToProp (n,bool) = (P n,bool)
translate l = map fst (filter snd l)

numberOfStates :: KnowStruct -> Int
numberOfStates (KnS ps lawbdd _) = satCountWith (map (\(P n) -> n) ps) lawbdd

restrictState :: KnState -> [Prp] -> KnState
restrictState s props = filter (‘elem ‘ props) s

seteq :: Ord a => Eq a => [a] -> [a] -> Bool
seteq as bs = sort as == sort bs

shareknow :: KnowStruct -> [[Prp]] -> [(KnState ,KnState)]
shareknow kns sets = filter rel [ (s,t) | s <- statesOf kns , t <- statesOf kns ] where

rel (x,y) = or [ seteq (restrictState x set) (restrictState y set) | set <- sets ]

comknow :: KnowStruct -> [Agent] -> [(KnState ,KnState)]
comknow kns@(KnS _ _ obs) ags = rtc $ shareknow kns (map (apply obs) ags)

Definition 8. Semantics for DEL on scenes are defined inductively as follows.

1. (F , s) |= p iff s |= p.

2. (F , s) |= ¬ϕ iff not (F , s) |= ϕ

3. (F , s) |= ϕ ∧ ψ iff (F , s) |= ϕ and (F , s) |= ψ

4. (F , s) |= Kiϕ iff for all s′ of F , if s ∩Oi = s′ ∩Oi, then (F , s′) |= ϕ.

5. (F , s) |= C∆ϕ iff for all s′ of F , if (s, s′) ∈ E∗V∆
, then (F , s′) |= ϕ.

6. (F , s) |= [ψ]ϕ iff (F , s) |= ψ implies (Fψ, s) |= ϕ where ‖ψ‖F is given by Definition 9 and

Fψ := (V, θ ∧ ‖ψ‖F , O1, · · · , On)

7. (F , s) |= [ψ]∆ϕ iff (F , s) |= ψ implies (F∆
ψ , s ∪ {pψ}) |= ϕ where pψ is a a new propositional

variable, ‖ψ‖F is given by Definition 9 and

F∆
ψ := (V ∪ {pψ}, θ ∧ (pψ → ‖ψ‖F ), O′1, · · · , O′n)

where O′i := ∪{pψ} if i ∈ ∆ and O′i := Oi otherwise.
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Whenever (F , s) � ϕ holds we say that ϕ is true at s in F . If this is the case for all states s of F , then
we say ϕ is valid on F and write F � ϕ.

The following function eval implements these semantics. An important warning: This function is
not a symbolic algorithm! It is a direct translation of Definition 8. In particular it calls statesOf which
means that the set of stats is explicitly generated. The symbolic counterpart of eval is evalViaBdd,
see below.

eval :: Scenario -> Form -> Bool
eval _ Top = True
eval _ Bot = False
eval (_,s) (PrpF p) = p ‘elem ‘ s
eval (kns ,s) (Neg form) = not $ eval (kns ,s) form
eval (kns ,s) (Conj forms) = all (eval (kns ,s)) forms
eval (kns ,s) (Disj forms) = any (eval (kns ,s)) forms
eval (kns ,s) (Xor forms) = odd $ length (filter id $ map (eval (kns ,s)) forms)
eval scn (Impl f g) = not (eval scn f) || eval scn g
eval scn (Equi f g) = eval scn f == eval scn g
eval scn (Forall ps f) = eval scn (foldl singleForall f ps) where

singleForall g p = Conj [ substit p Top g, substit p Bot g ]
eval scn (Exists ps f) = eval scn (foldl singleExists f ps) where

singleExists g p = Disj [ substit p Top g, substit p Bot g ]
eval (kns@(KnS _ _ obs),s) (K i form) = all (\s’ -> eval (kns ,s’) form) theres where

theres = filter (\s’ -> seteq (restrictState s’ oi) (restrictState s oi)) (statesOf kns)
oi = apply obs i

eval (kns@(KnS _ _ obs),s) (Kw i form) = alleq (\s’ -> eval (kns ,s’) form) theres where
theres = filter (\s’ -> seteq (restrictState s’ oi) (restrictState s oi)) (statesOf kns)
oi = apply obs i

eval (kns ,s) (Ck ags form) = all (\s’ -> eval (kns ,s’) form) theres where
theres = filter (\s’ -> (sort s, sort s’) ‘elem ‘ comknow kns ags) (statesOf kns)

eval (kns ,s) (Ckw ags form) = alleq (\s’ -> eval (kns ,s’) form) theres where
theres = filter (\s’ -> (sort s, sort s’) ‘elem ‘ comknow kns ags) (statesOf kns)

eval (kns ,s) (PubAnnounce form1 form2) =
not (eval (kns , s) form1) || eval (pubAnnounce kns form1 , s) form2

eval (kns ,s) (PubAnnounceW form1 form2) =
if eval (kns , s) form1

then eval (pubAnnounce kns form1 , s) form2
else eval (pubAnnounce kns (Neg form1), s) form2

eval (kns@(KnS props _ _),s) (Announce ags form1 form2) =
not (eval (kns , s) form1) || eval (announce kns ags form1 , freshp props : s) form2

eval (kns ,s) (AnnounceW ags form1 form2) =
if eval (kns , s) form1

then eval (announce kns ags form1 , s) form2
else eval (announce kns ags (Neg form1), s) form2

We also have to define how knowledge structures are changed by public and group announcements.
The following functions correspond to the last two points of Definition 8.

pubAnnounce :: KnowStruct -> Form -> KnowStruct
pubAnnounce kns@(KnS props lawbdd obs) psi = KnS props newlawbdd obs where

newlawbdd = con lawbdd (bddOf kns psi)

pubAnnounceOnScn :: Scenario -> Form -> Scenario
pubAnnounceOnScn (kns ,s) psi = if eval (kns ,s) psi

then (pubAnnounce kns psi ,s)
else error "Liar!"

announce :: KnowStruct -> [Agent] -> Form -> KnowStruct
announce kns@(KnS props lawbdd obs) ags psi = KnS newprops newlawbdd newobs where

proppsi@(P k) = freshp props
newprops = proppsi:props
newlawbdd = con lawbdd (imp (var k) (bddOf kns psi))
newobs = [(i, apply obs i ++ [proppsi | i ‘elem ‘ ags]) | i <- map fst obs]

The following definition and its implementation bddOf is the key idea for symbolic model checking
DEL: Given a knowledge structure F and a formula ϕ, it generates a BDD which represents a boolean
formula that on F is equivalent to ϕ. In particular, this function does not generate longer and longer
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formulas. It only makes calls to itself, the announcement functions and the boolean operations provided
by the BDD package.

Definition 9. Given any knowledge structure F = (V, θ,O1, · · · , On) and any DEL formula ϕ, we
define a boolean formula ‖ϕ‖F .

1. For any primitive formula, ‖p‖F := p.

2. For negation, let ‖¬ψ‖F := ¬‖ψ‖F .

3. For conjunction, let ‖ψ1 ∧ ψ2‖F := ‖ψ1‖F ∧ ‖ψ2‖F .

4. For knowledge, let ‖Kiψ‖F := ∀(V \Oi)(θ → ‖ψ‖F ).

5. For common knowledge, let ‖C∆ψ‖F := gfpΛ where Λ is the following operator on boolean
formulas given and gfpΛ denotes its greatest fixed point:

Λ(α) := ‖ψ‖F ∧
∧
i∈∆

∀(V \Oi)(θ → α)

6. For public announcements, let ‖[ψ]ξ‖F := ‖ψ‖F → ‖ξ‖Fψ .

7. For group announcements, let ‖[ψ]∆ξ‖F := ‖ψ‖F → (‖ξ‖Fψ∆)(
pψ
> ).

where Fψ and Fψ∆ are as given by Definition 8.

bddOf :: KnowStruct -> Form -> Bdd
bddOf _ Top = top
bddOf _ Bot = bot
bddOf _ (PrpF (P n)) = var n
bddOf kns (Neg form) = neg $ bddOf kns form
bddOf kns (Conj forms) = conSet $ map (bddOf kns) forms
bddOf kns (Disj forms) = disSet $ map (bddOf kns) forms
bddOf kns (Xor forms) = xorSet $ map (bddOf kns) forms
bddOf kns (Impl f g) = imp (bddOf kns f) (bddOf kns g)
bddOf kns (Equi f g) = equ (bddOf kns f) (bddOf kns g)
bddOf kns (Forall ps f) = forallSet (map fromEnum ps) (bddOf kns f)
bddOf kns (Exists ps f) = existsSet (map fromEnum ps) (bddOf kns f)
bddOf kns@(KnS allprops lawbdd obs) (K i form) =

forallSet otherps (imp lawbdd (bddOf kns form)) where
otherps = map (\(P n) -> n) $ allprops \\ apply obs i

bddOf kns@(KnS allprops lawbdd obs) (Kw i form) =
disSet [ forallSet otherps (imp lawbdd (bddOf kns f)) | f <- [form , Neg form] ] where

otherps = map (\(P n) -> n) $ allprops \\ apply obs i
bddOf kns@(KnS allprops lawbdd obs) (Ck ags form) = gfp lambda where

lambda z = conSet $ bddOf kns form : [ forallSet (otherps i) (imp lawbdd z) | i <- ags ]
otherps i = map (\(P n) -> n) $ allprops \\ apply obs i

bddOf kns (Ckw ags form) = dis (bddOf kns (Ck ags form)) (bddOf kns (Ck ags (Neg form)))
bddOf kns@(KnS props _ _) (Announce ags form1 form2) =

imp (bddOf kns form1) (restrict bdd2 (k,True)) where
bdd2 = bddOf (announce kns ags form1) form2
(P k) = freshp props

bddOf kns@(KnS props _ _) (AnnounceW ags form1 form2) =
ifthenelse (bddOf kns form1) bdd2a bdd2b where

bdd2a = restrict (bddOf (announce kns ags form1) form2) (k,True)
bdd2b = restrict (bddOf (announce kns ags form1) form2) (k,False)
(P k) = freshp props

bddOf kns (PubAnnounce form1 form2) = imp (bddOf kns form1) newform2 where
newform2 = bddOf (pubAnnounce kns form1) form2

bddOf kns (PubAnnounceW form1 form2) =
ifthenelse (bddOf kns form1) newform2a newform2b where

newform2a = bddOf (pubAnnounce kns form1) form2
newform2b = bddOf (pubAnnounce kns (Neg form1)) form2

Given these definitions, a proof by induction on ϕ gives us the following Theorem.
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Theorem 10. Definition 9 preserves and reflects truth. That is, for any formula ϕ and any scene
(F , s) we have that (F , s) |= ϕ iff s |= ‖ϕ‖F .

Knowing that the translation is correct we can now define the symbolic evaluation function
evalViaBdd. Note that it has exactly the same type and thus takes the same input as eval.

evalViaBdd :: Scenario -> Form -> Bool
evalViaBdd (kns@(KnS allprops _ _),s) f = bool where

bool | b==top = True
| b==bot = False
| otherwise = error ("evalViaBdd failed: BDD leftover :\n" ++ show b)

b = restrictSet (bddOf kns f) list
list = [ (n, (P n) ‘elem ‘ s) | (P n) <- allprops ]

Moreover, we have the following theorem which allows us to check the validity of a formula on a
knowledge structure simply by checking if its boolean equivalent is implied by the state law.

