Dependence and Independence in Logic

Juha Kontinen and Jouko VVaananen

ESSLLI 2010 CPH

Juha Kontinen and Jouko Vaananen (eds.)

Proceedings of
Dependence and Independence in Logic

ESSLLI 2010 Workshop

Copenhagen, August 16-20, 2010

Preface

Dependence and independence are common phenomena, wherever one looks:
ecological systems, astronomy, human history, stock markets - but what is their role
in logic and - turning the tables - what is the logic of these concepts?

The possibility of nesting quantifiers, thus expressing patterns of dependence and
independence between variables, accounts for much of the expressive power of first
order logic.

However, first order logic is not capable of expressing all such patterns, and as a
consequence various generalizations - such as branching quantifiers, or the various
variants of independence-friendly logic - have been introduced during the last fifty
years.

Dependence logic is a recent formalism, which brings to the forefront the very
concept of dependence, isolating it from the notion of quantifier and making it one of
the primitive elements of the language. It can also be added to other logics, such as
modal logic.

This has opened up an opportunity to develop logical tools for the study of complex
forms of dependence, with applications to computer science, philosophy, linguistics,
game theory and mathematics. Recently there has been an increasing interest in this
topic, especially among young researchers.

The goal of this workshop is to provide an opportunity for researchers to further
explore the very notions of dependence and independence and their role in formal
logic, in particular with regard to logics of imperfect information.

Programme Committee

Wilfrid Hodges (British Academy)

Tapani Hyttinen (University of Helsinki)

Juha Kontinen (University of Helsinki)

Michat Krynicki (Cardinal Stefan Wyszynski University)

Jouko Vé&nanen (University of Helsinki and University of Amsterdam)

Vi

Contents

Invited lectures

Samson Abramsky

Relational Hidden Variables and Non-Locality 1
Xavier Caicedo

On imperfect information logic as [0,1]-valued logic 2
Lauri Hella

Constraint Satisfaction Problems, Partially Ordered Connectives and
Dependence Logic 3
Contributed talks

Pietro Galliani

Epistemic Operators and Uniform Definability in Dependence Logic 4
Pietro Galliani and Allen L. Mann

Lottery Semantics 30
Theo M.V. Janssen

A Comparison of Independence Friendly logic and Dependence logic 55
Jarmo Kontinen

Coherence and computational complexity of quantifier-free dependence logic
formulas 58
Antti Kuusisto

Logics of Imperfect Information without Identity 78
Peter Lohmann and Heribert VVollmer

Complexity Results for Modal Dependence Logic 93

Vil

Denis Paperno

Quantifier Independence and Downward Monotonicity 107
Fan Yang
Expressing Second-order Sentences in Intuitionistic Dependence Logic 118

viii

Relational Hidden Variables and Non-Locality

Samson Abramsky
Oxford University Computing Laboratory

Abstract

We use a simple relational framework to develop the key notions and
results on hidden variables and non-locality. The extensive literature on
these topics in the foundations of quantum mechanics is couched in terms
of probabilistic models, and properties such as locality and no-signalling
are formulated probabilistically. We show that to a remarkable extent,
the main structure of the theory, through the major No-Go theorems and
beyond, survives intact under the replacement of probability distributions
by mere relations. In particular, probabilistic notions of independence are
replaced by purely logical ones.

We also study the relationships between quantum systems, probabilis-
tic models and relational models. Probabilistic models can be reduced to
relational ones by the ‘possibilistic collapse’, in which non-zero probabili-
ties are conflated to (possible) truth. We show that all the independence
properties we study are preserved by the possibilistic collapse, in the sense
that if the property in its probabilistic form is satisfied by the probabilis-
tic model, then the relational version of the property will be satisfied by
its possibilistic collapse. More surprisingly, we also show a lifting prop-
erty: if a relational model satisfies one of the independence properties,
then there is a probabilistic model whose possibilistic collapse gives rise
to the relational model, and which satisfies the probabilistic version of
the property. These probabilistic models are constructed in a canonical
fashion by a form of maximal entropy or indifference principle.

Workshop on Dependence and Independence in logic

European Summer School on Logic, Language and Information ESSLLI
16 - 20 August, 2010

Copenhagen, Denmark

On imperfect information logic as [0,1]-valued logic.
Xavier Caicedo
Universidad de los Andes, Bogot4

Imperfect information logic may be given a [0,1]-valued semantics in finite mod-
els by means of the expected value of an optimal pair of mixed strategies for
the associated games, so that a sentence ¢ which is undetermined in a model
M gets an intermediate value 0 < M (p) < 1 (Sevenster-Sandu, Galliani).
It remains the problem whether for each rational r and sentence ¢ the class
{M : M finite and M (p) > r} is definable in the ordinary sense in imperfect
information logic (that is, whether it belongs to NP). In very general grounds
it may be shown that there is no [0,1]-valued semantics in all models extending
the partial {0,1}-valued game semantics of imperfect information logic such that
M(=g) = 1 - M(g), M(pV 1) = max{M(g), M(12)} and {M : M () > r} is
in ¥} for each rational r.

Constraint Satisfaction Problems, Partially
Ordered Connectives and Dependence Logic

Lauri Hella

University of Tampere

Joint work with Merlijn Sevenster and Tero Tulenheimo

Abstract: A constraint satisfaction problem (CSP) is the problem of deciding
whether there is an assignment of a set of variables in a fixed domain such that the
assignment satisfies given constraints. Every CSP can be expressed alternatively
as a homomorphism problem: for a given finite relational structure A, Csp(A) is
the class of all structures B that can be homomorphically mapped into A. The
infamous Dichotomy Conjecture of Feder and Vardi ([1]) states that for all A, the
problem CspP(A) is either NP-complete or it is in PTIME.

In their seminal work [1] on the descriptive complexity of CSP, Feder and Vardi
introduced a natural fragment of ¥}, which they call Monotone Monadic SNP (MM-
SNP). They showed that every CSP is expressible in MMSNP, and moreover, the
Dichotomy Conjecture holds for CSP if and only if it holds for MMSNP.

In the article [2], we established connections between partially ordereded connec-
tives, CSP and MMSNP. In our first main result, we characterize SNP (the fragment
of 1 consisting of formulas IXVE ¢, where ¢ is quantifier free) in terms of partially
ordered connectives. More precisely, we prove that SNP = D[QF], where D[QF] is
the set of all formulas with a single partially ordered connective applied to a matrix
of quantifier free formulas. In our second main result we give a similar character-
ization for MMSNP: MMSNP = C,[NEQF]. Here C is a minor variant of the set
of partially ordered connectives, and the subscript 1 refers to the restriction that
each row of the connective has only one universal quantifier. Furthermore, NEQF
is the set of equality and quantifier free formulas such that all relation symbols of
the vocabulary appear only negatively.

In the talk, T will first give a survey on CSP, MMSNP, SNP and partially or-
dered connectives. Then I will go through the main results in [2]. Finally, I will
consider some new ideas concerning certain fragments of dependence logic, and their
relationship to partially ordered connectives.

References:

1. Feder, T. and Vardi M. (1998) The computational structure of monotone
monadic SNP and constraint satisfaction: A study through datalog and group
theory. STAM Journal on Computing, 28, 57-104.

2. Hella, L., Sevenster, M. and Tulenheimo, T. (2008) Partially ordered con-
nectives and monadic monotone strict NP. Journal of Logic, Language and
Information, 17, 323-344.

Epistemic Operators and Uniform Definability in Dependence Logic*

Pietro Galliani
ILLC
University of Amsterdam
The Netherlands
(pgallian@gmail.com)

Abstract

The concept of uniform definability of operators in the language of Dependence Logic is
formally defined, and two families of operators §* and quantifiers V%, for a ranging over the
cardinal numbers, are investigated. In particular, it is proved that for any finite n and m, all V",
V™ §™ and §™ are reciprocally uniformly definable, but neither of them is uniformly definable
in Dependence Logic: this answers an open problem by Kontinen and Véénénen ([12]) about
whether the V! quantifier is uniformly definable in Dependence Logic.

A more direct proof than that of ([12]) is also found of the fact that the ¥ quantifier (and,
consequently, all V* and §" quantifiers) do not increase the expressive power of Dependence
Logic, even on open formulas; furthermore, an interpretation of the 6™ operators in terms of
partial announcements is proved to hold for the Game Theoretic Semantics of Dependence Logic,
and the Ehrenfeucht-Fraissé game for Dependence Logic is adapted to the logics D(L, V), where
U is the classical disjunction.

Finally, a criterion for uniform definability in Dependence Logic is proved.

1 Dependence Logic

Logics of imperfect information ([6], [7], [15], [14]) are extensions of First Order Logic whose Game
Theoretic Semantics may be derived from that of First Order Logic by restricting the amount of
information available to the players at certain stages of the game - or, equivalently, by allowing
the semantic dependence relation between quantified variables to differ from the syntactic scoping
relation between the corresponding quantifiers.

Dependence Logic ([15]) is distinguished by other logics of imperfect information in that it
separates the concept of dependence and independence from the operation of quantification: this
is achieved by introducing dependence atomic formulas =(t...t,), expressing the fact that the
value of the term ¢, is a function of the values of the terms t¢;...¢,_1, and doing away with the
nonstandard forms of quantification of the logic of Branching Quantifiers ([6]), of the many variants
of Independence Friendly Logic ([8], [11], [4]) and of Dependence Friendly Logic ([15], [5]).

Because of this, Dependence Logic (D for short) is an eminently suitable formalism for reasoning
about functional dependence and independence; furthermore, Hodges’ Compositional Semantics for

*This work was supported by the European Science Foundation Eurocores programme LogICCC [FP002 - Logic
for Interaction (LINT)].

logics of imperfect information ([9]) can be given an especially clean formulation for it, which will
now be summarized.

In brief, a team X is defined as a set of assignments having the same domain and representing
the information state of Player IT at a certain stage of a semantic game. The expression M Ex ¢
may be interpreted as the statement that, if the play of a given semantic game has a reached a
position in which Player IT has the (true) information that the current assignment belongs to X
and the current node of the game tree corresponds to the root of the formula ¢, then Player I1 has
a uniform winning strategy for the rest of the game.

