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1 Description of the topic and background

This is a proposal for a thesis in the interface of descriptive set theory and computable
analysis, in a continuation of my MoL thesis [9]. There, I was interested in studying
connections between game characterizations of classes of functions in descriptive set
theory and the theory of Weihrauch reducibility, in particular searching for counterparts
in computable analysis to the game characterizations obtained by Brian Semmes in his
PhD thesis [25] at the ILLC, also under the supervision of Benedikt Lowe.

Function classes in descriptive set theory

We are interested in game characterizations of classes of functions in the Baire space w®,
following a well-established tradition in the area dating back to the work of Wadge [27]
and with developments by Van Wesep, Andretta, Motto Ros, and Semmes, among others
(see, e.g., [9] and the references therein).

Characterizing a function class by a game can help solve problems for that class which
could otherwise be harder. Take, for example, the situation with the famous Jayne-Rogers
theorem:

The Jayne-Rogers Theorem ([12]). If f : w* — w®, then the preimages of X3 sets
under f are XY sets if, and only if, there is a partition of w® into countably many closed
sets, such that f restricted to each part is continuous.

One of the most challenging problems in the area is to prove generalizations of the
Jayne-Rogers theorem — see, e.g., [18, 23, 26] and references therein for an up-to-date
overview of the situation.

For reasons which will become clear shortly, let us refer to the class of functions
defined by the partition property mentioned in the Jayne-Rogers theorem by A;Q. This
class has been characterized by a game, as follows. The backtrack game for a function f
is played between two players, I and II, in w rounds. At each round, I plays a natural
number, and IT responds by either playing a natural number, passing, or erasing all of
her past moves (backtracking), as long as in the long run she (1) plays natural numbers
infinitely often, and (2) only decides to backtrack a finite number of times. Therefore, in



the long run I and IT determine elements x and y of w”, respectively, and II wins that
run of the game exactly when f(z) =y.

Andretta proved in [1] that this game characterizes Af, in the sense that f € Af,
iff IT has a winning strategy in the backtrack game for f. Of course, by the Jayne-
Rogers theorem this game then characterizes the class of functions preserving 39 under
preimages.

In his PhD thesis [25] at the ILLC, Semmes was able to give a new proof of the
Jayne-Rogers theorem by closely analyzing the backtrack game. Furthermore, he was
able to generalize the Jayne-Rogers theorem to two higher levels of a certain hierarchy
of classes of functions (to be defined below) by using new games he defined.

This hierarchy of classes of functions is defined as follows. Given countable ordinals
0 < a < 3, we denote by A_ , the class of functions f : w* — w® such that the preimage
of any XY set under f is a E% set. Thus A, , is the class of continuous functions, A, .,
is the a!! Baire class, and A, , is the class of functions characterized in the Jayne-Rogers
theorem.

We can also define generalized classes of functions defined by partition properties
as follows. First, given a class I' of subsets of w* and a class A of functions in w*, we
say that a function f : w* — w¥ is piecewise A on a I' partition when there exists a
partition of w* into countably many sets which are in I', and such that f restricted to
each part is in A. Now, given natural numbers 0 < n < m, we denote by A t1mp1 the
class of functions which are piecewise Baire class m — n on a IIO, partition.

We can then state one version of the conjectured generalization of the Jayne-Rogers
theorem, usually attributed to Andretta [2], as follows.

Conjecture 1 (Jayne-Rogers for finite levels). A, ., ., =A%, ., holds for all natural
numbers n < m.

The results mentioned above can now be stated in a precise way.

Theorem 2 (Jayne-Rogers, Semmes). 1. A,, = Aj

72;
_ P .

2. A, =A%,
_ P

3. Ayy = A5,

To the best of our knowledge, the remaining cases of Conjecture 1 remain open.
However, we already know that a direct generalization of Conjecture 1 cannot hold in
general for infinite levels — there exist, for example, functions of Baire class 1 which are
not piecewise Baire class 0 at all (i.e., with partitions of any complexity); since Baire
class 1 functions must pull back X2 to 3% under preimages, it cannot be the case that
A, , is the class of functions which are piecewise Baire class 0 on some partition. See,
e.g., [7, 18, 23] for several precise counterexamples and deeper discussion.

A better conjecture in the general case is given by Kihara [14] as follows. Given

countable ordinals a < 3, we denote by 8 «— « the least ordinal v such that

Y+14+a> 4.



Thus m < n =m — n for finite n < m, but e.g. w ~~ w = w. We now define A7, ,,, to

be the class of functions f : w* — w* which are piecewise Baire class § — « on a H%
partition.