Theorem 11. Definition 9 preserves and reflects validity. That is, for any formula ϕ and any knowledge
structure F with the state law θ we have that F |= ϕ iff θ → ‖ϕ‖F is a boolean tautology.

validViaBdd :: KnowStruct -> Form -> Bool
validViaBdd kns@(KnS _ lawbdd _) f = top == lawbdd ‘imp ‘ bddOf kns f

3.2 Knowledge Transformers

For now our language is restricted to two kinds of events – public and group announcements. However,
the symbolic model checking method can be extended to cover other epistemic events. What action
models (see Definition 5) are to Kripke models, the following knowledge transformers are to knowledge
structures. The analog of product update is knowledge transformation.

Definition 12. A knowledge transformer for a given vocabulary V is a tuple X = (V +, θ+, O1, . . . , On)
where V + is a set of atomic propositions such that V ∩ V + = ∅, θ+ is a possibly epistemic formula
over V ∪ V + and Oi ⊆ V + for all agents i. An event is a knowledge transformer together with a subset
x ⊆ V +, written as (X , x).

The knowledge transformation of a knowledge structure F = (V, θ,O1, . . . , On) with a knowledge
transformer X = (V +, θ+, O+

1 , . . . , O
+
n ) for V is defined by:

FX := (V ∪ V +, θ ∧ ||θ+||F , O1 ∪O+
1 , . . . , On ∪O

+
n )

Given a scene (F , s) and an event (X , x) we define (F , s)(X ,x) := (FX , s ∪ x).

The two kinds of events discussed above fit well into this general definition: The public announcement
of ϕ is the event ((∅, ϕ,∅, . . . ,∅),∅) and the announcement of ϕ to ∆ is given by (({pϕ}, pϕ →
ϕ,O+

1 , . . . , O
+
n ), {pϕ}) where O+

i = {pϕ} if i ∈ ∆ and O+
i = ∅ otherwise.

Note that θ+ does not have to be a boolean formula. This is similar to preconditions in action
models which can also be arbitrary formulas. Still, applying a knowledge transformer to a knowledge
structure again yields a knowledge structure in which the set of states is determined by the state law
which has to be a purely boolean formula. Hence, in Definition 12 we not just take the conjunction of θ
and θ+ but instead use the boolean equivalent of θ+. This formula will be equivalent on the previous,
but not necessarily on the new structure. Again this fits to the established action model framework:
Truthful announcements can be unsuccessful in the sense that after something is publicly announced it
is not true anymore. Famous examples are the so-called Moore sentences of the form “It snows and you
don’t know it.”

Our usage of Definition 9 in Definition 12 is somewhat special: Whenever rewriting an epistemic
statement, propositions in V + are ignored. For example, to rewrite Ki we quantify over V \Oi and
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not over V ∪ V + \Oi ∪O+
i as one might first think. The latter would yield boolean equivalents with

respect to FX but we need a boolean formula that was equivalent to the precondition before the action
occurred.

In the implementation we can see that the elements of addprops are shifted to a large enough index
so that they become disjoint with props.

data KnowTransf = KnT [Prp] Form [(Agent ,[Prp])] deriving (Eq,Show)
type Event = (KnowTransf ,KnState)

knowTransform :: Scenario -> Event -> Scenario
knowTransform (kns@(KnS props lawbdd obs),s) (KnT addprops addlaw eventobs , eventfacts) =

(KnS (props ++ map snd shiftrel) newlawbdd newobs , s++ shifteventfacts) where
shiftrel = zip addprops [( freshp props)..]
newobs = [ (i , sort $ apply obs i ++ map (apply shiftrel) (apply eventobs i)) | i <-

map fst obs ]
shiftaddlaw = replPsInF shiftrel addlaw
newlawbdd = con lawbdd (bddOf kns shiftaddlaw)
shifteventfacts = map (apply shiftrel) eventfacts

We end this module with helper functions to generate LATEX code that shows a knowledge structure,
including a BDD of the state law. See Section 6 for examples of what the output looks like.

texBDD :: Bdd -> IO String
texBDD b = do

(i,o,_,_) <- runInteractiveCommand "dot2tex --figpreamble =\"\\ huge\" --figonly -traw"
hPutStr i (genGraph b)
hGetContents o

texStructure :: Scenario -> String -> IO String
texStructure (KnS props lawbdd obs , state) filename = do

lawbddtex <- texBDD lawbdd
let fullstring = " \\left( \n"

++ texPropSet props ++ ", "
++ " \\ begin{array }{l} \\ scalebox {0.4}{"++ lawbddtex ++"} \\end{array}\n "
++ ", \\begin{array}{l}\n"
++ intercalate " \\\\\n " (map (\(_,os) -> (texPropSet os)) obs)
++ "\\end{array}\n"
++ " \\ right) , " ++ texPropSet state

_ <- writeFile ("tmp/" ++ filename ++ ".tex") fullstring
return ("Structure was TeX ’d to"++ filename)

15



4 Connecting the two Semantics

In this module we define and implement translation methods to connect the semantics from the two
previous sections. This essentially allows us to switch back and forth between explicit and symbolic
model checking methods.

module SYMDEL where
import Control.Arrow (second)
import Data.List (groupBy ,sort ,(\\))
import DELLANG
import KNSCAC
import KRIPKEDEL
import HELP (apply ,powerset)

Lemma 13. Suppose we have a knowledge structure F = (V ′, θ, O1, · · · , On) and a finite S5 Kripke
model M = (W,π,K1, · · · ,K1) with a set of primitive propositions V ⊆ V ′. Furthermore, suppose we
have a function g : W → P(V ′) such that

C1 For all w1, w2 ∈W , and all i such that 1 ≤ i ≤ n, we have g(w1) ∩Oi = g(w2) ∩Oi iff w1Kiw2.

C2 For all w ∈W and v ∈ V , we have v ∈ g(w) iff π(w)(v) = true.

C3 For every s ⊆ V ′, s is a state of F iff s = g(w) for some w ∈W.

Then, for every formula ϕ over V we have (F , g(w)) |= ϕ iff (M,w) |= ϕ.

4.1 From Knowledge Structures to Kripke Models

Definition 14. For any knowledge structure F = (V, θ,O1, · · · , On), we define the Kripke model
M(F) := (W,π,K1, · · · ,Kn) as follows

1. W is the set of all states of F ,

2. for each w ∈W , let the assignment π(w) be w itself and

3. for each agent i and all w,w′ ∈W , let wKiw′ iff w ∩Oi = w′ ∩Oi.

Theorem 15. For any scene F , s and any formula ϕ we have (F , s) |= ϕ iff (M(F), s) |= ϕ.

knsToKripke :: Scenario -> PointedModel
knsToKripke (kns@(KnS ps _ obs),curs) =

if curs ‘elem ‘ statesOf kns
then (KrM worlds rel val , cur)
else error "knsToKripke failed: Invalid state."

where
lav = zip (statesOf kns) [0..( length (statesOf kns) -1)]
val = map ( \(s,n) -> (n,state2kripkeass s) ) lav where

state2kripkeass s = map (\p -> (p, p ‘elem ‘ s)) ps
rel = [(i,rfor i) | i <- map fst obs]
rfor i = map (map snd) (groupBy ( \ (x,_) (y,_) -> x==y ) (sort pairs)) where

pairs = map (\s -> (restrictState s (apply obs i), apply lav s)) (statesOf kns)
worlds = map fst val
cur = apply lav curs

4.2 From Kripke Models to Knowledge Structures

Definition 16. For any S5 model M = (W,π,K1, · · · ,Kn) we define a knowledge structure F(M) as
follows. For each i, write γ1, . . . , γki for the equivalence classes given by Ki and let li := ceiling(log2 ki).
Let Oi be a set of li many fresh primitive propositions. This yields the sets of observational variables
O1, . . . , On, all disjoint to each other. If agent i has a total relation, i.e. only one equivalence class,
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then we have Oi = ∅. Enumerate ki many subsets of Oi as Oγ1 , . . . , Oγki and define the function
gi : W → P(Oi) by gi(w) := Oγ(w) where γ(w) is the K-equivalence class of w. Let V ′ := V ∪

⋃
0<i≤nOi

and define g : W → P(V ′) by

g(w) := {v ∈ V | π(w)(v) = >} ∪
⋃

0<i≤n
gi(w)

Let V ′ be the set of atomic propositions and their negations from V ′. Now let

θM :=
∧{∨

Q | Q ⊆ V ′ and g(w) |=
∨
Q for all w ∈W

}
Finally, let F(M) := (V ′, θM , O1, . . . , On).

Theorem 17. For any finite S5 pointed Kripke model (M,w) and every formula ϕ, we have that
(M,w) |= ϕ iff (F(M), g(w)) |= ϕ.

kripkeToKns :: PointedModel -> Scenario
kripkeToKns (KrM worlds rel val , cur) = (KnS ps theta obs , curs) where

v = map fst $ apply val cur
ags = map fst rel
newpstart = fromEnum $ freshp v -- start counting new propositions here
amount i = ceiling (logBase 2 (fromIntegral $ length (apply rel i)) :: Float) -- |O_i|
newpstep = maximum [ amount i | i <- ags ]
newps i = map (\k -> P (newpstart + (newpstep*i) +k)) [0..( amount i - 1)] -- O_i
copyrel i = zip (apply rel i) (powerset (newps i)) -- label equiv.classes with P(O_i)
gag i w = snd $ head $ filter (\(ws ,_) -> elem w ws) (copyrel i)
g w = filter (apply (apply val w)) v ++ concat [ gag i w | i <- ags ]
fWith set = [ Disj [ if p ‘elem ‘ psubset then PrpF p else Neg $ PrpF p | p <- set ] |

psubset <- powerset set ] -- build a finite state law
formulas = concat [ fWith set | set <- powerset ps ]
glotrue f = and [ boolEval (g w) f | w<-worlds ]
ps = v ++ concat [ newps i | i <- ags ]
theta = boolBddOf $ Conj (filter glotrue formulas) -- convert state law to a BDD
obs = [ (i,newps i) | i<- ags ]
curs = sort $ g cur

4.3 From Action Models to Knowledge Transformers

For any S5 action model there is an equivalent knowledge transformer and vice versa. The translations
are similar to Definitions 14 and 16 and their soundness also follows from Lemma 13. The implementation
below works on pointed models, to simplify tracking the actual world and action.