The rules for this compositional semantics can be given as follows, where we assume for sim-
plicity that negation occurs only in front of atomic formulas:

M E=x Rty ...t, if and only if for all s € X, (t(s)...t,(s)) € RM;

M E=x —Rt;...t, if and only if for all s € X, (¢ <s) tn(s)) ¢ RM;
M f=x t =t if and only if for all s € X, t(s) = ’<s>,
M f=x —t =t if and only if for all s € X, t(s) # /(s);
M Ex=(t1...t,) if and only if for all s,s" € X, if t;(s) = t;(s') for i = 1...n — 1 then t,(s) = t,(s');
M Ex - =(t;...t,) if and only if X = {;
M E=x ¢ Vv if and only if there exist X, Xs such that X C X1 U Xo, M =x, ¢ and M [=x, 9;
M Ex ¢ AN if and only if M Ex ¢ and M Ex v
M [=x Jz¢ if and only if there exists a function F' : X — Dom(M) such that, for
X' = X[F/x] = {s[F(s)/x] : s € X}, it holds that M E=yx ¢;
M Ex Va¢ if and only if, for X' = X[M/x] = {s[m/x] : s € X,m € Dom(M)}, it holds that M =y ¢

A sentence ¢ is said to be true in a model M if and only if M):{@} Q.

A full discussion of this definition, as well of the current body of knowledge about the properties
of Dependence Logic, is far beyond the scope of this work: therefore, only a couple of simple results
which will be of some relevance for the rest of this work will be mentioned.

e There is a certain asymmetry between the rules for the interpretation of the existential quan-
tifier and of the disjunction and those for the interpretation of the universal quantifier and
of the conjunction. This is the case because, in the satisfaction relation M |=x ¢, the team
X describes the information state of Player II at a certain point of a semantic game - and
hence, when considering operators which correspond to moves of Player I (such as V or A) we
must enlarge the current team by considering all possible choices of Player I at once, whereas
when considering operators corresponding to moves of Player I1 we only need to select one of
the choices available to the second player and update the team according to it. In particular,
it must be pointed out that the rule of the universal quantification differs from

M Ex gxgb if and only if, for all F': X — Dom(M), M Ex(p/q ¢ :

for example, the sentence Elxgy =(z,y) can be seen to be true in any model M, although
JzVy =(z,y) is not true in any model with at least two elements. Incidentally, the Vx operator
thus defined is the V operator of Team Logic, whereas the Dependence Logic V operator is

the ! (“bang”) operator of the same logic ([16], [15]).

e Analogously, there is an asymmetry between the truth and the falsity conditions of the depen-
dence atom =(t1 ...t,): X = =(t1...t,) if and only if the relation {(¢1(s),...t,(s)) : s € X}
satisfies the functional dependency condition t; ...t,—1 — t, (and in particular, X = =(z)
if and only if the value of the variable z is the same in all assignments contained in X), but
the negation of a dependency atomic formula does not hold in any nonempty team. This
can be seen as a consequence of the fact that the relation M |=x ¢ states the existence of
a winning strategy for Player I] in the subgame corresponding to ¢ given that the current
assignment is known to be in X, and hence the following closure condition ([15]) holds:

M):X¢,X/QX:>M):X/¢

If X is a nonempty team, it is easy to verify that {s} E==(t1...t,) for all assignments s € X
and all dependence atomic formulas =(t; ...t,); therefore, by the closure principle and the
law of non-contradiction it cannot be the case that M f=x — =(t1...t,).

2 Uniform Definability and Uniform Translatability

In the next sections, we will study a few operators over Dependence Logic formulas and discuss
their uniform definability, both with respect to D and with respect to each other.

But what is uniform definability? The intuitive meaning is fairly transparent: in brief, given a
logic £ an operator O, from formulas ¢ to meanings O(¢), is uniformly definable if and only if the
behaviour of O can be simulated by a suitable combination of the primitives of £. But a formal
definition of this concept requires some care.

Three very simple examples for First Order Logic may be of some use for showing how the
notions of uniform definability and uniform translatability are somewhat more delicate than they
might appear at first sight:

Example 2.1 (The 35" quantifier). Let FO(3=" : n € N) be First Order Logic augmented with
the quantifiers {3="x : n € N,x € Var}, whose semantics are given by the conditions

M= 35"0¢ < [{m e M : M g0 6} < n.

Then FO(3=" : n € N) not only has has precisely the same expressive power of First Order Logic,
but it is uniformly translatable into FO, since 3="x is uniformly definable as

I="g¢ = Iz ..z V(e — \/ T =x;) (1)
i=1

for all formulas ¢ such that z1,...x, & FV(9).

But what of the condition that x1 ...z, & FV(¢)? On one hand, it cannot be omitted, as for
ezample 35"z R(x, 1) # 1 ... 20(R(z,21) = oy & = ;) - but on the other it does not appear
to be logically significant, as it is always possible to change the bound variables x1 ...z, of (1) in
order to avoid naming conflicts of this kind. So what is going on here? Which properties of the
“context” Jx1 ... x,V2(E — \[_, & = ;) are essential to our notion of uniform definability, and
which ones are not so?

Example 2.2. Given two variables x and y, let Symyy(¢) be the First Order Logic operator defined
as

M):S Symxy(¢) < for allm,n € M, (M):s[m/;c][n/y] =M ':s[n/x}[m/y} ¢)

It is obvious that such an operator does not increase the expressive power of First Order Logic,
and Symgy(¢) is “uniformly” definable as

Symay (@) := Vry(o(z,y) < é(y,z)). (2)

But what kind of expression is precisely the above one, and in which sense can we say that it defines
uniformly Symgay? In (2) we appear to be dealing with the “argument” ¢ almost as if it were an
atomic formula: is this different from what we did in (1)? And what does the expression (2) mean

precisely if FV (¢) # {x,y}?

Example 2.3. Let us consider, again in First Order Logic, the relativization operator (¢)* whose
semantics can be given recursively as

By its own definition, this operator does not increase the expressive power of First Order Logic.
But is it uniformly definable in it?

An easy argument shows that this cannot be the case: consider a model M with domain {a,b},
and consider the predicates PM = {a} and Q™ = (). Then, for all assignments s, M |=; VaPr <
M s VzQx, as neither YxPxz and VxQu are satisfied in M. Hence, if for some “context”
®[Z] it held that @[] = ()T for all ¢, it would be the case that M =y (YxPr)¥ & M |=,
dVrPz] & M |, ®VrQr] & M =, (VeQz)'. But (VaPx)P =Vx(Px — Px) is true in M, while
(VxQz)P = Vo (Px — Qx) is not; and therefore, no such ® emists.

But what sort of object is ®[Z] in this argument, and for what reason exactly can we arque that

if @ =m) then ®[¢] =p P[] 7

In this section, I will attempt to give a formal definition of uniform definability for Dependence
Logic; definitions for other logics (e.g., for First Order Logic) can be given along entirely similar
lines.

Definition 2.1 (Model classes, downwards closed model classes). Let ¥ be a signature, and V a
finite set of variables.

A model class with domain V is a set of pairs (M, X), where M is a first order model with
signature 3 and X is a team over M with domain V.

A model class K is said to be downwards closed if

(M,X)e K, X' CX = (M,X")e K

for all models M of signature ¥ and for all teams X, X" with Dom(X) = Dom(X') = Dom(K).

We write MCx, (V') for the family of all model classes with domain V', and DMCx (V') for the
family of all downwards closed model classes with domain V.

Given a model class K, a model M with signature Sig(M) 2 Sig(K) and a team X with
Dom(X) O Dom(K), we write M =x K for
(M, 5i9(5)s X Dom(K)) € K.

Definition 2.2 (||¢||x(V)). Let ¢ be any Dependence Logic formula, let ¥ be any signature con-
taining the signature of ¢, and let V' be any set of variables such that FV(¢) C V. Then

lolls(V) ={(M,X) e M: Dom(X)=V and M Ex ¢}
where M ranges over all first order models with signature ¥ and X ranges over all teams over M.

The following lemma is just another way of stating the Downwards Closure Property of Depen-
dence Logic ([15], Proposition 3.10):

Lemma 2.1. For each ¢ € D, for every ¥ containing the signature of ¢ and for every V2O FV(¢)
it holds that ||¢||x(V) € DMCx(V).

Definition 2.3 (Context). Let ¥ be a signature and let ny...n; € N. Then a context over X
of type (ny...ng) is an expression Y[=1 ... 5] in XU {E;...E,}, where each Z; is a new n;-ary
relation symbol which does not occur negated in).

Dependence Logic contexts induce functions from tuples of downwards closed model classes
to downwards closed model classes: somewhat informally, given a context ®[=Z;...=;] and model
classes K ... Ky with domains {vi1... 015, }...{vs1... v n, } and signatures ¥, ...3; we assign to
the expression ®[K ... K] the satisfaction relation obtained by applying the recursive satisfaction
definition of the Team Semantics for Dependence Logic, plus

M):X Ei(tl .- -tni) e M }Z{(vmzs(tl)...vi,ni:s(tnl)):seX} K

where the order of v; 1 ...v;,, is presumed fixed.
More precisely, a Dependence Logic context operates on model classes as follows:

Definition 2.4. Foralli € 1...t let K; € DMCs, (V;), where |V;| = n; and (vi1...0in,) is a fized
ordering of the variables in V;. Then, for all models M of the appropriate signature and for all
teams X of the appropriate domains,

1. M Ex Ei(tr.. . tn,)[K1 ... Ki] if and only if M Fg g x K, where
[0; =] X = {s: Dom(s) = V;,3s" € X s.t. s(vi1) =t1(s),...,8(in;) =tn, (s}

2. If ® is a literal ¢, M Ex ®[K; ... K] if and only if M E=x ¢;

3. M Ex (PVVU)[K;...K] if and only if there exist X1 and Xy such that X = X; U X,
M ey, ®K; ... Ky and M x, UK ... K]

4. M Ex (PAV)[K, ... Ky if and only if M =x ®[K; ... K] and M =x V[K; ... Ky;
5. M E=x Jx®[Ky ... Ky if and only if M Ex(p/e) Y[K1 ... Ki] for some F: M — X;
6. M f=x Vo@[K ... K] if and only if M F=x(ara) V[Ky ... Ky

As for the case of dependence formulas, we will write ||®[K] ... K¢]||s(V) for the set {(M, X) :
Sig(M) = %, Dom(X) = V, M =x ®[K; ... K]}

Furthermore, if ¢1...¢; are formulas in D with FV(¢;) C V; for i € 1...t, we write M Ex
®[¢1 ... ¢ as a shorthand for

M Ex @[l[¢1]ls, (V1) - - lI9tlls. (Vo)]-

Definition 2.5 (Uniform definability). An operator F' : DMCx, (Vi) x ... x DMCx,(V;) —
DMCs/(V') is said to be uniformly definable in Dependence Logic if and only if there exists
a context ®[Z1 ... 5], of type (|[Vi]...|V4]), such that

B[... K| (V') = F(K ... K;)
for all model classes Ky ... K in MC(Vy)... MC(V;).