Conjecture 3 (Generalized Jayne-Rogers). A =A

ordinals a < .

holds for all countable

P
a+1,8+1 a+1,8+1

Although some positive partial results are given by Kihara in [14] using tools from
computable analysis, to the best of our knowledge Conjecture 3 remains open for all
cases not included in Theorem 2.

Computable analysis and the Weihrauch reducibility relation

We will only give an outline of some aspects of this area here; for a more thorough
introduction we refer the reader to [20, 28].

Computable analysis is an area of mathematics concerned with the computational
content of theorems from mathematical analysis. These mathematical theorems are
treated as the objects of the theory, and there is a notion of reducibility — the Weihrauch
reducibility — which allows us to classify these theorems in terms of their computational
content, in a similar way to what is done with the reducibility relations usually studied
in computability theory. We restrict ourselves to theorems of V3 form, such as the
intermediate value theorem

“For all continuous f : [0,1] — R such that f(0) - f(1) <0,
there exists « € (0, 1) satisfying f(z) = 0",

which are then seen as relations between the spaces over which the universal and ex-
istential quantifiers range, respectively. The goal is to precisely quantify how much
computational power one needs in order to transform (some precise description of) an
element in the domain of the relation into (some precise description of) an element in
the codomain related to it. Note that in order to properly understand the concepts and
results in computable analysis, it is helpful to think of a relation as a non-deterministic
function, so that when computing a relation as described above, the task is merely to
compute some element related to the given input, and it is irrelevant which such element
is computed.

The Weihrauch reducibility relation encapsulates the intuitive idea that a relation R
is reducible to a relation .S when being able to compute S already implies being able to
compute R. Since the objects of study in analysis are mostly infinitary in nature, this
necessarily involves a more general notion of computation than the usual one. However,
since we are mostly interested in a certain topological variant of this theory, where notions
such as computable functions, recursively enumerable sets, etc., are replaced by their
respective topological counterparts of continuous functions, open sets, etc., we will not
go into any details about this general notion of computation here. It remains true that
we will need tools that allow us to talk about topological aspects of certain generalized
spaces of objects, in particular ones that don’t carry a natural topology with them. We



do this by transferring notions from the well-studied Baire space w® to these spaces via
coding, as follows.

A represented space is a pair X = (X,dx) where dx : w* — X is surjective and
may be partial. If dx(p) = =z, then we say that p is a dx-name of x. We will always
assume that w® is represented by the identity function id, and that w is represented by
the function d,, : p — p(0).

A (partial) function f : w¥ — w“ is a realizer for a relation R C X x Y, denoted
fF R, when dom(f) contains all the d x-names of elements in dom(R), and

f(p) is a dy-name of an element of R(x)
whenever
p is a dx-name of x € dom R,
where we use the usual notation R(z) := {y € Y; zRy}. Thus f - R when f is a
deterministic simulation of R which works on the codes of the elements of the spaces X
and Y.

Finally, we say R C X x Y is Weihrauch reducible to S C U x V, denoted by R <w S,

when there exist continuous (partial) functions IN, OUT : w* — w® such that

ouT(id,goIN) F R

whenever g - S.

Therefore, intuitively we have R <y S when the problem of computing R can be
transformed into the problem of computing .S by just continuously packing and unpacking
the information contained in the input and in the output of the computation of S on the
re-packed input, respectively. For technical reasons we also allow the unpacking function
access to the original input; this is done by using a suitable pairing function for w® in
order to pass two arguments to OUT instead of just one.

Our main interest with Weihrauch reducibility is that it provides us with another
way of characterizing classes of functions in w*“ by looking for complete relations for that
class. More precisely, given a class C of functions in w* we can try to find a relation R
between represented spaces X and Y with the property that, for any f : w“ — w", we
have

For the cases that interest us, these relations have generically been referred to as
choice principles in the literature. Two examples of choice principles characterizing classes
of functions are the following.

Theorem 4 (Brattka [4]). For each k € w, the principle of k-countable choice Cj, :
wY — w¥ given by

0, if Ing_1Vng_o---Qnyg. (:L”)n('_nk, M1y -« - ,no—') #0

1, otherwise,

Cr(z)(n) = {

where the 3 and ¥ quantifiers alternate (thus Q is either 3 or ¥ depending on the parity
of k), is Weihrauch-complete for the Baire class k functions.



Here - is some suitable (k + 1)-ary tupling function on the natural numbers.

Theorem 5 (Brattka, de Brecht, Pauly [5]). The principle of discrete choice C,, C w* xw
given by
Cu(z) = w N ran(z)

is Weihrauch-complete for AJ ,.