Definition 18. The function Trf maps an S5 action model A = (A, (Ki)i∈I , pre) to a transformer as
follows. For any two sets of propositions A and B, we abbreviate “of the propositions in B, exactly those
in A are true”, i.e. let A v B :=

∧
A ∧

∧
{¬p | p ∈ B \A}. Let P be a finite set of fresh propositions

such that there is an injective g : A→ P(P ) and let

Φ := {(g(a) v P )→ pre(a) | a ∈ A}

Now, for each i: Write A/Ki for the set of equivalence classes induced by Ki. Let O+
i be a finite set of

fresh propositions such that there is an injective gi : A/Ki → P(O+
i ) and let

Φi :=

{
(gi(α) v Oi)→

(∨
a∈α

(g(a) v P )

)
| α ∈ A/Ki

}

Finally, define Trf(A) := (V +, θ+, O+
1 , . . . , O

+
n ) where V + := P ∪

⋃
i∈I Pi and θ

+ := Φ ∧
∧
i∈I Φi.
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Theorem 19. For any pointed Kripke model (M, w), any pointed action model (A, α) and any ϕ over
the vocabulary ofM we have:

M×A, (w,α) � ϕ ⇐⇒ F(M)Trf(A), (g(w) ∪ gA(α)) � ϕ

where g and gA are from the construction of F(M) and Trf(A), respectively.

actionToEvent :: PointedActionModel -> Event
actionToEvent (ActM actions precon actrel , faction) = (KnT eprops elaw eobs , efacts) where

ags = map fst actrel
eprops = actionprops ++ actrelprops
(P fstnewp) = freshp $ propsInForms (map snd precon)
actionprops = [P fstnewp ..P maxactprop] -- new props to distinguish all actions
maxactprop = fstnewp + ceiling (logBase 2 (fromIntegral $ length actions) :: Float) -1
copyactprops = zip actions (powerset actionprops)
actforms = [ Impl (booloutofForm (apply copyactprops a) actionprops) (apply precon a)

| a <- actions ] -- connect the new propositions to the preconditions
actrelprops = concat [ newps i | i <- ags ] -- new props to distinguish actions for i
actrelpstart = maxactprop + 1
newps i = map (\k -> P (actrelpstart + (newpstep*i) +k)) [0..( amount i - 1)]
amount i = ceiling (logBase 2 (fromIntegral $ length (apply actrel i)) :: Float)
newpstep = maximum [ amount i | i <- ags ]
copyactrel i = zip (apply actrel i) (powerset (newps i)) -- actrelprops <-> actionprops
actrelfs i = [ Impl (booloutofForm (apply (copyactrel i) as) (newps i)) (Disj [adesc a|

a<-as]) | as <- apply actrel i ] where adesc a = booloutofForm (apply copyactprops a)
actionprops

actrelforms = concatMap actrelfs ags
factsFor i = snd $ head $ filter (\(as ,_) -> elem faction as) (copyactrel i)
efacts = apply copyactprops faction ++ concatMap factsFor ags
elaw = simplify $ Conj (actforms ++ actrelforms)
eobs = [ (i,newps i) | i<- ags ]

4.4 From Knowledge Transformers to Action Models

Definition 20. The function Act maps a given Knowledge Transformer X = (V +, θ+, O+
1 , . . . , O

+
n ) to

an action model as follows. First, let the set of actions be A := P(V +). Second, for any two actions
α, β ∈ A, let αRiβ iff α ∩O+

i = β ∩O+
i . Third, for any α, let pre(α) := θ+

(
α
>
) (V +\α

⊥

)
. Finally, let

Act(X ) := (A, (Ri)i∈I , pre).

Theorem 21. For any scene (F , s), any event (X , x) and any formula ϕ over the vocabulary of F we
have:

(F , s)(X ,x) � ϕ ⇐⇒ (M(F)× Act(X )), (s, x) � ϕ

Note that this definition of Act can yield action models with contradictions as preconditions. In the
implementation below we remove all actions where pre(α) = ⊥.

eventToAction ’ :: Event -> PointedActionModel
eventToAction ’ (KnT eprops eform eobs , efacts) = (ActM actions precon actrel , faction)

where
actions = [0..(2 ^ length eprops - 1)]
actlist = zip (powerset eprops) actions
precon = [ (a, simplify $ preFor ps) | (ps,a) <- actlist ] where

preFor ps = substitSet (zip ps (repeat Top) ++ zip (eprops \\ps) (repeat Bot)) eform
actrel = [(i,rFor i) | i <- map fst eobs] where

rFor i = map (map snd) (groupBy ( \ (x,_) (y,_) -> x==y ) (pairs i))
pairs i = sort $ map (\(set ,a) -> (restrictState set $ apply eobs i,a)) actlist

faction = apply actlist efacts

eventToAction :: Event -> PointedActionModel
eventToAction (KnT eprops eform eobs , efacts) = (ActM actions precon actrel , faction) where

(ActM _ precon ’ actrel ’, faction) = eventToAction ’ (KnT eprops eform eobs , efacts)
precon = filter (\(_,f) -> f/=Bot) precon ’ -- remove actions w/ contradictory precon
actions = map fst precon
actrel = map (second fltr) actrel ’
fltr r = filter ([]/=) $ map (filter (‘elem ‘ actions)) r
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5 Automated Testing

This module provides automated randomized testing to check our implementations for correctness.
We generate random formulas and then evaluate them on Kripke models and knowledge structures of
which we already know that they are equivalent. The test algorithm then checks whether the different
methods we implemented agree on the result.

module TEST where
import System.Random (getStdRandom ,randomR)
import DELLANG
import KNSCAC
import KRIPKEDEL
import SYMDEL
import EXAMPLES

Some global settings for the tests in this section:

mypropsindex , myagsindex , mycomplexity , myconlength :: Int
mypropsindex = 2 -- maximum index of atomic props
myagsindex = 2 -- maximum index of agents
mycomplexity = 4 -- maximum complexity of formulas
myconlength = 2 -- maximum number of conjuncts

5.1 Generating random formulas

getRandomInt :: Int -> IO Int
getRandomInt n = getStdRandom (randomR (0,n))

getRandomGroup :: IO [Agent]
getRandomGroup = do

n <- getRandomInt 2
case n of 0 -> return [alice]

1 -> return [bob]
_ -> return [alice ,bob]

getRandomF :: IO Form
getRandomF = do d <- getRandomInt mycomplexity

getRandomForm d

getRandomForm :: Int -> IO Form
getRandomForm 0 = do

n <- getRandomInt 4
case n of 0 -> return Top

1 -> return Bot
_ -> do m <- getRandomInt mypropsindex

return (PrpF (P m))

getRandomForm d = do
n <- getRandomInt 9
case n of

0 -> do m <- getRandomInt mypropsindex
return (PrpF (P m))

1 -> do f <- getRandomForm (d-1)
return (Neg f)

2 -> do f <- getRandomForm (d-1)
g <- getRandomForm (d-1)
return (Impl f g)

3 -> do m <- getRandomInt myconlength
fs <- getRandomForms (d-1) m
return (Conj fs)

4 -> do m <- getRandomInt myconlength
fs <- getRandomForms (d-1) m
return (Disj fs)

5 -> do i <- getRandomInt myagsindex
f <- getRandomForm (d-1)
return (K i f)

6 -> do i <- getRandomInt myagsindex
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f <- getRandomForm (d-1)
return (Kw i f)

7 -> do ags <- getRandomGroup
f <- getRandomForm (d-1)
return (Ck ags f)

8 -> do ags <- getRandomGroup
f1 <- getRandomForm (d-1)
f2 <- getRandomForm (d-1)
return (Announce ags f1 f2)

_ -> do f1 <- getRandomForm (d-1)
f2 <- getRandomForm (d-1)
return (PubAnnounce f1 f2)

getRandomForms :: Int -> Int -> IO [Form]
getRandomForms _ 0 = return []
getRandomForms d n = do f <- getRandomForm d

fs <- getRandomForms d (n-1)
return (f:fs)

5.2 Testing equivalence of the two semantics

The following creates a Kripke model and a knowledge structure which are equivalent to each other by
Lemma 13. In this model/structure Alice knows everything and the other agents do not know anything.
The function test checks for a given number of random formulas whether the implementations of the
different semantics and translation methods agree on whether the formula holds on the model and the
structure.

mymodel :: PointedModel
mymodel = (KrM ws rel (zip ws table), 0) where

ws = [0..(2^( mypropsindex +1) -1)]
rel = (alice , map (:[]) ws) : [ (i,[ws]) | i <- [1.. myagsindex] ]
table = foldl buildTable [[]] [P k | k<- [0.. mypropsindex ]]
buildTable partrows p = [ (p,v):pr | v <-[True ,False], pr <-partrows ]

myscn :: Scenario
myscn = (KnS ps (boolBddOf Top) ((alice ,ps):[(i,[]) | i<-[1.. myagsindex ]]) , ps)

where ps = [P 0 .. P mypropsindex]

singleTest :: IO (Bool , Bool)
singleTest = do

f <- getRandomF
-- print f -- uncomment this to show formulas while testing.
singleTestWith f

singleTestWith :: Form -> IO (Bool , Bool)
singleTestWith f = do

let a = KRIPKEDEL.eval mymodel f -- evaluate directly on Kripke
let b = KNSCAC.eval myscn f -- evaluate directly on KNS
let c = KNSCAC.evalViaBdd myscn f -- evaluate boolean equivalent on KNS
let d = KRIPKEDEL.eval (knsToKripke myscn) f -- evaluate on corresponding Kripke
let e = KNSCAC.eval (kripkeToKns mymodel) f -- evaluate on corresponding KNS
if or [a/=b,b/=c,c/=d,d/=e]

then do putStr $ "Problem: " ++ show f ++ "\n " ++ show (a,b,c,d,e) ++"\n\n"
return (True ,a)

else return (False ,a)

test :: Int -> IO ()
test n = do (problems ,truths) <- testLoop 0 0 n

putStrLn $ show problems ++ " problems among " ++ show n ++ " formulas out of
which " ++ show truths ++" were true."

testLoop :: Int -> Int -> Int -> IO (Int ,Int)
testLoop p t 0 = return (p,t)
testLoop p t n = do (prob ,res) <- singleTest

testLoop (if prob then p + 1 else p) (if res then t + 1 else t) (n-1)
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5.3 Public Announcements

We can do public announcements in various ways. The following test checks that the result of all three
methods is the same.

pubAnnounceTest :: IO Bool
pubAnnounceTest = do

n <- getRandomInt mypropsindex
let f = PrpF (P n)
g <- getRandomF
print (PubAnnounce f g)
let a = KRIPKEDEL.eval mymodel (PubAnnounce f g)
putStr $ show a
let b = KNSCAC.eval (kripkeToKns mymodel) (PubAnnounce f g)
putStr $ show b
let c = KNSCAC.eval (knowTransform (kripkeToKns mymodel) (actionToEvent (

pubAnnounceAction [0,1] f))) g
print c
if a/=b || b/=c

then do putStr $ "Problem: " ++ show g ++ "\n "++ show (a,b,c) ++"\n\n"
return False

else return True

5.4 Random Action Models

This generates a random action model with four actions. To ensure that it is compatible with all models
the actual action token has > as precondition. The other three action tokens have random formulas as
preconditions. Similar to the model above the first agent can tell the actions apart and everyone else
confuses them.

getRandomAction :: IO PointedActionModel
getRandomAction = do

[f,g,h] <- getRandomForms 2 3
return (ActM [0..3] [(0,Top) ,(1,f) ,(2,g) ,(3,h)]

( (0 ,[[0] ,[1] ,[2] ,[3]]) :[(k ,[[0..3]]) | k<-[1.. myagsindex] ]), 0)

singleActionTest :: IO Bool
singleActionTest = do

myact <- getRandomAction
f <- getRandomForm 3
let a = KRIPKEDEL.eval (productUpdate mymodel myact) f
let b = KNSCAC.evalViaBdd (knowTransform (kripkeToKns mymodel) (actionToEvent myact)) f
if a /= b

then do putStr $ "Problem: " ++ show myact
++ "\n action: " ++ show (actionToEvent myact)
++ "\n form: " ++ show f
++ "\n res: " ++ show (a,b) ++ "\n\n"

return True
else return False

actionTest :: Int -> IO ()
actionTest n = do

problems <- actionTestLoop 0 n
putStrLn $ show problems ++ " problems among " ++ show n ++ " formula/action pairs."