Definition 2.6 (Uniform translatability and uniform equivalence). Let L1, Ly be two extensions of
Dependence Logic. We say that L1 is uniformly translatable in Lo, and we write L1 < Lo, if any
operator F' as above which is uniformly definable! in L1 is also uniformly definable in Lo.?

If L1 <Ly and Lo < Ly we say that L1 and Lo are uniformly equivalent and write £1 > Lo.

Example 2.4. In [12], the following question is asked and immediately answered: is it possible to
express, in Dependence Logic, the operator 3'x whose semantics is

M):X 31$¢<:> ImeM st. M }ZX[m/x] @7

A positive answer was given by defining 3'x¢ as Ix(=(x) A ¢): indeed, one can check that for all
formulas ¢, for all models M and for all teams X, M =x 3'x¢ < M E=x Jz(=(x) A ¢).

One way to represent this observation in our framework would be to ask, for any finite set of
variables {x,xy ...z, }, whether there exists a context ®[Z] of type (n + 1) such that

O[K] ={(M,X): Dom(X) C{z1...7,} and Im € Dom(M) s.t. M E=x[m/e K}

for all model classes K with Dom(K) = {z,x1...x,}.

!Uniform definability in extensions of Dependence Logic is defined exactly as it was done for Dependence Logic
itself, with the obvious changes to the definition of context.

2This notion appears to have some relation with the concept of compositional translation defined in [10], and it
seems likely that it will reduce to it if considered in a more abstract setting.

A positive answer can be then found by choosing ®[=] := Jz(=(x) A E(x,x1...2k)): indeed,

M Ex Jz(=(x) NE(z, 21 ... 28)) [K] &
SdF:M— X s.t. M):X[F/a:]:(m) ANM):X[F/a:] K&
S dmeM s.t. M):X[m/a:] K

as required.

Hence, if D(3') is the logic obtained by augmenting D with the 3' quantifiers we have that
D(F') A D: indeed, for any context ®[Z;...Z] of D(I') and sets of variables Vy ...V, we can
find a context ®'[Z;...5;] in D equivalent to it by “expanding” each expression I xV[Z; ... 5]
with FV (V) € {z,x1...2n} as Jx(=(x) AV[E1...E](z,21...20)), where V[Z1 ... Ep](x,21...2)
is simply W[Z1 ... 5.

As D < D(F), we then have that D 1 D(F').

As this example shows, in this framework uniform definability is relative to a given domain
of variables: the expressions Jz(=(z) A Z(z)) and Jz(=(z) A Z(z,x1)) are different contexts be-
longing to different types, even though both of them are instances of the same informal “context”
Jz(=(x) AE). On one hand, this limits somewhat the generality of our notion of uniform definabil-
ity; but on the other, in this way we avoid entirely the possibilities of naming collisions discussed
in Example 2.1 while accounting for uniform definitions such as that of Example 2.2.

Finally, some discussion about the requirement that the =;s do not occur negated in a context
®[=; ... E;] may be necessary. The main reason for this condition, of course, is that we did not give
a definition for the negation in Dependence Logic, although such a definition is certainly possible
([15], Definition 3.5).

But is this affecting in any way our notion of uniform definability? Is there any property
concerning the truth of ¢ in some team or family of teams that could be expressed uniformly as
O[p, ~¢] for some ®[=1, Ez], but not as V[¢] for any U[=]?

By the properties of negation in Dependence Logic, this cannot be the case: indeed, in Depen-
dence Logic there exist formulas which are true in the same models but which are not false in the
same models ([15], §3.3)® and in particular we have that, for all formulas ¢,

MEx ¢ MEx (¢V Ve =(z))
but
M =x (¢ VVr =(z)) & X = 0.

Hence, any condition concerning the truth of ¢ will also hold for ¢* = (¢ V Vo =(x)), and
if this condition can be uniformly defined as ®[¢, =¢] then it can be also uniformly defined as

Dl¢*, —¢"] = D¢, L.

3More in general, negation in Dependence Logic is not a semantic operation, as it was proved in a very strong
sense in [3] and in [13].

10

3 The V" quantifiers and the ¢" operators
The V!x quantifier is defined in the last section of [12] as
M =x V'z¢ < for all m € M, M =X [m/a] ¢

where X[m/x] = {s[m/z]: s € X}.

Juha Kontinen and Jouko Vaananen then proved, by means of their main theorem concerning
the relationship between D and E%, that this quantifier does not increase the expressive power of
the logic, even with respect to open formulas: if D(V!) is Dependence Logic augmented with the
V! quantifiers then for every ¢ € D(V!) there exists a 1) € D such that

MEx ¢ MEx ¢
for all models M and teams X.

Finally, they left the following problem to the future researchers ([12]):
It remains open whether the quantifier V' is “uniformly” definable in the logic D.

In this section the V! quantifier will be studied as a member of a family of quantifiers V*, where o
is a (finite or infinite) cardinal; furthermore, all of these quantifiers will be decomposed in terms of
the Dependence Logic universal quantifier Va and of the announcement operators* §¢.

Moreover, a recursive definition of §'2 in Dependence Logic will be given, and it will be proved
that for all n € Ny
D(v"), D(6") 1 D(6").
As a corollary, this will give us a “lower tech” proof of the statement, already shown in [12],

that the V! quantifier does not increase the expressive power of Dependence Logic, and will prove
that the same holds for all V" and 0™.

Then, after two sections in which we will study the game-theoretic properties of the V* quanti-
fiers and of the 6% operators, we will return in the last section to Kontinen and Vaananen’s question,
and we will answer it negatively by means of a characterization of uniform definability in terms of
¥ formulas.

We begin our study of the V'z quantifier by introducing a new operator, which will be seen to
be strictly related to it:

Definition 3.1 (6%). For any formula ¢ and variable x, let §'x¢ be a formula with FV (§'z¢) =
FV(¢) U{x}, whose satisfaction condition is

M l=x §'zp & for allm € M, M =x,_, ¢

where Xy—p, is the team {s € X : s(x) = m}.

We write D(61) for the logic obtained by adding the §' operator to Dependence Logic.

4The name “announcement operator” has been chosen for their similarity with the public announcement operators
of Dynamic Epistemic Logic ([2], [17]). It is not entirely clear at the moment how deep this similarity runs, but the
author believes this to be just one of the many possible links between Dependence Logic and Dynamic Epistemic
Logic.

11

The following result links the §' and V! operators together:

Proposition 3.1. For any formula ¢ of Dependence Logic, ¥'x¢ = Vzd'zg and §'xp = Viy(z #
yV @), where y is a variable which does not occur in FV (¢).

Proof. Let M be any first-order model, let X be any team, and let ¢ be any formula with y & FV(¢).
Then, for all X with FV(¢) C X U{z},

M f=x Vos'ag < M Expyy 6'ad < for allm € M, M Exr/a),_,, ¢ <
& for allm € M, M Ex{m/ ¢ < M Ex V'ze.
and for all X with FV(¢) C X,
M l=x Yy(z #yV ¢) < forallme M, M EXmy TFYV e

s forallme M 3Y™, Z™ such that X[m/y] CY™UZ™, if s € Y™ then s(z) #m and M =zm ¢ <
& for all m € M, M Expn/y._,, ¢ < forallme M, M Ex,_, ¢ < M Ex 6'ad

where we used the fact that y & FV(¢). O
Corollary 3.1. D(V!') x D(§').
The §'z quantifier does not increase the expressive power of Dependence Logic:

Proposition 3.2. Let ¢ be any Dependence Logic formula. Then there exists a Dependence Logic
formula ¢* such that ¢* = 6'x¢.

Proof. The proof is a simple structural induction on ¢:

e If ¢ is a first order literal then let ¢* = ¢: indeed, in this case we have that

MExdlzpoVme MM E=x,_, ¢ <
e Vm e M,Vs € Xpem, {s} E o Vse X {s}EFoe X ¢

e If ¢ is an atomic dependence atom =(¢; ...t,), let ¢* be =(z,t1...t,). Indeed,
M ':X 51]} :(tl .. .tn) < VYm e M,M):Xa::m:(tl .. .tn) =
& Vm e M,Vs,s' € Xy, if ti(s) =t;(s') fori=1...n— 1 then t,(s) = t,(s') &
s Vs, s’ € X, if s(x) = ' (x),t;(s) =t;(s') for i = 1...n — 1 then t,(s) = t,(s') &
s M ’:X:(Ix,tl .. .tn).

e If ¢ is a negated atomic dependence atom — =(t1 ...t,), let ¢* be = =(x,t;...t,)%: indeed,

MEx dlzpeVme MM Ex,_ ~=(t1...ty) ©Vme M, Xpepy =0 <
SsX=0MEx ~=(x,t1...t,).

®0Or = =(t1...tn), or L, or any formula which holds only in the empty assignment. Here — =(z,t1...t,) was
chosen only because of its symmetry with the =(z,t1...t,) case.