Let us close this section with a concrete example of how finding a complete choice
principle for a class may aid in characterizing that class by a game, by considering the
backtrack game.

First, it is easy to use the backtrack game to define a realizer g for C,: at each
round, IT just plays the least natural number that hasn’t been played by I, backtracking
whenever this changes. Assuming x € dom(C,,), this strategy will only tell IT to backtrack
finitely many times, so this is a valid strategy for IT in the backtrack game. Therefore,
it is easy to see that, if f € Af,, then by Theorem 5 we have f <y C,, which in turn
easily implies f <w g¢. But this implies the existence of a winning strategy for II in the
backtrack game for f — II just needs to simulate a run of the backtrack game for g
where I plays 1N (z) instead of x and II follows the strategy given above,, and use OUT
to translate the resulting moves back to the game for f, where IN, OUT are the reducing
functions witnessing f <w g.

Conversely, if we have a winning strategy for II in the backtrack game for some
function f, then we can easily define a continuous function IN with the property that
n ¢ ran(IN(x)) if, and only if, IT does not backtrack after round n when she follows
her winning strategy and I plays z, i.e., iff at and after round n, none of II’s moves will
be changed again. Then applying any realizer of C, to IN(z) will give us one of these
rounds, and we can now easily define OUT to simulate the run of the game, wait until
the indicated round, and then simply copy the output. Since the strategy we started with
was winning for II, we get

OUT(z,g 0 IN(x)) = f(z),

for any g - C,, i.e., f <w Cy,. Finally, by Theorem 5 this implies f € Af, as desired.

In my master’s thesis at the ILLC [9], I studied and uncovered some connections
between games for functions in descriptive set theory and Weihrauch reducibility, in the
style of the one just described, including connections going in the converse direction, i.e.,
how to obtain some complete choice principles for a class given a game for the class with
certain properties.

2 Work done so far

In these first 9 months of my PhD at the ILLC, aside from the usual obligations of a
PhD candidate at this institute such as being a teaching assistant to Benedikt Lowe in
Azxiomatic Set Theory, organizing the Amsterdam-Hamburg Set Theory Encounter on
April 24*" and participating in the presentations course, my focus has not only been



on studying the literature in depth (as is to be expected) and coming up with my first
results (detailed below), but also strongly on forming a good network of contacts with
researchers in the relevant areas, as well as with fellow PhD candidates at this and other
institutions.

With this goal in mind, I have been to the following conferences during this time:
INFTY Final conference (March), in Bonn, where I met with Luca Motto Ros and
established contact with good prospects for future collaboration; PhDs in Logic (April),
in Utrecht, which is a great opportunity to get to know other PhD candidates in logic,
especially in the Netherlands and neighboring countries, and where I gave a talk about the
topic of my research; Young Set Theory Workshop (May), in Bedlewo, which is an annual
event designed to foster contact between young researchers in set theory and where I met
Kevin Fournier and Yann Pequignot, two students of Alain Louveau who have done some
research in related areas and who were able to roughly sketch to me some of Louveau’s
unpublished work relating to Brian Semmes’s games mentioned in the previous section;
Logic Colloguium (July), in Vienna, where I met with Arno Pauly and established the
first contacts of what eventually turned into a research visit to Cambridge (August); and
Colloguium Logicum (September), where I again met with Arno Pauly and also with
Vasco Brattka, and gave a talk about my first technical contributions — generalizations
of Theorems 4 and 5 to higher Baire classes and partition classes, respectively (Theorems
7, 8, and 10 below).

Before stating my results in a precise way, let us recall the following well-known
notion. We say that a set X C w® is Wadge-complete for a class I' of subsets of w* when

I'={Y Cw¥;Y is the preimage of X under some continuous f : w* — w*}.

Theorem 6 (Wadge, see e.g. [13, Theorem 22.10]). For every a < wy there exist Wadge-
complete sets for 0 in fact, we have that a set is Wadge-complete for X0 if, and only
if, it is in X9 but not in TIY.

Given X C w¥, we define Fx : w* — w” and Rx C w* X w by

0
RX(CL“) = {n cw; (x)n QX}

Theorem 7 (N., around May). For any o < wy, if X is Wadge-complete for %, then
Fx is Weihrauch-complete for Baire class a.

In particular, since the set
Xk ={z e w”; Ing_1Yng_o---Qno. x("ng_1,...,n0") # 0} (1)
is Wadge-complete for 22 and Fx, = Cj, we get Theorem 4 as a corollary.