actionTestLoop :: Int -> Int -> IO Int
actionTestLoop p 0 = return p
actionTestLoop p n = do

problem <- singleActionTest
actionTestLoop (if problem then p+1 else p) (n-1)
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6 Examples

This section shows how to use our model checker on concrete cases. We start with some toy examples
and then deal with famous puzzles and protocols from the literature.

module EXAMPLES where
import Data.List (delete ,intersect ,(\\))
import Data.Maybe (fromJust)
import DELLANG
import KNSCAC
import KRIPKEDEL
import SYMDEL

6.1 Knowledge and Meta-Knowledge

In the following Kripke model, Bob knows that p is true and Alice does not. Still, Alice knows that
Bob knows whether p. This is because in all worlds that Alice confuses with the actual world Bob
either knows that p or he knows that not p.

modelA :: PointedModel
modelA = (KrM [0,1] [(0 ,[[0 ,1]]) ,(1 ,[[0] ,[1]])] [ (0,[(P 0,True)]), (1,[(P 0,False)]) ], 0)

10
p

Alice

Figure 1: modelA

>>> map (KRIPKEDEL.eval modelA) [ K bob (PrpF (P 0)), K alice (PrpF (P 0)) ]
[True,False]
0.98 seconds

>>> KRIPKEDEL.eval modelA (K alice (Kw bob (PrpF (P 0))))
True
0.96 seconds

In a slightly different model with three states, again Bob knows that p is true and Alice does not. And
additionally here Alice does not even know whether Bob knows whether p.

modelB :: PointedModel
modelB = (KrM [0,1,2] [(0 ,[[0 ,1 ,2]]) ,(1 ,[[0] ,[1 ,2]])] [ (0,[(P 0,True)]), (1,[(P 0,True)]),

(2,[(P 0,False)]) ], 0)

2

1
p

0
p

Alice

Alice

Alice

Bob

Figure 2: modelB

>>> KRIPKEDEL.eval modelB (K bob (PrpF (P 0)))
True
0.93 seconds
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>>> KRIPKEDEL.eval modelB (Kw alice (Kw bob (PrpF (P 0))))
False
0.94 seconds

Let us see how such meta-knowledge (or in this case: meta-ignorance) is reflected in knowledge
structures. Both knowledge structures contain one additional observational variable:

knsA , knsB :: Scenario
knsA = kripkeToKns modelA
knsB = kripkeToKns modelB

knsA =

{p, p2},

0

2

1

2

0

,
∅
{p2}

 , {p, p2}

knsB =

{p, p2},

0

2

01

,
∅
{p2}

 , {p, p2}

The only difference is in the state law of the knowledge structures. Remember that this component
determines which assignments are states of this knowledge structure. In our implementation this is not
a formula but a BDD, hence we show its graph here. The BDD in knsA demands that the propositions
p and p2 have the same value. Hence knsA has just two states while knsB has three:

>>> let (structA,foo) = knsA in statesOf structA
[[P 0,P 2],[]]
1.11 seconds

>>> let (structB,foo) = knsB in statesOf structB
[[P 0],[P 0,P 2],[]]
1.08 seconds

6.2 Minimization via Translation

Consider the following Kripke model where 0 and 1 are bisimilar – it is redundant.

redundantModel :: PointedModel
redundantModel = (KrM [0,1,2] [(0 ,[[0 ,1 ,2]]) ,(1 ,[[0 ,1] ,[2]])] [ (0,[(P 0,True)]), (1,[(P 0,

True)]), (2,[(P 0,False)]) ], 0)

2

1
p

0
p

Alice

Bob

Alice

Alice

Figure 3: redundantModel

If we transform this model to a knowledge structure, we get the following:
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myKNS :: Scenario
myKNS = kripkeToKns redundantModel

myKNS =

{p, p2},

0

2

1

2

0

,
∅
{p2}

 , {p, p2}

Moreover, if we transform this knowledge structure back to a Kripke Model, we get a model which is
bisimilar to the first one but has only two states – the redundancy is gone. This shows how knowledge
structures can be used to find smaller bisimilar models.

minimizedModel :: PointedModel
minimizedModel = knsToKripke myKNS

10
p, p2

Alice

Figure 4: minimizedModel

6.3 Different Announcements

We can represent a public announcement as an action model and then get the corresponding knowledge
transformer.

pubAnnounceAction :: [Agent] -> Form -> PointedActionModel
pubAnnounceAction ags f = (ActM [0] [(0,f)] [ (i ,[[0]]) | i <- ags ], 0)

examplePaAction :: PointedActionModel
examplePaAction = pubAnnounceAction [0,1] (PrpF (P 0))

>>> examplePaAction
(ActM [0] [(0,PrpF (P 0))] [(0,[[0]]),(1,[[0]])],0)
0.95 seconds

>>> actionToEvent examplePaAction
(KnT [] (PrpF (P 0)) [(0,[]),(1,[])],[])
0.97 seconds

Similarly a group announcement can be defined as an action model with two states. The automatically
generated equivalent knowledge transformer uses two atomic propositions which at first sight seems
different from how we defined group announcements on knowledge structures.

groupAnnounceAction :: [Agent] -> [Agent] -> Form -> PointedActionModel
groupAnnounceAction everyone listeners f = (ActM [0,1] [(0,f) ,(1,Top)] actrel , 0)

where actrel = [ (i ,[[0] ,[1]]) | i <- listeners ]
++ [ (i,[[0 , 1]]) | i <- everyone \\ listeners ]

exampleGroupAnnounceAction :: PointedActionModel
exampleGroupAnnounceAction = groupAnnounceAction [0,1] [0] (PrpF (P 0))
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>>> exampleGroupAnnounceAction
(ActM [0,1] [(0,PrpF (P 0)),(1,Top)] [(0,[[0],[1]]),(1,[[0,1]])],0)
0.93 seconds

>>> actionToEvent exampleGroupAnnounceAction
(KnT [P 1,P 2] (Conj [Impl (PrpF (P 1)) (PrpF (P 0)),Impl (PrpF (P 2)) (PrpF (P
1)),Impl (Neg (PrpF (P 2))) (Neg (PrpF (P 1))),Disj [PrpF (P 1),Neg (PrpF (P 1))]])
[(0,[P 2]),(1,[])],[P 1,P 2])
0.89 seconds

But it is not hard to check that this is equivalent to the definition. Consider the θ+ formula of this
transformer, namely

∧
{p1 → p1, p2 → p1,¬p2 → ¬p1, p1 ∨ ¬p1}. This is equivalent to p1 ↔ p2 and the

actual event is given by both p1 and p2 being added to the current state, equivalent to the normal
announcement. There is no canonical way to avoid such redundancy as long as we use the general
two-step process in Definition 18 to translate action models to knowledge transformers.
We can also turn this knowledge transformer back to an action model. The result is the same as the

action model we started with up to a renaming of action 1 to 3.
>>> eventToAction (actionToEvent exampleGroupAnnounceAction)
(ActM [0,3] [(0,PrpF (P 0)),(3,Top)] [(0,[[3],[0]]),(1,[[0,3]])],0)
0.90 seconds

6.4 Muddy Children

We now model the story of the muddy children which is known in many versions. See for example
[Lit53], [FHMV95, p. 24-30] or [DHK07, p. 93-96]. Our implementation treats the general case for n
children out of which m are muddy, but we focus on the case of three children who are all muddy. As
usual, all children can observe whether the others are muddy but do not see their own face. This is
represented by the observational variables: Agent 1 observes p2 and p3, agent 2 observes p1 and p3 and
agent 3 observes p1 and p2.

mudScnInit :: Int -> Int -> Scenario
mudScnInit n m = ( KnS mudProps (boolBddOf Top) [ (i,delete (P i) mudProps) | i <- [1..n]

], [P 1 .. P m] ) where mudProps = [P 1 .. P n]

myMudScnInit :: Scenario
myMudScnInit = mudScnInit 3 3

myMudScnInit =

{p1, p2, p3}, 1 ,
{p2, p3}
{p1, p3}
{p1, p2}

 , {p1, p2, p3}

The following parameterized formulas say that child number i knows whether it is muddy and that
none out of n children knows its own state, respectively:

knows :: Int -> Form
knows i = Kw i (PrpF $ P i)

nobodyknows :: Int -> Form
nobodyknows n = Conj [ Neg $ knows i | i <- [1..n] ]

Now, let the father announce that someone is muddy and check that still nobody knows their own
state of muddiness.

father :: Int -> Form
father n = Disj (map PrpF [P 1 .. P n])
mudScn0 :: Scenario
mudScn0 = pubAnnounceOnScn myMudScnInit (father 3)
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mudScn0 =


{p1, p2, p3},

1

2

3

01

,
{p2, p3}
{p1, p3}
{p1, p2}


, {p1, p2, p3}

>>> evalViaBdd mudScn0 (nobodyknows 3)
True
1.07 seconds

If we update once with the fact that nobody knows their own state, it is still true:

mudScn1 :: Scenario
mudScn1 = pubAnnounceOnScn mudScn0 (nobodyknows 3)

mudScn1 =


{p1, p2, p3},

1 0

1

2

3

2

,
{p2, p3}
{p1, p3}
{p1, p2}


, {p1, p2, p3}

>>> evalViaBdd mudScn1 (nobodyknows 3)
True
1.06 seconds

However, one more round is enough to make everyone know that they are muddy. We get a knowledge
structure with only one state, marking the end of the story.

mudScn2 :: Scenario
mudKns2 :: KnowStruct
mudScn2@(mudKns2 ,_) = pubAnnounceOnScn mudScn1 (nobodyknows 3)

mudScn2 =


{p1, p2, p3},

1

2

3

01

,
{p2, p3}
{p1, p3}
{p1, p2}


, {p1, p2, p3}

>>> evalViaBdd mudScn2 (Conj [knows i | i <- [1..3]])
True
1.04 seconds

>>> KNSCAC.statesOf mudKns2
[[P 1,P 2,P 3]]
1.05 seconds

We also make heavy use of the muddy children example in the benchmarks in section 7.
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6.5 Drinking Logicians

Three logicians – all very thirsty – walk into a bar and get asked “Does everyone want a beer?”. The
first two reply ”I don’t know”. After this the third person says ”yes”.
This story is somewhat dual to the muddy children: In the initial state here the agents only know

their own piece of information and nothing about the others. The important reasoning here is that an
announcement of “I don’t know whether everyone wants a beer.” implies that the person making the
announcement wants beer. Because if not, then she would know that not everyone wants beer.
We formalize the situation – generalized to n logicians in a knowledge structure as follows. Let Pi

represent that logician i wants a beer.

thirstyScene :: Int -> Scenario
thirstyScene n = (KnS [P 1..P n] (boolBddOf Top) [ (i,[P i]) | i <- [1..n] ], [P 1..P n])

myThirstyScene :: Scenario
myThirstyScene = thirstyScene 3

myThirstyScene =

{p1, p2, p3}, 1 ,
{p1}
{p2}
{p3}

 , {p1, p2, p3}

We check that nobody knows whether everyone wants beer, but after all but one agent have announced
that they do not know, the agent n knows that everyone wants beer. As a formula:

∧
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Pk

)
∧ [!¬K?
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Pk)] . . . [!¬K?
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(
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∧
k