12

o If p =1V, let ¢* =*V 6O*: indeed,

Mlx dlz(ypVve) eVme MM E=x, . Ve
SVme M IY™ Z™ such that Xy, CY™UZ™, M |Eym ¢ and M Ezm 0 <
< 3Y,Z such that X CYUZ andVme M, M |=y,_,, v and M |=z,_, 0 <
& 3Y,Z such that X CY U Z, M |=y 6*xtp and M =z §'z6 <
= MEx vtV er
where for the passage from the second line to the third one we take Y = (J,,c5; Y™ and

Z = Upmerr £, and for the passage from the third line to the second one we take Y™ = Yo—p,
and Z™ = Z.—m.

o If p =1y NO, let ¢* =* AG*: indeed,

Mlx lz(p AN & Vme MM E=x,_, vA0 &
eVmeM,MEx,_, vand M Ex,_, 0 MEx §'ap and M =x §'20 < M =x ¢ A6*.

e If ¢ = 3y for some variable y # x,5 we let ¢* = Jyp*: indeed,

Ml=x 8tayp e Vme M, M =x, . Iy <
SVYme MAF™ : Xyepy — M sit. M ‘:szm[Fm/y] (=S
SdF: X > M st. Vme M, M):X[F/y}z:m Y &
& 3IF: X = M st. M Expy 6ot & M =x Iy
where, for the passage from the second line to the third one, we take the function F' defined

as
Vs € X, F(s) = F5@(s)

and, for the passage from the third line to the second one, we take for each F" the restriction
of F'to X™.

o If ¢ = Vyi) for some variable y # x, we let ¢* = Vyyp*. Indeed,
M Ex §tavyy & Vm e M, M [=x,_,, Vyp & Vm € M, M Ex,_ vy ¥ <
S Vm e M, M Expy,_, ¥ € M Expyy 0o & M =x Vyp*,
Ol

This result implies that the logics D, D(V!) and D(§') define exactly the same classes of teams
over all models and all signatures.

The 6% operators - and, hence, the V! quantifiers - are uniformly definable in Intuitionistic
Dependence Logic D(—) [1], that is, in Dependence Logic augmented with the intuitionistic impli-
cation

M)zxqﬁ—mb(:)VYQX, ifM):y(ﬁthenM):ywl

STf y = x, we define (Jz¢))* := (Fyw[y/2])* and (Vaep)* := (Vyy[y/x])* for some new variable y.

13

Proposition 3.3. D(§'), D(V') < D(—).
Proof. For all formulas ¢, and all teams X,

MEx=(z) > ¢« forallY C X, if M =x=(x) then M Ex ¢ <
& forallme M, M [=x,_,, ¢ < M =x 6.¢.

O

However, as Intuitionistic Dependence Logic is strictly more expressive than Dependence Logic
[1], D(—) £ D(V'), D(6%) and in particuar D(—) AD(V!), D(V!).

The above proposition suggests that, as in the case of intuitionistic implication ([1]), the public
announcement operators may be used to reduce dependency atoms =(t; ...t,) to constant atoms
= {;). This is indeed the case:

Proposition 3.4. Let x; ...z, be variables. Then

1

=(x1...x,) = Slay .. 0 e, =(xp).

Proof.

Mx 6tz ... 0 e, =(z,)

eVmy...mp1 € MM = Xommy oz 1=my,_ 1 =(Tn) <

SVmy...my1 € M,s, s € X, if s(x1) =8 (x1) =ma,...,8(xn_1) = §'(xn_1) = m,_1 then
then s(z,) = §'(x,) &

e M Ex=(x1...2z5).

In the same way, one may decompose dependency atoms of the form =(¢; ...t,) as

n—1

dxq ... :L’n_l(/\ T; = ti) A 51371 cee 511;71—1 :(tn)
=1

or introduce “term announcements” §'(¢) with the obvious semantics; hence, by removing non-
constant dependency atoms from Dependence Logic and adding the §' operators one may obtain
a formalism with the same expressive power of Dependence Logic, in which constancy takes the
place of functional dependency. This new logic C(§'), which one may call constancy logic with
announcements, may well be deserving of further investigation; however, this line of thought will
not be pursued further here.

V! and §' can be seen as representatives of a proper class of operators {V%,§% : a € Card}:

Definition 3.2. (V¢, §%) For any (finite or infinite) cardinal o, for every formula ¢ and for every
variable x, let 0%z p and ¥*xd be formulas with FV (6%x¢) = FV(¢)U{z}, FV (¥*z¢) = FV(p)\{z}
and truth conditions

M =x 0%2¢ < YA C* M, M =x,_, ¢

M Ex V¢ < VA CY M, M Ex(a/, ¢

14

where A C* M is an abbreviation for “A C M and |A| < a”, Xpea = {s € X : s(x) € A} and
X[A/x] = {sjm/z] : s € X,m € A}.

Again, we can define uniformly §“ by means of V* and vice versa:

Proposition 3.5. For all cardinals o, formulas ¢ € D, variables © and teams X,

V¢ = Vad®x¢

and
5w = Vy(y £ oV 9).
Proof.
M IZX Vx(saﬂj(ﬁ &M lZX[M/x] 0% & VAC* M, M }:X[M/m}zeA [OR=
< VA C* M, M):X[A/x]@ M):X Va$¢
and

M ':X Vay(y#x\/gﬁ) S VAC* M, M }ZX[A/y] (y#x\/(ﬁ) S VAC* M, M ':X[A/y}y:z ®
SVACY* M, M ':XzeA < M Ex %o,

where we used the fact that y & FV(¢). O
Corollary 3.2. For all a, D(V*) 1 D(6).

Furthermore, for every n € No,” D(V") is uniformly translatable into D(V') and D(4!) is uni-
formly translatable into D(6"):

Proposition 3.6. For every n € Ny and for all ¢ € D such that FV(¢)N{x1...x,} =0,

n

Vg =V .. .lean(/\(x # x;) V ¢).

i=1
Proof.

n

M E=x lel .. lean(/\(x #x;)Vo)=Vme M, M):X[M/z][m/f] /\(I #x) Vo
=1 i=1

sSVmy...my, € MM):X[o= VAC BaM‘:X[A/.r] ¢<:>M|:X V'xo.

M/m]xe{mlmmn}

Proposition 3.7. For every n € Ng and for every formula ¢ € D,

Sleg = "z((=(x) AP) V...V (=(x) A p)).

n times

"For n = 0 we have that 6°z¢ = T and ¥°z¢ = V& T. These two operators will not be further investigated in this
paper.

15

Proof.

M Ex 6" x((=(x) NP) V...V (=(x) N 9)) &
ntﬁnes
SVAC" M, M E=x,., (=x)No) V...V (=(x)N9)) &
n times
SVAC" M, Xpea=X1U. ... UX, st. M E=x,=(x)N¢pforalli=1...n<
e Vmy...my, € MM Ex,_, ¢foralli=1...ne M Ex Stae

Corollary 3.3. For every n € Ng, D(V*), D(6") 1 D(51).

However, this changes if we consider operators of the form Yz ¢, where « is an infinite cardinal:
Proposition 3.8. For any infinite a, D(V*) A D.
Proof. For every model M, M [=p V*23y(=(y) Az # y) if and only if [M] > a.

But D and all logics semantically equivalent to it satisfy the Lowenheim-Skolem Theorem ([15],
§6.2), and therefore D(V*) £ D. O

Corollary 3.4. For any infinite a, D(V), D(6%) is not uniformly translatable into D(§').

4 Announcements in Game Theoretic Semantics

Apart from the above mentioned Team Semantics, Dependence Logic also has an equivalent Game
Theoretic Semantics, which can be seen as a natural adaptation to the formalism of Dependence
Logic of the game theoretic semantics of imperfect information developed for Henkin Quantifiers
([6]) and further developed in the context of Independence Friendly logic ([7]).

The game can be defined in the following way ([15], §5.3):
Definition 4.1 (The game HY¥ (¢)). Let M be a first order model, let X be a team, and let ¢ be
a formula in D with FV(¢) C Dom(X).

Then the game H (¢) is defined as follows, where P is the set of all game positions of H¥ (),
S : P — P(P) sends each position p into the set of all its possible successors, T : P — {I,II}
indicates which one of the two players is moving from the position p, Ip is the set of the initial
positions and W is the set of the winning positions for Player I1:

e The set of all positions of the game H¥Y (¢) is P = {(¢,s) : ¥ is an instance® of a subformula
of ¢ and s is an assignment with FV () C Dom(s)};

e The set of all initial positions for HY (¢) is Ip = {(¢,s) : s € X };

8This is in order to avoid confusion between different instances of the same expression, like the two dependence
atomic subformulas of =(z)V =(x). We may tacitly assume that no such confusion is possible, for example because
an unique index has been associated to each atomic formula.

16

e Given a position p, the active player T(p) and the set of possible moves S(p) are defined as
follows:

If p is a literal, T'(p) is undefined and S(p) = 0;
Ifp=(¢V,s) then T(p) = II and S(p) = {(¢,s), (¥, s)};
Ifp= (¢ N,s) then T(p) =1 and S(p) ={
— If p= 3z, s) then T(p) =11 and S(p) = {
(

\
~—

o The set W of winning positions for Player I1 is defined as

W ={(¢,s) : ¢ is a first order literal and s = ¢}U

U{(¢,s) : ¢ is a non-negated dependence atomic formula}.

If S(p) =0 and p ¢ W we say that p is a losing position for Player II, or equivalently a winning
position for Player I.

Definition 4.2 (Plays, complete plays, winning plays). Let M, X and ¢ be as above. A finite
sequence p = pi ...py of positions of HM (¢) is a play of H¥ () if the following two conditions
hold:

1. p1 s in the set Ip of all initial positions of the game;
2. Foralliel...n—1, pit1 € S(pi).

If furthermore py, is a terminal position, that is, S(p,) = 0, we say that p is a complete play. Then,
if pn € W we say that p is a winning play; if instead p,, is terminal but not in W, we say that D is
a losing play.

Definition 4.3 (Strategy, plays following a strategy, winning strategy). A strategy for Player
a € {I,II} in H¥(¢) is a function o from partial plays p = pi...p; of H¥(¢) to positions

o(p) € S(pi)-
A playp = p1...pp is said to follow a strategy o for Player P € {I,II1} if, foralli=1...n—1,

T(p;) = P = pit1=0(p1...pi)-
A strategy o is winning for Player P in Hé\(/[(qﬁ) if and only if all complete plays in which P
follows o are winning for P.