Theorem 8 (N., around June). For any a < w1, if X is Wadge-complete for £°, then
Ry is Weihrauch-complete for the functions which are piecewise continuous on a TI2
partition.



Corollary 9. If X is Wadge-complete for X0, then Rx is Weihrauch-complete for
AP

n+1l,n+1°

In particular, taking X; as defined in (1) above, we get that Ry, is Weihrauch-
complete for A;g, and since it is not hard to see that Ry, is Weirauch-equivalent to C,,,
we get Theorem 5 as a corollary.

Finally, in [6], Brattka and Pauly introduce a composition of relations — and prove
that it is indeed a well-defined notion — as follows. Given relations R and S between
represented spaces, let

Rx S :=max<,{R 0oS"; R <w Rand S’ <y S}.

Theorem 10 (N., August, restating an earlier result after comments by Pauly). For
any o, B < wi, if X is Wadge-complete for £° and Y is Wadge-complete for Z%, then
Fy x Rx is Weihrauch-complete for the functions which are piecewise Baire class 8 on a
I1° partition.

Corollary 11. For any a < 8 < wy, if X is Wadge-complete for 0 and Y is Wadge-
complete for Eg_a, then Fy xRy is Weihrauch-complete for A, ,.,.

More recently, having started by using the choice principles Rx as a guide in the
sense described at the end of Section 1, I have defined an operation assigning to each
game G and natural number n a game (G),, such that the following holds.

Theorem 12 (N., September and October). If G characterizes a class A of functions
in w®, then (G), characterizes the functions which are piecewise A on a IS partition.

Thus, applying this construction to the well-known Wadge game for continuous func-
tions and eraser game for Baire class 1 functions, as well as Semmes’s game for Baire
class 2 functions [25], we get games for all the classes of the form A, A, ., and
A, ..., respectively. The multitape and multitape eraser games of Semmes [24], which
characterize Af, and A, respectively — and thus also A, ; and A, , by Theorem 2 —
are particular cases of our construction.

3 Outline of future research and potential thesis

At this early stage, we envision a potential thesis divided into four chapters as detailed in
the sections below. We anticipate submitting the results obtained in each part of the thesis
to journals such as Annals of Pure and Applied Logic, Fundamenta Mathematicae, the
Journal of Symbolic Logic, and the Mathematical Logic Quarterly, among other leading
journals of mathematical logic.

Games for function classes and their applications

Although some other implicit, indirect, or reported but unpublished results exist [17, 15],
only seven classes of functions of interest to us have known characterizations by what



we consider ezplicit games (although at this moment we cannot make this distinction
in an objective way): the classes Amm for 1 < n < m < 3, and the class of all Borel
functions. Therefore, there is plenty of work to be done in devising games characterizing
the remaining A, , functions, as well as classes of functions beyond Borel — where in
particular questions of determinacy become relevant.

One promising idea is to use the complete choice principles Fx and Rx described
in Section 2 to guide the definition of these games, in the spirit of how we can see the
backtrack game as being inspired by C, as outlined at the end of Section 1.

Another approach to develop games which characterize new classes of functions is
to develop a theory of operations on games which may allow us to obtain new games
from old. Here the choice principles could also play a part; for example, one operation
(called parallelization) is known in computable analysis, with the property that the
parallelization of Ry is exactly Fx, at least in case X is Wadge-complete for some 30.
We are then interested in questions such as finding the game-theoretic counterpart of
this operation.

As we described in Section 2, both the ideas of using complete choice principles and
of defining operations on games have already started to bear fruit, but of course this is
only the tip of the iceberg, as it were, and much remains to be done and understood.

Then, with new games defined we can try to generalize the ideas employed by Semmes
in proving his two higher-level counterparts of the Jayne-Rogers theorem, and prove
further generalizations of this result.

Let us stress that some results in this area have been claimed by Louveau [15], building
on the work of Semmes, but that these results have never been published. Therefore, it
would be desirable to contact Louveau and his students in order to discover the current
state of the art of the subject.

Another good possibility for collaboration is Luca Motto Ros, in Torino, who has
many interesting results in this area and has expressed interest in working together in
our past meetings. This is an especially attractive prospect given the quality of the set
theory group in Torino, which contains in particular Alessandro Andretta who also has
done very relevant research in game-theoretic aspects of descriptive set theory.

Theory of choice principles

In order not only to apply choice principles and other tools and techniques from com-
putable analysis to problems in descriptive set theory, but also to possibly uncover
connections of computable analysis to other areas of mathematics, and finally for its
own sake, it is highly desirable to further develop and understand the theory behind the
choice principles. Some investigations in this direction have been done from the point of
view of algebra [6, 11] and of category theory [22], but there is a lot of work to be done
(see e.g. [21] for some open problems and directions of immediate research).