Pk

)

thirstyF :: Int -> Form
thirstyF n = Conj [ Conj [ doesNotKnow k | k <- [1..n] ]

, pubAnnounceStack [ doesNotKnow i | i< -[1..(n-1)] ] $ K n allWantBeer ]
where

allWantBeer = Conj [ PrpF $ P k | k <- [1..n] ]
doesNotKnow i = Neg $ Kw i allWantBeer

thirstyCheck :: Int -> Bool
thirstyCheck n = evalViaBdd (thirstyScene n) (thirstyF n)

>>> thirstyCheck 3
True
1.11 seconds

>>> thirstyCheck 10
True
1.09 seconds

>>> thirstyCheck 100
True
1.28 seconds

>>> thirstyCheck 200
True
1.95 seconds

>>> thirstyCheck 400
True
5.56 seconds

http://spikedmath.com/445.html
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6.6 Dining Cryptographers

We model the scenario described in [Cha88]: Three cryptographers went out to have diner. After a
lot of delicious and expensive food the waiter tells them that their bill has already been paid. The
cryptographers are sure that either it was one of them or the NSA. They want to find what is the
case but if one of them paid they do not want that person to be revealed. To accomplish this, they
use the following protocol: For every pair of cryptographers a coin is flipped in such a way that only
those two see the result. Then they announce whether the two coins they saw were different or the
same. But, there is an exception: If one of them paid, then this person says the opposite. After these
announcements are made, the cryptographers can infer that the NSA paid iff the number of people
saying that they saw the same result on both coins is even.
The following function generates a knowledge structure to model this story. Given an index 0, 1, 2, or

3 for who paid and three boolean values for the random coins we get the corresponding scenario.

dcScnInit :: Int -> (Bool ,Bool ,Bool) -> Scenario
dcScnInit payer (b1,b2,b3) = ( KnS props law obs , truths ) where

props = [ P 0 -- The NSA paid
, P 1 -- Alice paid
, P 2 -- Bob paid
, P 3 -- Charlie paid
, P 4 -- shared bit of Alice and Bob
, P 5 -- shared bit of Alice and Charlie
, P 6 ] -- shared bit of Bob and Charlie

law = boolBddOf $ Conj [ someonepaid , notwopaid ]
obs = [ (1,[P 1, P 4, P 5])

, (2,[P 2, P 4, P 6])
, (3,[P 3, P 5, P 6]) ]

truths = [ P payer ] ++ [ P 4 | b1 ] ++ [ P 5 | b2 ] ++ [ P 6 | b3 ]

dcScn1 :: Scenario
dcScn1 = dcScnInit 1 (True ,True ,False)

The set of possibilities is limited by two conditions: Someone must have paid but no two people
(including the NSA) have paid:

someonepaid , notwopaid :: Form
someonepaid = Disj (map (PrpF . P) [0..3])
notwopaid = Conj [ Neg $ Conj [ PrpF $ P x, PrpF $ P y ] | x<-[0..3] , y<-[(x+1) ..3] ]

In this scenario Alice paid and the random coins are 1, 1 and 0:

dcScn1 =


{p, p1, p2, p3, p4, p5, p6},
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1

2 ,
{p1, p4, p5}
{p2, p4, p6}
{p3, p5, p6}


, {p1, p4, p5}

Every agent computes the Xor of all three variables he knows:

reveal :: Int -> Form
reveal 1 = Xor (map PrpF [P 1, P 4, P 5])
reveal 2 = Xor (map PrpF [P 2, P 4, P 6])
reveal _ = Xor (map PrpF [P 3, P 5, P 6])
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>>> map (evalViaBdd dcScn1) [reveal 1, reveal 2, reveal 3]
[True,True,True]
1.16 seconds

Now these three facts are announced:

dcScn2 :: Scenario
dcScn2 = pubAnnounceOnScn dcScn1 (Conj [reveal 1, reveal 2, reveal 3])

dcScn2 =



{p, p1, p2, p3, p4, p5, p6},
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,
{p1, p4, p5}
{p2, p4, p6}
{p3, p5, p6}



, {p1, p4, p5}

And now everyone knows whether the NSA paid for the dinner or not:

everyoneKnowsWhetherNSApaid :: Form
everyoneKnowsWhetherNSApaid = Conj [ Kw i (PrpF $ P 0) | i <- [1..3] ]

>>> evalViaBdd dcScn2 everyoneKnowsWhetherNSApaid
True
1.09 seconds

Further more, it is only known to Alice that she paid:
>>> evalViaBdd dcScn2 (K 1 (PrpF (P 1)))
True
1.07 seconds

>>> evalViaBdd dcScn2 (K 2 (PrpF (P 1)))
False
1.09 seconds

>>> evalViaBdd dcScn2 (K 3 (PrpF (P 1)))
False
1.12 seconds

To check all of this in one formula we use the “announce whether” operator. Furthermore we
parameterize the last check on who actually paid, i.e. if one of the three agents paid, then the other
two do not know this.

nobodyknowsWhoPaid :: Form
nobodyknowsWhoPaid = Conj

[ Impl (PrpF (P 1)) (Conj [Neg $ K 2 (PrpF $ P 1), Neg $ K 3 (PrpF $ P 1) ])
, Impl (PrpF (P 2)) (Conj [Neg $ K 1 (PrpF $ P 2), Neg $ K 3 (PrpF $ P 2) ])
, Impl (PrpF (P 3)) (Conj [Neg $ K 1 (PrpF $ P 3), Neg $ K 2 (PrpF $ P 3) ]) ]

dcCheckForm :: Form
dcCheckForm = PubAnnounceW (reveal 1) $ PubAnnounceW (reveal 2) $ PubAnnounceW (reveal 3) $

Conj [ everyoneKnowsWhetherNSApaid , nobodyknowsWhoPaid ]
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>>> evalViaBdd dcScn1 dcCheckForm
True
1.13 seconds

We can also check that formula is valid on the whole knowledge structure. This means the protocol is
secure not just for the particular instance where Alice paid and the random bits (i.e. flipped coins) are
as stated above but for all possible combinations of payers and bits/coins.

dcValid :: Bool
dcValid = validViaBdd dcStruct dcCheckForm where (dcStruct ,_) = dcScn1

The whole check runs within a fraction of a second:
>>> dcValid
True
1.13 seconds

A generalized version of the protocol for more than 3 agents uses exclusive or instead of odd/even.
The following implements this general case for n dining cryptographers and we will it for a benchmark
in Section 7.2. Note that we need

∑n−1
i=1 i = n(n−1)

2 many shared bits. This distinguishes the Dining
Cryptographers from the Muddy Children and the Drinking Logicians example where the number of
propositions needed to model the situation was just the number of agents.

genSomeonepaid :: Int -> Form
genSomeonepaid n = Disj (map (PrpF . P) [0..n])

genNotwopaid :: Int -> Form
genNotwopaid n = Conj [ Neg $ Conj [ PrpF $ P x, PrpF $ P y ] | x<-[0..n], y<-[(x+1)..n] ]

genDcKnsInit :: Int -> KnowStruct
genDcKnsInit n = KnS props law obs where

props = [ P 0 ] -- The NSA paid
++ [ (P 1) .. (P n) ] -- agent i paid
++ sharedbits

law = boolBddOf $ Conj [genSomeonepaid n, genNotwopaid n]
obs = [ (i, obsfor i) | i<-[1..n] ]
sharedbitLabels = [ [k,l] | k <- [1..n], l <- [1..n], k<l ] -- n(n-1)/2 shared bits
sharedbitRel = zip sharedbitLabels [ (P $ n+1) .. ]
sharedbits = map snd sharedbitRel
obsfor i = P i : map snd (filter (\(label ,_) -> i ‘elem ‘ label) sharedbitRel)

genEveryoneKnowsWhetherNSApaid :: Int -> Form
genEveryoneKnowsWhetherNSApaid n = Conj [ Kw i (PrpF $ P 0) | i <- [1..n] ]

genDcReveal :: Int -> Int -> Form
genDcReveal n i = Xor (map PrpF (fromJust $ lookup i obs)) where (KnS _ _ obs) =

genDcKnsInit n

genNobodyknowsWhoPaid :: Int -> Form
genNobodyknowsWhoPaid n =

Conj [ Impl (PrpF (P i)) (Conj [Neg $ K k (PrpF $ P i) | k <- delete i [1..n] ]) | i <-
[1..n] ]

genDcCheckForm :: Int -> Form
genDcCheckForm n =

pubAnnounceWhetherStack [ genDcReveal n i | i<-[1..n] ] $
Conj [ genEveryoneKnowsWhetherNSApaid n, genNobodyknowsWhoPaid n ]

genDcValid :: Int -> Bool
genDcValid n = validViaBdd (genDcKnsInit n) (genDcCheckForm n)

For example, we can check the protocol for 4 dining cryptographers.
>>> genDcValid 4
True
1.07 seconds
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6.7 Russian Cards

As a second case study we analyze the Russian Cards problem. One of its first logical treatments is [Dit03]
and the problem has since gained notable attention as an intuitive example of information-theoretically
(in contrast to computationally) secure cryptography [CFDFDST15, DG14].
The basic version of the problem is this: Seven cards, enumerated from 0 to 6, are distributed between

Alice, Bob and Carol such that Alice and Bob both receive three cards and Carol one card. It is
common knowledge which cards exist and how many cards each agent has. Everyone knows their own
but not the others’ cards. The goal of Alice and Bob now is to learn each others cards without Carol
learning their cards. They are only allowed to communicate via public announcements.
We begin implementing this situation by defining the set of players and the set of cards. To describe

a card deal with boolean variables, we let Pk encode that agent k modulo 3 has card floor(k3 ). For
example, P17 means that agent 2, namely Carol, has card 5 because 17 = (3 ∗ 5) + 2. The function
hasCard in infix notation allows us to write more natural statements. We also use aliases alice, bob
and carol for the agents.

rcPlayers , rcCards :: [Int]
rcPlayers = [alice ,bob ,carol]
rcCards = [0..6]

rcProps :: [Prp]
rcProps = [ P k | k <-[0..(( length rcPlayers * length rcCards) -1)] ]

hasCard :: Agent -> Int -> Form
hasCard i n = PrpF (P (3 * n + i))

>>> carol ‘hasCard‘ 5
PrpF (P 17)
0.95 seconds

We now describe which deals of cards are allowed. For a start, all cards have to be given to at least
one agent but no card can be given to two agents.

allCardsGiven , allCardsUnique :: Form
allCardsGiven = Conj [ Disj [ i ‘hasCard ‘ n | i <- rcPlayers ] | n <- rcCards ]
allCardsUnique = Conj [ Neg $ isDouble n | n <- rcCards ] where

isDouble n = Disj [ Conj [ x ‘hasCard ‘ n, y ‘hasCard ‘ n ] | x <- rcPlayers , y <-
rcPlayers , x/=y, x<=y ]

Moreover, Alice, Bob and Carol should get at least three, three and one card, respectively. As there
are only seven cards in total this already implies that they can not have more.

distribute331 :: Form
distribute331 = Conj [ aliceAtLeastThree , bobAtLeastThree , carolAtLeastOne ] where

aliceAtLeastThree = Disj [ Conj (map (alice ‘hasCard ‘) [x, y, z]) | x<-rcCards , y<-
rcCards , z<-rcCards , x/=y, x/=z, y/=z ]

bobAtLeastThree = Disj [ Conj (map (bob ‘hasCard ‘) [x, y, z]) | x<-rcCards , y<-rcCards , z
<-rcCards , x/=y, x/=z, y/=z ]

carolAtLeastOne = Disj [ carol ‘hasCard ‘ k | k< -[0..6] ]