Definition 4.4 (Uniform strategy). A strategy o for Player I in H¥ (¢) is uniform if for every
two complete plays D= p1...pn, 0 =Py ... P, in which II followed o, if the last positions are

pn = (=(t1...tn), 5); Py = (=(t1...tn),s")
for the same instance of =(t1 ...t,) and t;(s) = t;(s') fori=1...n—1 then t,(s) = t,(s').
The following theorem the main result of Section 5.3 of [15]:

Theorem 4.1 ([15]). Let M be a first order model, let ¢ be a Dependence Logic formula and let
X be a team such that FV(¢) C Dom(X). Then M E=x ¢ < Player 11 has a uniform winning
strategy for HY (¢).

17

Proof. By structural induction over ¢.]
We now wish to extend this game semantics to D(d').

Definition 4.5 (The game 'H¥ (¢)). Let M be a first order model, let X be a team, and let ¢ be a
formula of D(6%) with FV (¢) C Dom(e). Then the game * HM (¢) is defined precisely as the game
HY(¢), with the following additional rule for the §' operator:

o Ifp=(0'xy,s), T(p) = I and S(p) = {(¢,s)}.”

Starting positions, winning positions, plays, strategies and winning strategies are defined pre-
cisely as in HY (¢).
However, there is a difference in the definition of uniform strategy:

Definition 4.6 (§'-similar plays). Let p = p1...p, and P’ = Py ...p., be two plays of 'HY (¢).
Then we say that p and P are §'-similar, and we write p ~° 7, if for alli e 1...n, i € 1...n/
such that

pi = (8'zy, 5); Py € (82, §)
for the same instance of §'zvp, we have that s(x) = s'(z).
Then we limit the scope of the uniformity condition to ¢'-similar plays:

Definition 4.7 (Uniform strategies for ' HY (¢)). A strategy o for Player IT in ' HY (¢) is uniform
if for every two complete, §'-similar plays p = p1...pn, p' = P} ... pl, in which IT followed o, if the
last positions are

pn=(=(t1...tn),s); = (=(t1...tn),s")
for the same instance of =(t1 ...t,) and t;(s) = t;(s') fori=1...n—1 then t,(s) = t,(s').

The following theorem shows that the game theoretic semantics for D(§') induced by the games
'H é\(/l (¢) is equivalent to the team semantics for the same logic:

Theorem 4.2. Let M be a first order model, let ¢ be a formula of D(6') and let X be a team such
that FV(¢) C Dom(X). Then M |=x ¢ < Player II has a uniform winning strategy for 1H)]\(/[(@.

Proof. The proof is by structural induction over ¢. All cases except §' are treated precisely as in
([15], Theorem 5.16), and we refer to it for their proof.

Suppose that M [=x 6'x¢. Then, by definition, for all m € M we have that M =x,_, ¢. By
induction hypothesis, this implies that for every m € M there exists an uniform winning strategy
o™ for Player IT in 1H)]\é:m (¢). Then define the strategy o for Player IT in ' H¥ (§'x¢) as follows:

o If5=pi...p; for k> 1and p; = (6*x¢, s) for some s € X, let o(py...px) = o*@ (pa...pp).

9Since there is only one possible successor to a position of the form (6* 1), s), it makes no difference at all whether
the active player is I or IT. However, this will not be the case for the variant * H% (¢) for the D(6%) operator which
will be presented next.

18

This strategy is winning, since for any complete play p = p1 ... p, of IH%(gb) in which p; = (6'z, s)
and IT follows o it holds that ps...p, is a complete play of 'H)]\(/i o in which IT follows o5(*);

and it is also uniform, since for any two §'-similar complete plays

P=Dp1--Pn; D =pi-. Py

where p; = (6'xi,s) and py = (d'zy,s') it must hold by the definition of §'-similarity that
s(z) = §'(x) = m for some m € M. Hence, by the definition of the strategy o, both ps...p, and
ph...p., are complete plays in *H)]\(/fx _,.(#) where II followed the uniform strategy o™, and hence
they satisfy the uniformity condition.

Conversely, suppose that I has a uniform winning strategy o in 'H é\g[(0'zg), let m € M, and
define the strategy o™ for Player I in 'H)]‘é _, (¢) as follows: for all partial plays pi ...py, where
p1 = (¢, s) for some s € X with s(z) = m, define

Po = (51$¢, S)

and
o™(p1...pk) =0(po...pk)-

Then each ¢ is a winning strategy for ' H)]‘é . (¢), because o itself is winning and each complete
play of 'H)]‘(41 _, (¢) in which IT follows o™ is included in a complete play for 'H M(§1z¢) in which
IT follows o; and furthermore, it is uniform, because any two plays p and 7 of ' H)]\(41 :m(¢>) in which
IT follows o™ are included in two complete plays pop and p(p’ of 'H é\(/f (6'z¢) in which IT follows
o and py = (0'z¢, s), ph = (6'x¢, s) for two s, s’ with s(z) = s'(z) = m.

Hence, if p and 7’ are §'-similar over 1H)Aé:m (¢) then pop and p)p’ are §'-similar over ' HY (5'z¢),
and in conclusion they satisfy the uniformity condition. O

The above described game theoretic semantics is the main reason why &'z can be called a
“announcement operator”: anthropomorphizing somewhat the two agents of the game, one might
think of §'z¢ as the subgame in which first the value of z is announced from Player I to Player
11 and then the game corresponding to ¢ is played, but Player I1 is allowed to act accordingly
to the information that has been broadcasted (that is, the value of z) even though she would not
otherwise have access to it (for example, because she is selecting a y and there is a position of the
form =(y) which Player I can reach later in the play).

This suggests a way to find a game theoretic semantics for the logics D(6%):

Definition 4.8 (The game “H(¢)). Let a be a (finite or infinite) cardinal, let M be a first order
model, let X be a team over M, and let ¢ be a formula of D(0) with FV(¢) C Dom(X).
Then the game “H (¢) is defined precisely as HY (¢), but with the following changes:

e Positions are not pairs (1, s), but triples (1, s, A), where A is a annotation in the form of a
set of elements of the model. The starting position is (1, s,0), and all previously introduced
rules generate the empty annotation for the next position - for example, if p = (3x1p, s, A)
then T'(p) = II and S(p) = {(¢, sjm/z],0) : m € M}, and so on;

19

o Ifpis (0“xv, s, A) then T(p) =1 and S(p) = {(¢,s,B) : |B| < a and s(z) € B}.

Again, the notions of play, complete play, winning play and winning strategy are left unchanged,
except of course that now the positions are triples rather than pairs (and because of this, for ex-
ample, Player I might make different choices depending on which annotation Player I introduced
after a §“ position).

However, the concept of uniform strategy requires again some modifications:

Definition 4.9 (6%similar plays). Let p = pi...pp, and ' = py...p,, be two plays of KY(p).
Then p and p' are §“-similar if and only if for alli€1...n—1andj€1...n' -1, if

pi = (¥, 8, A); Py = (¢, s, B)

for the same instance of ¢ then the annotations A and B are the same.

In this case, we write that p =" p'.

Definition 4.10 (Uniform strategies for “K3(¢).). A strategy o for Player I1 in K (p). is
uniform if for every two complete, §*-similar plays D = p1...pn, 0" =P} ... 0}, in which IT followed
o, if the last positions are

pn: (:(tltn),S,A), p,/n - (:(tl...tn),S/,A)
for the same instance of =(t1 ...t,) and t;(s) = t;(s') fori=1...n—1 then t,(s) = t, ().

Theorem 4.3. Let M be a first order model, let ¢ be a formula of D(0%) and let X be a team such
that FV (¢) C Dom(X). Then M [=x ¢ < Player II has a uniform winning strategy for “K3 (¢).

Proof. We proceed by structural induction on ¢, and again all cases except the one for §“z are
dealt with precisely as in ([15], Theorem 5.16).

Suppose that M Ex d“x1: then, by definition, we have that for all subsets A C* M it holds
that M =x,_, . Then, by induction hypothesis, for each such A there exists a uniform winning
strategy o for Player IT in O‘H)AéeA(qb). Let us define the strategy o for Player IT in *HY (6%z¢)
as the one that, whenever Player I selects a set A as annotation in the first move of the game,
plays the rest of the game according to o’ for A’ = AN {s(z): s € X}. This strategy is winning,
as each play contains a play of “H)]‘é EA,(QS) in which I7 is using o, and it is uniform, as any
two d%-similar plays must have the same annotation in the second position and therefore must be
played according to the same o', which we know by hypothesis to be uniform.

Conversely, suppose that I/ has a winning strategy in “H ;‘(4 (0%x¢): then for each A C* M
such that {s(z) : s € X} N A # 0 Player I] has a winning strategy in QH)]\({DGA (¢), and hence by
induction hypothesis M =x, _, ¢ for all such A. If instead |A| < o and {s(z) : s € X} NA=10
then M |=x,_, ¢ trivially, and therefore M |=x, _, ¢ for all A with |[A| < a.

So, in conclusion, M Ex 6%z, as required. O

Again, the intuition is that of an announcement, but this time it is a partial one: when encoun-
tering 6%z, Player I does not allow Player I1 access to the value of x, but he chooses a set A of
cardinality o and gives her the (true) information that x € A.

20

This concept of partial announcement could be taken further, and in many different ways: here,
we will only describe another case which may be of some interest.

Let us consider operators of the form
8% =0 — ¢

where — is the implication of Intuitionistic Dependence Logic and 6 is a formula of Dependence
Logic.

Then is not difficult to adapt our game theoretic semantics to the resulting logic D(6 —): the
rules are precisely as in “H % (¢), except that now annotations consist of teams rather than sets
and the rule for 6% is

o If pis (6%, s, A) then T(p) = I and S(p) = {(¢,5,X): M =x 0 and s € X}.
Then, we obtain a game 7 HY¥ (¢) such that the following holds:

Theorem 4.4. Let M be a first order model, let ¢ be a formula of D(0 —) and let X be a team
such that FV(¢) C Dom(X). Then M \=x ¢ < Player I1 has a uniform winning strategy for

GﬁHé\(/[(QZ)), where 6% is interpreted as the intuitionistic implication:*°

M l=x 6% < for all Y, if M |=y 0 then M =xny 1.

Proof. Suppose that M =y 6%): then, by definition, if ¥ satisfies § then X NY satisfies 1. Thus,
for each such team Y there exists a uniform winning strategy o for I7T in 7 H)Ang (¢): by gluing
them together as before, we obtain a winning strategy o for II in 9_>H§\</[(59¢). This strategy is
uniform: indeed, each oY is uniform and plays corresponding to different ¢¥ are never §%-similar,
as they have different annotations.