In particular, some of the applications of the choice principles C; and C, rely on
certain properties of these choice principles which we have not yet established for their
respective generalizations F x and Rx. During a recent research visit of mine to Arno Pauly
in Cambridge this study was initiated, with many promising early results and indications



of the directions of research in the immediate future. We are currently preparing an
application for a grant from the Royal Society in order to fund multiple research visits
between Amsterdam and Cambridge.

We would also like to mention the possibility of collaborating with Vasco Brattka, in
Munich, who has done much of the foundational work in the part of computable analysis
which interests us, and who was receptive to this idea in talks during the Colloquium
Logicum, in September.

Variations of Weihrauch reducibility

In descriptive set theory, considerable attention has been given to variants of Wadge
reducibility where one uses as reductions functions other than continuous ones (see,
e.g., [1, 3, 16]). However, this kind of investigation has not been done for Weihrauch
reducibility, although this is a very natural idea.

Another avenue for investigation along these lines is to restrict the functions used as
reductions not (only) by their complexity, but (also) by the complexity of their domains
(recall that in Weihrauch reducibility, the reductions IN and OUT are partial functions).
In many cases, when one Weihrauch-reduces some relation R to S, although the reducing
functions IN and OUT are continuous (w.r.t. the respective relative topologies of their
domains), their domains are of high complexity as subsets of w®. This allows a lot of
of the complexity of the reduction as a whole to be swept under the rug, as it were.
Therefore, it is to be expected that one could get finer control over these reductions by
restricting their domains to some prescribed complexity.

Generalized settings

Although the idea of studying the descriptive set theory of the spaces k" and 2% for
cardinals k > w is not a recent one, it was only recently that this area started to
receive an in-depth treatment (see [10] for an overview of the area and its history and
applications).

However, many aspects of the theory of these spaces are not yet well-known. In
particular, our main two areas of study, namely game characterizations of function classes
and computable analysis, have not yet been investigated in the generalized case. We
remark that doing computable analysis on these spaces would have to start with finding
the appropriate model of transfinite computation among the existing alternatives such
as infinite time Turing machines, ordinal Turing machines and infinite time register
machines.

It is also worth mentioning that the 2014 edition of the Amsterdam Workshop on Set
Theory, organized among others by me and my supervisor, will focus on the generalized
Baire space. The aim is to organize what is currently known and compile a paper
consisting of the open problems in the area.

Another generalized setting in which one can develop (some) descriptive set theory is in
quasi-Polish spaces (as opposed to Polish spaces, of which w® is the main representative).



These are particularly interesting for computer science because they include some non-
Polish spaces such as w-continuous domains. We refer the reader to [8] for an introduction
to the theory of these spaces.

Since this area of research is also fairly recent, many aspects of the theory have still
not been investigated, although some interesting results are known — e.g., it is known
that the degree structure of subsets of a quasi-Polish space under Wadge reducibility can
be much more poorly behaved than in the Polish case [19].

In particular, game characterizations of classes of functions are not known in this
setting, and to the best of our knowledge not even the question of what the correct
approach for computable analysis in quasi-Polish spaces is has been broached!

4 Research visits

Aside from attending the most relevant conferences and workshops in the area, I anticipate
making multiple research visits during my PhD, although of course this will be done in a
way compatible with my duties at the ILLC. Many of the possibilities for research visits
were mentioned in the last section, but one concrete opportunity is the following.

From 19 August to 18 December 2015, the Isaac Newton Institute for Mathematical
Sciences of the University of Cambridge will host the program titled Mathematical,
Foundational and Computational Aspects of the Higher Infinite, whose stated goal is to
“connect [the main] strands of set-theoretic research and other fields of set theory to the
wider scope of mathematics, to research in the foundations of mathematics, including
some philosophical issues, and to research on computational issues of infinity, e.g. in
theoretical computer science and constructive mathematics”. This program will have
many leading and upcoming researchers in the different parts of set theory as participants,
and will also include several conferences and workshops, among which we highlight
the 5 Furopean Set Theory Conference. Full details of the program can be found
at http://www.newton.ac.uk/event /hif.

I have had the honor of receiving a visiting fellowship for the whole duration of the
program, including coverage of the cost of accommodation, as detailed in the invitation
letter attached to this document. This participation will of course have an extremely
positive influence on my research, and will furthermore allow for closer collaboration
with Arno Pauly as well as facilitate new collaborations and networking with some of
the most important researchers in set theory, both today and in years to come.
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