We can now define the initial knowledge structure. The state law describes all possible distributions
using the three conditions we just defined. As a default deal we give the cards {0, 1, 2} to Alice, {3, 4, 5}
to Bob and {6} to Carol.

rusSCN :: Scenario
rusSCN = (KnS rcProps law [ (i, obs i) | i <- rcPlayers ], defaultDeal) where

law = boolBddOf $ Conj [ allCardsGiven , allCardsUnique , distribute331 ]
obs i = [ P (3*k+i) | k< -[0..6] ]
defaultDeal = [P 0,P 3,P 6,P 10,P 13,P 16,P 20]
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The initial knowledge structure for Russian Cards looks as follows. The BDD describing the state law
is generated within less than a second but drawing it is more complicated and the result quite huge:

rusSCN =


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{p, p3, p6, p9, p12, p15, p18}
{p1, p4, p7, p10, p13, p16, p19}
{p2, p5, p8, p11, p14, p17, p20}



, {p, p3, p6, p10, p13, p16, p20}

Many different solutions for Russian Cards exist. Here we will focus on so-called five-hands protocols
(and their extensions with six or seven hands) which are also used in [DHMR06]: First Alice makes
an announcement of the form “My hand is one of these: ...”. If her hand is 012 she could for example
take the set {012, 034, 056, 135, 146, 236}. It can be checked that this announcement does not tell Carol
anything, independent of which card it has. In contrast, Bob will be able to rule out all but one of the
hands in the list because of his own hand. Hence the second and last step of the protocol is that Bob
says which card Carol has. For example, if Bob’s hand is 345 he would finish the protocol with “Carol
has card 6.”.
To verify this protocol with our model checker we first define the two formulas for Alice saying "My

hand is one of 012, 034, 056, 135 and 246." and Bob saying "Carol holds card 6". Note we prefix the
statements with knowledge operators. This reflects that Alice and Bob make the announcements and
thus the real announcement is "Alice knows that one of her cards is 012, 034, 056, 135 and 246." and
"Bob knows that Carol holds card 6.".

aAnnounce :: Form
aAnnounce = K alice $ Disj [ Conj (map (alice ‘hasCard ‘) hand) |

hand <- [ [0,1,2], [0,3,4], [0,5,6], [1,3,5], [2,4,6] ] ]

bAnnounce :: Form
bAnnounce = K bob (carol ‘hasCard ‘ 6)

To describe the goals of the protocol we need formulas about the knowledge of the three agents: Alice
should know Bob’s cards, Bob should know Alice’s cards, and Carol should be ignorant, i.e. not know
for any card that Alice or Bob has it. Note that Carol will still know for one card that neither Alice
and Bob have them, namely his own. This is why we use K? (which is Kw in Haskell) for the first two
but only the plain K for the last condition.

aKnowsBs , bKnowsAs , cIgnorant :: Form
aKnowsBs = Conj [ alice ‘Kw‘ (bob ‘hasCard ‘ k) | k<-rcCards ]
bKnowsAs = Conj [ bob ‘Kw‘ (alice ‘hasCard ‘ k) | k<-rcCards ]
cIgnorant = Conj $ concat [ [ Neg $ K carol $ alice ‘hasCard ‘ i

, Neg $ K carol $ bob ‘hasCard ‘ i ] | i<-rcCards ]

We can now check how the knowledge of the agents changes during the communication, i.e. after the
first and the second announcement. First we check that Alice says the truth.

rcCheck :: Int -> Form
rcCheck 0 = aAnnounce

After Alice announces five hands, Bob knows Alice’s card and this is common knowledge among them.

rcCheck 1 = PubAnnounce aAnnounce bKnowsAs
rcCheck 2 = PubAnnounce aAnnounce (Ck [0,1] bKnowsAs)

And Bob knows Carol’s card. This is entailed by the fact that Bob knows Alice’s cards.
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rcCheck 3 = PubAnnounce aAnnounce (K 1 (PrpF (P 20)))

Carol remains ignorant of Alice’s and Bob’s cards, and this is common knowledge.

rcCheck 4 = PubAnnounce aAnnounce (Ck [0,1,2] cIgnorant)

After Bob announces Carol’s card, it is common knowledge among Alice and Bob that they know
each others cards and Carol remains ignorant.

rcCheck 5 = PubAnnounce aAnnounce (PubAnnounce bAnnounce (Ck [0,1] aKnowsBs))
rcCheck 6 = PubAnnounce aAnnounce (PubAnnounce bAnnounce (Ck [0,1] bKnowsAs))
rcCheck _ = PubAnnounce aAnnounce (PubAnnounce bAnnounce (Ck [0,1,2] cIgnorant))

rcAllChecks :: Bool
rcAllChecks = evalViaBdd rusSCN (Conj (map rcCheck [0..7]))

Verifying this protocol for the fixed deal 012|345|6 with our symbolic model checker takes about one
second. Moreover, checking multiple protocols in a row does not take much longer because the BDD
package caches results. Compared to that, the DEMO implementation from [DHMR06] needs 4 seconds
to check one protocol.

>>> EXAMPLES.rcAllChecks
True
1.05 seconds

We can not just verify but also find all protocols based on a set of five, six or seven hands, using the
following combination of manual reasoning and brute-force. The following function checkSet takes a
set of cards and returns whether it can safely be used by Alice.

checkSet :: [[Int]] -> Bool
checkSet set = all (evalViaBdd rusSCN) fs where

aliceSays = K alice (Disj [ Conj $ map (alice ‘hasCard ‘) h | h <- set ])
bobSays = K bob (carol ‘hasCard ‘ 6)
fs = [ aliceSays

, PubAnnounce aliceSays bKnowsAs
, PubAnnounce aliceSays (Ck [alice ,bob] bKnowsAs)
, PubAnnounce aliceSays (Ck [alice ,bob ,carol] cIgnorant)
, PubAnnounce aliceSays (PubAnnounce bobSays (Ck [0,1] $ Conj [aKnowsBs , bKnowsAs ]))
, PubAnnounce aliceSays (PubAnnounce bobSays (Ck [0,1,2] cIgnorant)) ]

possibleHands :: [[Int]]
possibleHands = [ [x,y,z] | x <- rcCards , y <- rcCards , z <-rcCards , x < y, y < z ]

pickHands :: [ [Int] ] -> Int -> [ [ [Int] ] ]
pickHands _ 0 = [ [ [ ] ] ]
pickHands unused 1 = [ [h] | h <- unused ]
pickHands unused n = concat [ [ h:hs | hs <- pickHands (myfilter h unused) (n-1) ] | h <-

unused ] where
myfilter h = filter (\xs -> length (h ‘intersect ‘ xs) < 2 && h < xs)

The last line includes two important restrictions to the set of possible lists of hands that we will
consider. First, Proposition 32 in [Dit03] tells us that safe announcements from Alice never contain
“crossing” hands, i.e. two hands which have more than one card in common. Second, without loss of
generality we can assume that the hands in her announcement are lexicographically ordered. This
leaves us with 1290 possible lists of five, six or seven hands of three cards.

allHandLists :: [ [ [Int] ] ]
allHandLists = concatMap (pickHands possibleHands) [5,6,7]

>>> length allHandLists
1290
1.10 seconds
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Which of these are actually safe announcements that can be used by Alice? We can find them by
checking 1290 instances of checkSet above. Our model checker can filter out the 102 safe announcements
within seconds, generating and verifying the same list as in [Dit03, Figure 3] where it was manually
generated.

*EXAMPLES > mapM_ print (sort (filter checkSet allHandLists))
[[0,1,2],[0,3,4],[0,5,6],[1,3,5],[1,4,6],[2,3,6]]
[[0,1,2],[0,3,4],[0,5,6],[1,3,5],[1,4,6],[2,3,6],[2,4,5]]
[[0,1,2],[0,3,4],[0,5,6],[1,3,5],[1,4,6],[2,4,5]]
[[0,1,2],[0,3,4],[0,5,6],[1,3,5],[2,3,6],[2,4,5]]
...
[[0,1,2],[0,5,6],[1,3,6],[1,4,5],[2,3,5],[2,4,6]]
[[0,1,2],[0,5,6],[1,3,6],[2,4,6],[3,4,5]]
[[0,1,2],[0,5,6],[1,4,5],[2,3,5],[3,4,6]]
[[0,1,2],[0,5,6],[1,4,6],[2,3,6],[3,4,5]]
(3.39 secs , 825215584 bytes)

>>> length (filter checkSet allHandLists)
102
2.60 seconds
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7 Benchmarks

We now provide two different benchmarks for SMCDEL. All measurements were done under 64-bit
Debian GNU/Linux 8.0 with kernel 3.16.0-4 running on an Intel Core i3-2120 3.30GHz processor and
4GB of memory. Code was compiled with GHC 7.8.3 and g++ 4.9.2.

7.1 Muddy Children

In this section we compare the performance of different model checking approaches to the muddy
children example from Section 6.4.

• SMCDEL with different BDD packages: CacBDD, CUDD, ROBBed and NooBdd.

• DEMO-S5, a version of the epistemic model checker DEMO optimized for S5 [Eij07, Eij14].

• MCTRIANGLE, an ad-hoc implementation of [GS11], see Appendix 1 on page 43.

module Main (main) where
import Control.Monad
import Data.List
import Data.Time (getCurrentTime , NominalDiffTime , diffUTCTime)
import System.Environment (getArgs)
import System.IO (stdout , hSetBuffering , BufferMode(NoBuffering))
import DELLANG
import EXAMPLES
import qualified DEMO_S5
import qualified KNSCAC
import qualified KNSCUDD
import qualified KNSROB
import qualified KNSNOO
import qualified MCTRIANGLE

This benchmark compares how long it takes to answer the following question: "For n children, when
m of them are muddy, how many announcements of »Nobody knows their own state.« are needed to let
at least one child know their own state?". For this purpose we recursively define the formula to be
checked and a general loop function which uses a given model checker to find the answer.

checkForm :: Int -> Int -> Form
checkForm n 0 = nobodyknows n
checkForm n k = PubAnnounce (nobodyknows n) (checkForm n (k-1))

findNumberWith :: (Int -> Int -> a, a -> Form -> Bool) -> Int -> Int -> Int
findNumberWith (start ,evalfunction) n m = loop 0 where

loop count = if evalfunction (start n m) (PubAnnounce (father n) (checkForm n count))
then loop (count +1)
else count

mudPs :: Int -> [Prp]
mudPs n = [P 1 .. P n]

We now instantiate this function with the evalViaBdd function from our four different versions of
SMCDEL, linked to the different BDD packages.