Conversely, suppose that IT has a uniform winning strategy in = H M(§%)): then for each team
Y such that M |y @ Player IT has a uniform winning strategy in ‘7 H (¢). By induction

hypothesis, this means that for each such Y M Exny %, and hence by definition M =x 6%y, O

This last result can be seen as a partial answer to the question whether Intuitionistic Dependence
Logic admits a natural game-theoretic semantics. However, the fact that the satisfaction relation
I= is part of the game theoretic semantics for the 6? operator hampers severely the finitistic feel
which a “good” game theoretic semantics may be required to have: in particular, in the case of
nested announcement operators §°°%6 of D(¢ —)((6% — ¥) —),11 or of the equivalent intuitionistic
dependence logic formula (¢ — ¥) — 6, our game theoretic semantics asks us to stack several layers
of calculations.

Indeed, the game rules for 7Y H M((¢ — 1b) — 0) refer to the existence of winning strategies for
Player I1 in games of the form d’H{YI (¢ — 1), whose rules on the other hand refer to the existence
of winning strategies for Player I7 in games of the form HM (¢).

10T his is not the standard definition of intuitionistic implication, but it is easily seen to be equivalent to it modulo
the downwards closure property of Dependence Logic and Intuitionistic Dependence Logic.

1With this name, we indicate the logic obtained by first adding the §% operator to D, and then adding the operator
5% to the resulting logic.

21

This may become difficultly manageable even for relatively short formulas of Intuitionistic De-
pendence Logic: it is not known to the author at the moment whether this is an unavoidable
consequence of the higher expressive power of Intuitionistic Dependence Logic or if more straight-
forward games exist for its semantics.

5 An Ehrenfeucht-Fraissé game for D(LI, V%)

In ([15], §6.6), the following semiequivalence relation between models was introduced:

Definition 5.1 (=). Let M, N be two models, and let X, Y be teams over M and N respectively.
Then (M, X) = (N,Y) if and only if

MEx ¢= Ny ¢
for all Dependence Logic formulas ¢.

In this section, I will adapt the Ehrenfeucht-Fraissé game for Dependence Logic to D(UJ, V),
where LI is the “classical disjunction” defined as

MEx ¢Uyp < MEx ¢or M Ex 1.

This operation can be uniformly defined in Dependence Logic as
¢ U := FzyFra(=(x1)A =(22) A (21 = 22 A @) V (21 # 22 A1),

assuming that we are working on models with at least two elements,'? and as ~ ((~ ¢) A (~ 1)) in
Team Logic ([16], [15]).

It also corresponds to the “blind disjunction” Vg of IF-Logic ([7]), and it can be given a game
semantics by adding to our uniformity condition the requirement that whenever two positions
(pU1),s) and (¢p L1, s') are reached during the course of two plays for the same instance of ¢ LI 1),
Player II chooses the same disjunct for both plays.

The following definitions are the obvious modifications of those of ([15], §6.6) :

Definition 5.2 (¢r(¢)). Let ¢ € D(U,VY). Then its rank qr(¢) is defined inductively as follows:
o If ¢ is a literal, qr(¢) = 0;

qr(¢ V) = max(qr(¢), qr(¥)) + 1;

qr(¢ A) = max(qr(¢), qr(¥));

qr(3zy) = qr(y) +1;

121f we want to also consider one- or zero-element, we may just define

¢UY = (V$1$2($1 = mg) AN (¢1 Vv ’(/))) Vv 31‘131‘2(:(1‘1)/\ :(CL‘Q) A\ ((331 =23 A\ d)) Vv (1‘1 ;ﬁ o N ’(,b))) :

indeed, if there are less than two elements then all teams with the same domain are the same, and hence ¢ V ¢ and
¢ U1 are equivalent on these models.

22

o qr(Vay) =qr(¥) +1;
qr(Yozy) = qr(¢) + 1;
o qr(¢ U1p) = max(qr(e), qr()).
Definition 5.3 (D, (L, V%)).
Dp(U,VY) = {¢ : ¢ is a formula of D(LU,VY) and qr(¢) < n}.

Definition 5.4 (=%). Let M, N be two models, and let X, Y be teams over M and N respectively.
Then (M, X) =% (N,Y) if and only if

MEx¢=NEy¢
for all formulas ¢ € D(U,V*).

Definition 5.5 (=%). Let M, N be two models, and let X, Y be teams over M and N respectively.
Then (M, X) =& (N,Y) if and only if

MEx ¢=NEy ¢
for all formulas ¢ € D(«) such that qr(¢) < n.

Lemma 5.1. Let M, N, X andY be as above. Then (M, X) =% (N,Y) if and only if (M, X) =&
(N,Y) for allm € N.

The following proposition is proved analogously to the corresponding result ([15], Proposition
6.48):

Proposition 5.1. A class of models K with assignments in a fized domain V is definable in
Dy (U, 0%) if and only if it is closed under =¢.

Proof. Suppose that K is {(M,X) : Dom(X) = V,M [=x ¢} for some formula ¢ € D, (L, 5%).
Then, if (M, X) € K and (M,X) =% (N,Y) then N =y ¢ too and hence (N,Y) € K: therefore,
K is closed under the = relation.

Conversely, suppose that K is closed under the = relation: then for every model (M, X) € K
and for every (N,Y) ¢ K there exists a formula ¢prx ny of rank < n such that M =x onx Ny
but N &y ¢px, ny. Then consider the formula

¢ = |_| /\ ¢MXNY

(M, X)eK (N,Y)¢K

As there exist only finitely many logically different formulas ¢ € D, (U, 0%) with FV () C V,
the conjunction and the classical disjunction in ¢ are finite and ¢ € D, (L, 6%).

Furthermore, K = {(M, X) : M |=x ¢}. Indeed, if (M, X) € K then for all (N,Y) ¢ K it holds
that M }:X (Z)MX,NY7 and if (N, Y) ¢ K then N b&y ¢MX,NY for any (M,X) e K.]

Then, for n € N, we can define the EFY(M, X, N,Y) game as follows:

23

Definition 5.6 (EFY(M,X,N,Y)). Let M, N be two models, let X, Y be teams with the same
domain over M and N respectively, let o be any (finite or infinite) cardinal and let n € N. Then
the game EFY(M,X,N,Y) is defined as follows:

o There are two players, called ¥V (Abelard) and 3 (Eloise);

e xi...xy, are variables which do not occur in Dom(X) = Dom(Y).

1...n};

The starting position is (X,Y,0);

For each position (X', Y i) with i < n, Player ¥V decides which kind of move to play, among
the following:*3

Splitting: V chooses teams X' and X" with X' U X" = X*. Then 3 chooses teams Y' and
Y with Y UY" = Y*, and ¥V decides whether the next position is (X', Y',i + 1) or
(X", Y", i +1);

Supplementation: V chooses a function F : X' — M. Then 3 chooses a function G : Y* —
N, and the next position is (X'[F/x;], Y[G/xi],i+ 1);

Duplication: The next position is (X'[M/z;], Y [N/z;],i +1);

Right-a-duplication: V chooses a set of elements B C* N. Then 3 chooses a set of ele-
ments A C* M, and the next position is (X*[A/x;],Y[B/x;],i+ 1).

e The set of all winning positions for Player 3 is W = {(X,,Y,,n) : (M, X,) =§ (N,Y,)} =
{(Xn,Yo,n): M =x, ¢ = N Ey, ¢ for all literals ¢}.

The concepts of play, complete play, strategy and winning strategy are defined in the obvious
way, and there is no uniformity condition for this game.

Theorem 5.1. Let M, N, X andY as above, and let n € N. Then (M, X) =% (N,Y) if and only
if Player 3 has a winning strategy for EEY(M,X,N,Y).

Proof. As all cases except right-a-duplication, classical disjunction and the d% operator are dealt
with precisely as in ([15], Theorem 6.44), we will only take care of these two.

The left to right direction is proved by induction over n, and by considering all possible first
moves of V.

Suppose that (M, X) =% (N,Y), and let Player V make a right-a-duplication move and choose
a set B C* N. Then there exists a set A C% M such that (M, X[A/z;]) =%, (N,Y[B/xi]):

131n order to be entirely formal, we should define T(Xi, Yi,i) =V for all such positions, introduce next positions
corresponding to the four possible choices of V, then add new positions for the subgames for splitting, supplementation
and selection. As this would increase the complexity of the notation and lead to no real advantage, we will content
ourselves with a somewhat informal definition here: the reader will be able to see without difficulty how this could
be made more exact.

24

The set P of all positions of the game is {(X*, Y i) : X* is a team on M,Y" is a team on N and i €

indeed, suppose instead that for each such set A there exists a formula ¢? of rank < n — 1 such
that M =x14/z,) &4 but N Y (B2 #4, and consider

o= || ot

ACM |Al<a

Then qr(V*z;¢) < n and M =x Y*z;¢; but since (M, X) =% (N,Y) this implies that M’ =y
V%x;¢, and thus in particular M’):X[B/xi] ¢ and thus N):X[B/x,-] 4 for some A. But this is not
possible, and thus there exists an Ay such that (M, X[Ao/z;]) =&_; (N,Y[B/z;]). By induction
hypothesis, this implies that Player 3 has a winning strategy in EEF® (M, X[Ao/zi], N,Y[B/x]),
and thus she can win the current play by choosing Ay and then playing according to this winning
strategy.

For the right to left direction, we assume that Player 3 has a winning strategy in EFY (M, X, N,Y)
and we prove, by structural induction on ¢, that if gr(¢) < n and M Ex ¢ then N =y ¢ too.

Suppose that ¢ is of the form v L0, where ¢r(¢) = max(qr(¢),qr(0)) < n and M |=x ¢. Then
by the definition of the classical disjunction, M =x 1 or M [=x 0: let us assume, without loss of
generality, that M |=x . Then, by our induction hypothesis'*, N =y ¢, and hence N |=y 9 LI @
too.

If instead ¢ is of the form V*x;1) and M =x ¢ then, by definition, for all subsets A C M such
that |[A| < o we have that M |=x[a/4,) 9. Suppose now that for some subset By € N such that
|Bo| < a, N [Ex(By/a,] i then, as gr(y) < n — 1 and by induction hypothesis, Player V has a
winning strategy in EF® | (M, X[A/z;], N,Y[Bo/x;]) for all sets A as above.!® But then Player V
can win EFY(M, X[A/z;], N,Y[By/x;]) by selecting this By and playing the strategy corresponding
to the A picked in answer by Player 3. This contradicts our assumption: therefore, there is no such
By and for all B C* N it holds that N =y /., ¥, so in conclusion B = V¥, as required. O

One may wonder if there exists an Ehrenfeucht-Fraissé game for D(U,§%). It turns out that
such a game exists, and it is obtained simply changing the right-a-duplication of EF®(M, X, N,Y)
into the following right-a-selection rule:

Right-a-selection: V chooses a variable x € Dom(X) = Dom(Y) and a set of elements B C N
such that |B| < a. Then 3 chooses a set of elements A C M with |A| < «, and the next
position is (XiieAv YxiieB7i +1).

T

The proof that this rule captures correctly the §“ connective is mirrors exactly the one for V<.

One may also wonder which connectives correspond to the left-a-duplications and left-a-selection
rules:

Left-a-duplication: V chooses a set of elements A C M such that |A| < «. Then 3 chooses a set
of elements B C N with |B| < «, and the next position is (X*[A/x;], Y[B/x;],i + 1).

14 As here we are working by structural induction on ¢ rather than by induction on ¢r(¢), the fact that gr(v) is
not necessarily smaller than gr(¢) is not an issue.

15As the EF games are finite games of perfect information which do not allow for draws, by Zermelo’s Theorem
([18]) one of the two players has a winning strategy in EF,_i(M, X[A/z;], N,Y[B/z:]). As (M, X[A/z;]) 2Y_,
(N,Y[Bo/x:]), by induction hypothesis Player 3 does not have a winning strategy. Hence, Player V does.

25

Right-a-selection: V chooses a variable x € Dom(X) = Dom(Y') and a set of elements A C M
such that |A| < a. Then 3 chooses a set of elements B C N with |B| < «, and the next

position is (X;Z_eA, Y;ieB’i +1).

However, these rules do not correspond to anything interesting - indeed, if Player V uses them then,
since (M, X) =% (N,0) for all n, M and X, Player 3 can always win the play choosing B = {),

6 Uniform Definability and Y}

We immediately state and prove the main result of this section:'®

Theorem 6.1. Let ®[Z;...5;] be a context in D of type (ny1...n). Then there exists a formula
@*(P,?l. i 7t) m 2%, where each Y; is a tuple of second order variables Yi1...Y5y, of arity n;,
such that, for all models M, teams X with domain {x1 ...xz,} and downwards closed model classes
Ky ... K with domains {yi1 ... Yin,} (1€ 1...1),

t
M Ex ®[K: ... K]« (M, Rel(X),K" ... K" =3TV; .. (N \ K'(Yij) A @ (P.Y1... V7))
i=1j=1

where Rel(X) = {(s(x1)...5(zn)) : Dom(X) = {z1...2,} and s € X} and the K are the second
order predicates {Rel(Z) : (Ms;q(;), Z") € Ki}.

Furthermore, P occurs only negatively and the Y; j occur only positively in ®*.

Proof. The proof is a straightforward induction over ®[=; ...ZE,], where each case coincides trans-
parently with one of the conditions of the recursive satisfaction relation over contexts of Definition
2.4:

o If =] =Z=;(t1...t,) for some i € 1...n, let P*(R,Y; 1) be

Vey...op(P(xr...zn) = Yia(ti ... tn));

o If ®[=] is a first order atomic literal ¢, let ®*(R) be

Vay...xp(P(xy...x0) = @);

e If ®[=] is a atomic dependence formula =(¢; ...¢,), let *(P) be

Vay...on@) . ah (P(x1...op) AP .alh)) ANty = [[T A oo Aty =t [0 /7)) —
— by = tn[2’ /7)),

where t[2’/Z] is the term obtained substituting each instance of each variable x; with an
instance of the corresponding z7;

e If ®[=]is a negated atomic dependence formula = =(t1 ... ¢,), let ®*(P) be Va1 ... xy,—P (21 ... 2p);

16 An old version of the results of this section, including Proposition 6.1 and a weaker version of Theorem 6.1, was
presented at the University of Tampere. The author wishes to thank Juha Kontinen for the suggestions he gave him
afterwards, and that have been partially incorporated in the current version of Theorem 6.1.

26

o If D[E] is U[Z] V O[Z] and U*(P', Y7 .. 7,;’)7, O©*(P",Y",...Y";) are the ¥} formulas corre-
sponding to ¥ and O, let ®*(P, Y"1 Y",...Y".Y") be

IP'P"((Voy...2nP(x1...20) — P'(xy .. 2p) VP (21 .. 20)) AUH(P Y. Y))A
A 9*(PH,W1 .. .Wt));

o If ®[F] is U[Z] A O[F] and U* (P, Y7, ...Y/), ©(P",Y",...Y",) are the X} formulas corre-

sponding to ¥ and O, let ®*(P, Y/ Y"1 ...Y";Y";) be
UH(P,Y'y...Y))NO*(P,Y",...Y"y);

o If ®F] is Iz, 1 P[E] and U*(P',Y’;...Y/) is the ¥} formula corresponding to W,'7 let
qﬁ(P,?l .. ?t) be

EIP/((Vl'l .. 1'nP(.Z'1 N xn) — Elxn_HP’(xl e xnxn+1)) A \I/*(P/,Wl .. ?tl)),

o If ®[Z] is Va, 11 P[Z] and U*(P', Y7y ...Y/) is the ©1 formula corresponding to ¥, let

O*(P,Y'1...Y";) be
AP (Va1 ... 2 P(2y ... 20) = Voui 1 P(21 .. 2p2ng1)) AUH(PL Y .. ?t’))

O]

As a consequence of this theorem, we can prove that the V! quantifier - and, hence, all ¥ and
0" operators for i € Ny - is not uniformly definable:

Proposition 6.1. The V'z quantifier is not uniformly definable in Dependence Logic.

Proof. Suppose that V!'z were uniformly definable: then there would exist a context W[K] of type
(1) such that

for all formulas ¢ € D. In particular, consider the model N of all natural numbers, with the
signature X associating a constant ¢, to each number n: since N):{(x:n)}:(x) for all n € N, we
must have that N =g ®[=(7)], and since by the above theorem

l
M E=x ®[K] < (M,Rel(X),K) =3Y11. ..Yul(/\ K(Y1;)AN®*(P,Y11...Y1,,))
j=1
where [is the representation of the model class K as a second order predicate and for some formula
®* € ¥ where P occurs only negatively and the Y; ; occur only positively, it must hold that

5
(N, Rel({0}),K) = Iaq ... Vi, (J\ K(Y1) AR (P Y1 ... Yiy,))

J=1

17 Quantification over already used variables can be dealt with in an entirely analogous way.

27

where K€ = {Rel(Z) : (Nyp, Z) € || =() lo({z})} = {Q N+ Q| = 1.
Hence there exist singletons A; = {a1 1} ... 4;, = {a1,} such that N, Rel({0}) = ®*(P, Ay ... Ay)).

But now, take b € N\{aj1...a1;,}, and define the model class K' = ||z # ol|x({z}) =
{(M,X) : Sig(M) = £,Dom(X) = {z}and z # c)'}: then the corresponding second order
predicate is

K' = {Rel(Z) : (Niz, Z) € K'} = {Q CN: b & Q).

Therefore, A; ... A;, € K'; hence,

51
(N, Rel({0}),K') = 3Y1, ... Yul(/\ K'(Y1;) A®*(P,Y11...Y1y,))

Jj=1

and thus N =g, ®[K'], or in other words N =gy @[z # cp].

But N [~Epy Vlz(z # ¢p), and hence ®[=] does not define V'z. O
Corollary 6.1. For everyn € Ny, the quantifier V'* and the operator " are not uniformly definable
in D.

References

[1] S. Abramsky and J. Vaénanen. From IF to BI, a tale of dependence and separation. ILLC
Publications, PP—2008-27, 2008.

[2] A. Batlag, L. S. Moss, and S. Solecki. Logic of public announcements and common knowledge
and private suspicions. TARK: Theoretical Aspects of Reasoning about Knowledge, 7, 1998.

[3] J.P. Burgess. A remark on Henkin sentences and their contraries. Notre Dame Journal of
Formal Logic, 3(44):185-188, 2003.

[4] F. Caicedo, X. Dechesne and T. Jannsen. Equivalence and Quantifier Rules for Logic with
Imperfect Information. Logic Journal of the IGPL, 17(1):91-129, 2009.

[5] P. Galliani. Game Values and Equilibria for Undetermined Sentences of Dependence Logic.
MSc Thesis. ILLC Publications, MoL.-2008-08, 2008.

[6] L. Henkin. Some Remarks on Infinitely Long Formulas. In Infinitistic Methods. Proc. Sympo-
sium on Foundations of Mathematics, pages 167-183. Pergamon Press, 1961.

[7] J. Hintikka. The Principles of Mathematics Revisited. Cambridge University Press, 1996.

[8] J. Hintikka and G. Sandu. Informational independence as a semantic phenomenon. In J.E
Fenstad, I.T Frolov, and R. Hilpinen, editors, Logic, methodology and philosophy of science,
pages 571-589. Elsevier, 1989.

[9] W. Hodges. Compositional Semantics for a Language of Imperfect Information. Journal of
the Interest Group in Pure and Applied Logics, 5 (4):539-563, 1997.

28

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

T.M.V. Janssen. Algebraic translations, correctness and algebraic compiler construction. The-
oretical Computer Science, (199):25-56, 1998.

T.M.V. Janssen. Independent Choices and the Interpretation of IF Logic. Journal of Logic,
Language and Information, 11:367-387, 2002.

J. Kontinen and J. Vadnanen. On definability in dependence logic. Journal of Logic, Language
and Information, 3(18):317-332, 2009.