findNumberCacBdd :: Int -> Int -> Int
findNumberCacBdd = findNumberWith (cacMudScnInit ,KNSCAC.evalViaBdd) where

cacMudScnInit n m = ( KNSCAC.KnS (mudPs n) (KNSCAC.boolBddOf Top) [ (i,delete (P i) (
mudPs n)) | i <- [1..n] ], [P 1 .. P m] )

findNumberCUDD :: Int -> Int -> Int
findNumberCUDD = findNumberWith (cuddMudScnInit ,KNSCUDD.evalViaBdd) where

cuddMudScnInit n m = ( KNSCUDD.KnS (mudPs n) (KNSCUDD.boolBddOf Top) [ (i,delete (P i) (
mudPs n)) | i <- [1..n] ], [P 1 .. P m] )

findNumberRobBdd :: Int -> Int -> Int
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findNumberRobBdd = findNumberWith (robMudScnInit ,KNSROB.evalViaBdd) where
robMudScnInit n m = ( KNSROB.KnS (mudPs n) (KNSROB.boolBddOf Top) [ (i,delete (P i) (

mudPs n)) | i <- [1..n] ], [P 1 .. P m] )

findNumberNooBdd :: Int -> Int -> Int
findNumberNooBdd = findNumberWith (nooMudScnInit ,KNSNOO.evalViaBdd) where

nooMudScnInit n m = ( KNSNOO.KnS (mudPs n) (KNSNOO.boolBddOf Top) [ (i,delete (P i) (
mudPs n)) | i <- [1..n] ], [P 1 .. P m] )

However, for an explicit state model checker like DEMO-S5 we can not use the same loop function
because we want to hand on the current model to the next step instead of computing it again and again.

mudDemoKrpInit :: Int -> Int -> DEMO_S5.EpistM [Bool]
mudDemoKrpInit n m = DEMO_S5.Mo states agents [] rels points where

states = DEMO_S5.bTables n
agents = map DEMO_S5.Ag [1..n]
rels = [( DEMO_S5.Ag i, [[tab1 ++[ True ]++tab2 ,tab1 ++[ False ]++ tab2] |

tab1 <- DEMO_S5.bTables (i-1),
tab2 <- DEMO_S5.bTables (n-i) ]) | i <- [1..n] ]

points = [replicate (n-m) False ++ replicate m True]

findNumberDemo :: Int -> Int -> Int
findNumberDemo n m = findNumberDemoLoop n m 0 start where

start = DEMO_S5.upd_pa (mudDemoKrpInit n m) (DEMO_S5.fatherN n)

findNumberDemoLoop :: Int -> Int -> Int -> DEMO_S5.EpistM [Bool] -> Int
findNumberDemoLoop n m count curMod =

if DEMO_S5.isTrue curMod (DEMO_S5.dont n)
then findNumberDemoLoop n m (count +1) (DEMO_S5.upd_pa curMod (DEMO_S5.dont n))
else count

Also the number triangle approach to the Muddy Children puzzle has to be treated separately. See
[GS11] and Appendix 1 on page 43 for the details. Here the formula nobodyknows does not depend on
the number of agents and therefore the loop function does not have to pass on any variables.

findNumberTriangle :: Int -> Int -> Int
findNumberTriangle n m = findNumberTriangleLoop 0 start where

start = MCTRIANGLE.update (MCTRIANGLE.mcModel (n-m,m)) (MCTRIANGLE.Qf MCTRIANGLE.some)

findNumberTriangleLoop :: Int -> MCTRIANGLE.McModel -> Int
findNumberTriangleLoop count curMod =

if MCTRIANGLE.eval curMod MCTRIANGLE.nobodyknows
then findNumberTriangleLoop (count +1) (MCTRIANGLE.update curMod MCTRIANGLE.nobodyknows)
else count

The following functions loop over all the solution methods we defined and generate a table of timing
results. The resulting program takes a maximum runtime as a parameter. If a solution method takes
longer than this limit then it will not be used for the following instances of the problem with a higher
number of agents.

timeWith :: Int -> Int -> (Int -> Int -> Int) -> IO NominalDiffTime
timeWith n m function = do

start <- getCurrentTime
if function n m == (m - 1)

then do end <- getCurrentTime
return (end ‘diffUTCTime ‘ start)

else error "Wrong result."

mainLoop :: [(Bool , Int -> Int -> Int)] -> [Int] -> Int -> IO ()
mainLoop _ [] _ = putStrLn ""
mainLoop fs (n:ns) limit = do

putStr $ show n ++ "\t"
results <- mapM (\(bit ,f) ->

if bit then do
result <- timeWith n n f
putStr $ init (show result) ++ replicate (9 - length (show result)) ’0’ ++ "\t"
return result

else do
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putStr "nan \t"
return 0

) fs
putStrLn ""
let newfs = map (\((bit ,f),t) -> (bit && (t<= fromIntegral limit), f)) (zip fs results)
when (any fst newfs) $ mainLoop newfs ns limit

main :: IO ()
main = do

hSetBuffering stdout NoBuffering
putStrLn $ "Initializing CacBDD: 40==" ++ show (findNumberCacBdd 41 41)
putStrLn $ "Initializing CUDD: 40==" ++ show (findNumberCUDD 41 41)
putStrLn $ "n\t" ++ concatMap (++ "\t") ["TRIANGLE","KNSCAC ","KNSCUDD "]-- "KNSROB ","

KNSNOO ","DEMO -S5 "]
let allfs = [findNumberTriangle , findNumberCacBdd , findNumberCUDD]-- findNumberRobBdd ,

findNumberNooBdd , findNumberDemo]
args <- getArgs
case args of

[aInteger] | [(n,_)] <- reads aInteger ->
mainLoop (zip (repeat True) allfs) ([3..40]++[50 ,60 ,70 ,80 ,90 ,100]) n

_ -> error "Please give a maximum runtime as an argument."
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Figure 5: Benchmark Results on a logarithmic scale.

As expected we can see in Figure 5 that SMCDEL is faster than the explicit model checker DEMO.
We can also see that the choice of the BDD package affects the performance. With the naive package
NooBdd (which does not not find and identify isomorphic subtrees etc.) our model checker is almost as
slow as DEMO-S5. Somewhat better but still becoming slow above 40 agents is the ROBBeD package
written in pure Haskell. The two highly developed packages with elaborate memory management give
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us the best performance for SMCDEL, with a slightly better performance of CacBDD compared to
CUDD. It is important to note that this difference and the performance in general also depends on
the binding libraries we use. Especially concerning memory management and garbage collection there
should be room for improvement.
Finally, the number triangle approach from [GS11] is way faster than all others, especially for large

numbers of agents. This is not surprising, though: Both the model and the formula which are checked
here are smaller and the semantics was specifically adapted to the muddy children example. Concretely,
the size of the model is linear in the number of agents and the length of the formula is constant. It will
be subject to future work if the idea underlying this approach – the identification of agents in the same
informational state – can be generalized to other protocols or ideally the full DEL language.

7.2 Dining Cryptographers

Muddy Children has also been used to benchmark MCMAS [LQR15] but the formula checked there
concerns the correctness of behavior and not how many rounds are needed. Moreover, the interpreted
system semantics of model checkers like MCMAS are very different from DEL. Still, connections between
DEL and temporal logics have been studied and translations are available [BGHP09, DHR13].
A protocol which fits nicely into both frameworks are the Dining Cryptographers [Cha88] which we

implemented in Section 6.6. We will now use it to measure the performance of SMCDEL in a way that
is more similar to [LQR15].

module Main (main) where
import Control.Monad (when)
import Data.Time (diffUTCTime ,getCurrentTime ,NominalDiffTime)
import System.Environment (getArgs)
import System.IO (hSetBuffering ,BufferMode(NoBuffering),stdout)
import DELLANG
import KNSCAC
import EXAMPLES (genDcKnsInit ,genDcReveal)

The following statement was also checked with MCMAS in [LQR15].

“If cryptographer 1 did not pay the bill, then after the announcements are made, he knows
that no cryptographers paid, or that someone paid, but in this case he does not know who
did.”

Following ideas and conventions from [BGHP09, DHR13] we can formalize it in DEL as

¬p1 → [!ψ]

(
K1(

n∧
i=1

¬pi) ∨

(
K1(

n∨
i=2

pi) ∧
n∧
i=2

(¬K1pi)

))

where pi says that agent i paid and !ψ is the announcement whether the number of agents which
announced a 1 is odd, i.e. ψ :=

⊕
i

⊕
{p | Agent i can observe p}.

genDcCheckForm :: Int -> Form
genDcCheckForm n = Impl (Neg (PrpF $ P 1)) $

PubAnnounceW (Xor [genDcReveal n i | i<-[1..n] ]) $
Disj [ K 1 (Conj [Neg $ PrpF $ P k | k <- [1..n] ])

, Conj [ K 1 (Disj [ PrpF $ P k | k <- [2..n] ])
, Conj [ Neg $ K 1 (PrpF $ P k) | k <- [2..n] ] ] ]

genDcValid :: Int -> Bool
genDcValid n = validViaBdd (genDcKnsInit n) (genDcCheckForm n)

dcTimeThis :: Int -> IO NominalDiffTime
dcTimeThis n = do

start <- getCurrentTime
let mykns@(KnS props _ _) = genDcKnsInit n
putStr $ show (length props) ++ "\t"
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putStr $ show (length $ show mykns) ++ "\t"
putStr $ show (length $ show $ genDcCheckForm n) ++ "\t"
if genDcValid n then do

end <- getCurrentTime
return (end ‘diffUTCTime ‘ start)

else
error "Wrong result."

mainLoop :: [Int] -> Int -> IO ()
mainLoop [] _ = putStrLn ""
mainLoop (n:ns) limit = do

putStr $ show n ++ "\t"
result <- dcTimeThis n
print result
when (result <= fromIntegral limit) $ mainLoop ns limit

main :: IO ()
main = do

args <- getArgs
hSetBuffering stdout NoBuffering
case args of

[aInteger] | [(n,_)] <- reads aInteger -> do
putStrLn $ "n" ++ "\tn(prps)"++ "\tsz(KNS)"++ "\tsz(frm)" ++ "\ttime"
mainLoop (3:(5 : map (10*) [1..])) n

_ -> error "Please give a maximum runtime as an argument."

The program outputs the following table which shows (i) the number of cryptographers, (ii) the
number of propositions used, (iii) the length of the knowledge structure, (iv) the length of the formula
and (v) the time in seconds needed by SMCDEL to check it.

n n(prps) sz(KNS) sz(frm) time
3 7 211 331 0.142654s
5 16 473 633 0.000622s
10 56 1634 1825 0.001898s
20 211 6457 6247 0.009982s
30 466 14512 13357 0.031843s
40 821 25667 23067 0.079768s
50 1276 40750 35929 0.179073s
60 1831 59770 51949 0.334907s
70 2486 82190 70769 0.571617s
80 3241 108010 92389 0.891703s
90 4096 137230 116809 1.3617s
100 5051 169951 144031 1.839588s
110 6106 207036 174071 2.605375s
120 7261 247621 206911 3.328267s
130 8516 291706 242551 4.266749s
140 9871 339291 280991 5.65589s
150 11326 394354 324883 6.653351s
160 12881 453604 372033 8.139113s
170 14536 516654 422183 10.38303s

These results are satisfactory: While MCMAS already needs more than 10 seconds to check the
interpreted system for 50 or more dining cryptographers (see [LQR15, Table 4]), SMCDEL can deal
with the case of up to 160 agents in less time.
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8 Future Work

We are planning to extend SMCDEL and continue our research in the following ways.

Non-S5 Models

Currently SMCDEL can only work on models where the epistemic accessibility relation is an equivalence
relation. This is because only those can be described by sets of observational variables. And in fact not
even every S5 relation on distinctly valuated worlds can be modeled with observational variables – this
is why our translation procedure in Definition 16 has to use additional atomic propositions.
To overcome this limitation, we will generalize the definition of knowledge structures. Using well-known

methods from temporal model checking, arbitrary relations can also be represented as BDDs. Remember
that in a knowledge structure we can identify states with boolean assignments and those are just sets of
propositions. Hence a relation on states with unique valuations can be seen as a relation between sets
of propositions. We can therefore represent it with the BDD of a characteristic function on a double
vocabulary, as described in [CGP99, Section 5.2]. Intuitively, we construct (the BDD of) a formula
which is true exactly for the pairs of boolean assignments that are connected by the relation.

Increase Usability

Concerning the usability of SMCDEL, two desiderata come to mind. First, our language syntax is
globally fixed and contains only one enumerated set of atomic propositions. In contrast, the model
checker DEMO(-S5) allows the user to parameterize the valuation function and the language according
to her needs. For example, the muddy children can be represented with worlds of the type [Bool], a
list indicating their status. To allow symbolic model checking on Kripke models specified in this way
we have to map user specified propositions to variables in the BDD package. In parallel, formulas using
the general syntax should be translated to BDDs.
Second, our model checker currently is only usable as a Haskell module. But ideally, the user should

not have to know Haskell and only basic knowledge about DEL should be required to use it. This can
be achieved with a stand-alone executable of the model checker that reads a simple text-file containing
the description of a model and one or more formulas to be checked. As a first step towards this goal we
will write a parser for human-readable DEL formulas, similar to one already used in the online model
checker for Epistemic Crypto Logic (https://is.gd/eclonline).

SAT Solving

Instead of representing boolean functions with BDDs also SAT solvers are being used in model checking
for temporal logics and provide an alternative approach for system verification. In our case we could
do the following: Instead of translating DEL formulas to boolean formulas represented as BDDs we
translate them to conjunctive or disjunctive normal forms of boolean formulas. These – probably very
lengthy – boolean formulas can then be fed into a SAT solver, or in case we need to know whether they
are tautologies, their negation.

Abstraction and Modal Logic

Epistemic and temporal logics have been connected before and also concrete translation methods have
been proposed, see [BGHP09, DHR13]. Also similar to our observational variables are the “mental
programs” recently presented in [CS15]. These and other ideas could also be implemented and their
performance and applicability be compared to our approach.
Another direction would be to lift the symbolic representations of Kripke models for epistemic logics

to modal logic in general and explore whether this gives new insights or better complexity results. A
concrete example will be to enable symbolic methods for Epistemic Crypto Logic [EG15]. Our methods
could then also be used to analyze cryptographic protocols.
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Appendix 1: Installation Guidelines

Currently SMCDEL is supported to run on the Haskell Platform 2014.2 under Linux. The following
shell commands will install HasCacBDD (including CacBDD) and then SMCDEL.

git clone https :// github.com/m4lvin/HasCacBDD.git
cd HasCacBDD
make all

git clone https :// github.com/m4lvin/SMCDEL.git
cd SMCDEL
make

One can then run ghci EXAMPLES to explore the examples from Section 6:

*EXAMPLES > modelA
(KrM [0,1] [(0 ,[[0 ,1]]) ,(1 ,[[0] ,[1]])] [(0,[(P 0,True)]) ,(1,[(P 0,False)])],0)
*EXAMPLES > modelB
(KrM [0,1,2] [(0 ,[[0 ,1 ,2]]) ,(1 ,[[0] ,[1 ,2]])] [(0 ,[(P 0,True)]) ,(1,[(P 0,True)]) ,(2,[(P 0,

False)])],0)

To use SMCDEL with other BDD packages these have to be installed first. The following git repositories
include some patches and adjusted Makefiles for the other three BDD packages.

• https://github.com/m4lvin/hBDD

• https://github.com/m4lvin/robbed

• https://github.com/m4lvin/NooBDD

The modules KNSCUDD, KNSROB and KNSNOO can then be built with make otherbdds in the
SMCDEL folder. More information to reproduce the benchmarks and other experimental modules can
be found in the Makefile.
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Appendix 2: Helper Functions

module HELP (alleq ,apply ,powerset ,restrict ,rtc ,Erel ,bl ,fusion) where
import Data.List (nub ,union ,foldl ’,(\\))

type Rel a b = [(a,b)]

type Erel a = [[a]]

alleq :: Eq a => (a -> Bool) -> [a] -> Bool
alleq _ [] = True
alleq f (x:xs) = all (f x ==) (map f xs)

apply :: Show a => Show b => Eq a => Rel a b -> a -> b
apply rel left = case lookup left rel of

Nothing -> error ("apply: Relation " ++ show rel ++ " not defined at " ++ show left)
(Just this) -> this

powerset :: [a] -> [[a]]
powerset [] = [[]]
powerset (x:xs) = map (x:) pxs ++ pxs where pxs = powerset xs

concatRel :: Eq a => Rel a a -> Rel a a -> Rel a a
concatRel r s = nub [ (x,z) | (x,y) <- r, (w,z) <- s, y == w ]

lfp :: Eq a => (a -> a) -> a -> a
lfp f x | x == f x = x

| otherwise = lfp f (f x)

dom :: Eq a => Rel a a -> [a]
dom r = nub (foldr (\ (x,y) -> ([x,y]++)) [] r)

restrict :: Ord a => [a] -> Erel a -> Erel a
restrict domain = nub . filter (/= []) . map (filter (‘elem ‘ domain))

rtc :: Eq a => Rel a a -> Rel a a
rtc r = lfp (\ s -> s ‘union ‘ concatRel r s) [(x,x) | x <- dom r ]

merge :: Ord a => [a] -> [a] -> [a]
merge xs [] = xs
merge [] ys = ys
merge (x:xs) (y:ys) = case compare x y of

EQ -> x : merge xs ys
LT -> x : merge xs (y:ys)
GT -> y : merge (x:xs) ys

mergeL :: Ord a => [[a]] -> [a]
mergeL = foldl ’ merge []

overlap :: Ord a => [a] -> [a] -> Bool
overlap [] _ = False
overlap _ [] = False
overlap (x:xs) (y:ys) = case compare x y of

EQ -> True
LT -> overlap xs (y:ys)
GT -> overlap (x:xs) ys

bl :: Eq a => Erel a -> a -> [a]
bl r x = head (filter (elem x) r)

fusion :: Ord a => [[a]] -> Erel a
fusion [] = []
fusion (b:bs) = let

cs = filter (overlap b) bs
xs = mergeL (b:cs)
ds = filter (overlap xs) bs

in
if cs == ds

then xs : fusion (bs \\ cs)
else fusion (xs : bs)
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Appendix 3: Muddy Children on the Number Triangle

This module implements [GS11]. The main idea is to not distinguish children who are in the same state
which also means that their observations are the same. The number triangle can then be used to solve
the Muddy Children puzzle on a Kripke frame with less worlds than needed in the classical analysis,
namely 2n+ 1 instead of 2n for n children.

module MCTRIANGLE where

We start with two type definitions: States are pairs of integers indicating how many children are
(clean,muddy). A muddy children model consists of three things: A list of observational states, a list of
factual states and a current state.

type State = (Int ,Int)
data McModel = McM [State] [State] State deriving Show

Next are functions to create a muddy children model, to get the available successors of a state in a
model, to get the observational state of an agent and to get all states deemed possible by an agent.

mcModel :: State -> McModel
mcModel cur@(c,m) = McM ostates fstates cur where

total = c + m
ostates = [ ((total -1)-m’,m’) | m’<-[0..(total -1)] ] -- observational states
fstates = [ (total -m’, m’) | m’<-[0.. total ] ] -- factual states

posFrom :: McModel -> State -> [State]
posFrom (McM _ fstates _) (oc,om) = filter (‘elem ‘ fstates) [ (oc+1,om), (oc,om+1) ]

obsFor :: McModel -> Bool -> State
obsFor (McM _ _ (curc ,curm)) False = (curc -1,curm)
obsFor (McM _ _ (curc ,curm)) True = (curc ,curm -1)

posFor :: McModel -> Bool -> [State]
posFor m muddy = posFrom m $ obsFor m muddy

Note that instead of naming or enumerating agents we only distinguish two kinds, the muddy and
non-muddy ones, represented by Haskells constants True and False which allow pattern matching.
The following is a type for quantifiers on the number triangle, instantiated by some.

type Quantifier = State -> Bool

some :: Quantifier
some (_,b) = b > 0

The paper does not give a formal language definition, so here is our suggestion:

ϕ ::= ¬ϕ |
∧

Φ | Q | Kb | Kb

where Φ ranges over finite sets of formulas, b over {0, 1} and Q over generalized quantifiers.

data McFormula = Neg McFormula -- negations
| Conj [McFormula] -- conjunctions
| Qf Quantifier -- quantifiers
| KnowSelf Bool -- all b agents DO know their status
| NotKnowSelf Bool -- all b agents DON ’T know their status

Note that when there are no agents of kind b, the formulas KnowSelf b and NotKnowSelf b are both
true. Hence Neg (KnowSelf b) and NotKnowSelf b are not the same!
Below are the formulas for “Nobody knows their own state.” and “Everybody knows their own state.”

Note that in contrast to the standard DEL language these formulas are independent of how many
children there are. This is due to our identification of agents with the same state and observations.
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nobodyknows ,everyoneKnows :: McFormula
nobodyknows = Conj [ NotKnowSelf False , NotKnowSelf True ]
everyoneKnows = Conj [ KnowSelf False , KnowSelf True ]

The semantics for our minimal language are implemented as follows.

eval :: McModel -> McFormula -> Bool
eval m (Neg f) = not $ eval m f
eval m (Conj fs) = all (eval m) fs
eval (McM _ _ s) (Qf q) = q s
eval m@(McM _ _ (_,curm)) (KnowSelf True ) = curm ==0 || length (posFor m True ) == 1
eval m@(McM _ _ (curc ,_)) (KnowSelf False) = curc ==0 || length (posFor m False) == 1
eval m@(McM _ _ (_,curm)) (NotKnowSelf True ) = curm ==0 || length (posFor m True ) == 2
eval m@(McM _ _ (curc ,_)) (NotKnowSelf False) = curc ==0 || length (posFor m False) == 2

The four nullary knowledge operators can be thought of as “All agents who are (not) muddy do (not)
know their own state.” Hence they are vacuously true whenever there are no such agents. If there are,
the agents do know their state iff they consider only one possibility (i.e. their observational state has
only one successor).
Finally, we need a function to update models with a formula:

update :: McModel -> McFormula -> McModel
update (McM ostates fstates cur) f =

McM ostates ’ fstates ’ cur where
fstates ’ = filter (\s -> eval (McM ostates fstates s) f) fstates
ostates ’ = filter (not . null . posFrom (McM [] fstates ’ cur)) ostates

The following function shows the update steps of the puzzle, given an actual state:

step :: State -> Int -> McModel
step s 0 = update (mcModel s) (Qf some)
step s n = update (step s (n-1)) nobodyknows

showme :: State -> IO ()
showme s@(_,m) = mapM_ (\n -> putStrLn $ show n ++ ": " ++ show (step s n)) [0..(m-1)]

*MCTRIANGLE > showme (1,2)
m0: McM [(2 ,0) ,(1,1) ,(0,2)] [(2,1) ,(1,2) ,(0,3)] (1,2)
m1: McM [(1 ,1) ,(0,2)] [(1,2) ,(0,3)] (1,2)
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