J. Kontinen and J. Vaddndnen. A Remark on Negation of Dependence Logic. Forthcoming,
2010.

T. Tulenheimo. Independence Friendly Logic. http://plato.stanford.edu/entries/logic-if/,
2009.

J. Vaananen. Dependence Logic. Cambridge University Press, 2007.

J. Vadnanen. Team Logic. In J. van Benthem, D. Gabbay, and B. Lowe, editors, Interactive
Logic. Selected Papers from the 7th Augustus de Morgan Workshop, pages 281-302. Amsterdam
University Press, 2007.

J. van Benthem, J. van Eijck, and B. Kooi. Logics of communication and change. INFCTRL:
Information and Computation (formerly Information and Control), 204, 2006.

E. Zermelo. Uber eine Anwendung der Mengenlehre auf die Theorie des Schachspiels. In
Proceedings of the Fifth Congress of Mathematicians, volume 2, pages 501-504. Cambridge
University Press, 1913.

29

Lottery Semantics*

Pietro Galliani and Allen L. Mann

Abstract
We present a compositional semantics for a logic of imperfect information and prove its equiv-
alence to equilibrium semantics ([10]), thus extending to mixed (rather than just behavioural)
strategies part of the work of ([2], [3]).
1 Dependence-Friendly Logic

Logics of imperfect information ([4], [5], [12], [11]) are extensions of First Order Logic which allow
for more general patterns of dependence and independence between connectives. In this work, for
ease of notation we will consider Dependence Friendly Logic ([12], [2]); however, all of this can be
easily adapted to the cases of Dependence Logic ([12]) or of Independence-Friendly Logic ([5]).

Definition 1.1 (Dependence-Friendly Logic formulas). The formulas of Dependence-Friendly Logic
DF in the signature X are those generated by the grammar:

pu=Rty...ty [t=1|=¢| ¢V |Ix\ye

where n ranges over N, R ranges over all n-ary relation symbols in X, t1...t,,t and t' are terms
over the signature X, x is any variable in the infinite set Var = {x1,22...}, and V C Var.

We will freely use the standard abbreviations of ¢ A1) for ~(=¢ V =), Va\y ¢ for =3z (1)),
Jz¢ for 3z\y,.,¢ and Vg for Va\y,,¢.

Definition 1.2 (Free variables in DF). Let ¢ be any DF-Logic formula. Then its set of free
variables FV(¢) is defined inductively as follows:

o FV(Rty...ty,) = Var(t1) U...UVar(t,), where Var(t;) is the set of all variables occurring
m ti N

o FV(t=1t)=Var(t)uVar(t);
o FV(=¢)=FV(¢);
o FV(pVip) = FV(p) UFV(¢);

*This work was supported by the European Science Foundation Eurocores programme LogICCC [FP002 - Logic
for Interaction (LINT)]. The second author wishes to gratefully acknowledge the generous financial support provided
by the Academy of Finland (grant 129208) in the context of the European Science Foundation EUROCORES project
Logic for Interaction (LINT).

30

o FV(@EBu\ve) = (FV(¢)\{z}) UV.

Just as most! logics of imperfect information, the semantics of Dependence Friendly Logic may
be defined by means of semantic games:

Definition 1.3 (The game GM (¢)). Let M be a first order model of signature ., let s be a variable
assignment, and let ¢ be any DF'-Logic formula of signature ¥ with FV (¢) C Dom(s). Then the
game GM () is defined as follows:

e Positions are triples (1, s,), where 1 is an instance of a subformula of ¢, ' is an assignment
such that FV () € Dom(s") and o € {I,II}. We write P for the set of all positions of the
game; furthermore, for a € {I,II} we write P, for the set of all positions of the form

(¥, s, a).
e The starting position is (¢, s,IT);
e Given any position p, the set of its successors S(gb) is defined as follows:
If p is of the form (Rt1 sty 8 a) or (t=1t,5, a) then S(p) = 0;
If p is of the form (=,) then S(p) = {(w,s o)}, where IT* =1 and I* = I1;
15 of the form (6 8,5,a) them 5(0) = (',), (6,0}

If p is of the form (3x\y 4, §',a) then S(p) = { (¥, s'[m/x], &) : m € M}, where m ranges
over all elements of M and s'|m/x] is the assignment defined as

e v~

, B m ’fo =Y
s'lm/xz](y) = s'(y) otherwise

for ally € Dom(s") U{x};
e The set W, of winning positions for player « € {I,I1} is defined as

Wo ={(Rt1...tn, s, a): (t1(s") ... t,(s")) € RIVY U{(t =1, s,a): t(s) = t'(s)}U
U {(Rt1 tny s) (t1(s) .. tn(s")) € RMYYU{(t =1, 5,a%) : t(s) #t'(s)}.

Definition 1.4 (Play, complete play, winning play). Let M, s and ¢ be as above.

A play p of GM (@) is a finite sequence of positions p1 .. .p, such that
1. py is the initial position of GM(¢);
2. For alli <n, pi+1 € S(pi).

If furthermore p,, is a terminal position (that is, S(p,) = () then we say that P is a complete
play; in this case, we say that p is winning for Player o if and only if p, € W,.

It follows immediately from the definition of W, that every complete play of every game G ()
is winning for Player I or Player 11, and that no play is winning for both of them; in other words,
the games G (¢) thus defined are zero-sum games.

'But not necessarily all: for example, at the present time no natural semantics in terms of games of imperfect
information is known for Team Logic ([13]).

31

Definition 1.5 (Strategy, play following a strategy). Let M, s, and ¢ be as above, and let o €
{I,II}. Then a strategy o for o in GM(¢) is a function from P, to P such that

o(p) € S(p)

for allp € P,.
A play p=p1...pn is said to follow such a strategy o if and only if

Pi € Po = piy1 = o(ps)
foralliel...n—1.

These strategies will be sometimes called pure strategies, in order to distinguish them from the
mized strategies considered in the next sections.

Lemma 1.1. Let ¢ and T be two strategies for Player I and Player IT in GM(¢). Then there
exists one and only one complete play p = (0;7) of GM(¢) which follows o and T.

Definition 1.6 (Winning strategy). A strategy o for Player a in GM (@) is said to be winning if
and only if all complete plays of GM(¢) which follow o are winning for Player .

So far, the set of backslashed variables V' of our quantifiers dx\y played no role. From an
informal point of view, V specifies the set of variables on which the choice of the value for x may
depend, as the following definition makes clear:

Definition 1.7 (Uniform strategy). A strategy o for Player a in GM(¢) is uniform if and only if
for all instances of subformulas of ¢ of the form 3x\yy and for all assignments s',s" such that

e Dom(s') = Dom(s") 2 FV(Ix\y¢) and

« sl =l
it holds that
U(aw\v¢, 8/7 Oé) = U(Hfﬁ\vwa 5”7 Of).
Then we may define truth of a DF-Logic formula in terms of existence of uniform winning
strategies in the corresponding game.

Definition 1.8 (Truth of DF-Logic formulas). Let M be a first order model of signature X2, let ¢ be
a DF'-Logic formula of the same signature and let s be an assignment such that FV (¢) C Dom(s).
Then we say that ¢ is true in M according to the assignment s, and we write M |=¢ ¢, if and only
if Player IT has a uniform winning strategy in G ().

For some time, it was an open problem whether logics of imperfect information admitted a
natural compositional semantics ([5]). This was answered positively by Wilfrid Hodges ([6]), whose
argument we now show for the case of DF-Logic.

Definition 1.9 (Team). Let M be a model, and V' a set of variables. Then a team X over M with
domain V is a set of assignments with the same domain V.

32

From an informal point of view, a team? represents the knowledge a player has about the current
assignment s.
It is now possible to adapt the games G to teams:

Definition 1.10 (G¥(¢)). Let M be a first order model of signature %, let ¢ be a DF-Logic
formula of the same signature and let X be a team with FV (¢) C Dom(X). Then the game G¥ (¢)
is defined precisely as GM(¢) except for the following change to the definition of starting position:

e The starting positions are {(¢,s,II): s € X}.

The definitions of play, complete play, winning play, strategy, winning strategy and uniform
winning strategy carry over from G (¢) to G3!(¢) without any trouble®: for example, a play
p of G]\X/[(gb) is a sequence of positions pi ...p, such that p; is an initial position of G)Ag(qb) and
pit1 € S(p;) for alli=1...n — 1, and so on.

Hence, it is possible to define the following satisfaction relation over teams:

Definition 1.11 (M):f(@). Let M be a first order model of signature X, let ¢ be a DF-formula
for the same signature and let X be a team with FV(¢) C Dom(X). Then we say that X satisfies
¢ in M, and we write M =% ¢, if and only if Player I has a uniform winning strategy in G ().

Analogously, we write M == ¢ if and only if Player I has a uniform winning strategy in G% ().

Lemma 1.2. For all suitable models M, assignments s and formulas ¢,
M, d & MEL, 6.

The following theorem then shows how to define compositionally the relations =*:
Theorem 1.1 (Hodges). Let M be any first order model and let X be any suitable team. Then

1. M E% Rty...t, if and only if, for all s € X, (t1(s)...t,(s)) € RM;

2. M =% t =t if and only if, for all s € X, t(s) = t'(s);

8. M =% —¢ if and only if M =y ¢;

4. M):} oV Y if and only if there exist teams X1, Xo such that

e X C X1UXo,
o M):}*'(1 ¢, and
o M=y, ¢;
5 M EY% Jx\y ¢ if and only if there exists a function F': X — M such that M [=x(p/a) ¢,

where
X[F/a] ={s[F(s)/a] : s € X},

and furthermore F' depends only on V', in the sense that

Vs,s' € X, if sjy = 5\,\/ then F(s) = F(s').

2Hodges ([6]) calls a winning team a trump, and a losing team a cotrump; hence the name trump semantics.
Vaanédnen ([12]) introduces the term team.
3 Although, of course, Lemma 1.1 does not hold anymore, as there are many different possible starting positions.

33

Furthermore,

1.

AT I

M =% Rty ...t, if and only if, for all s € X, (t1(s)...ta(s)) & RM;
M 5 t =t if and only if, for all s € X, t(s) # t'(s);

M =5 ~¢ if and only if M =% ¢;

M 5 ¢V if and only if M =% ¢ and M =% 1;

M Ex Jv\y ¢ if and only if M):)_([M/x} ¢, where

X[M/z] ={s[m/x]: s € X and m € M}.

We finish this section with a few general comments about logics of imperfect information and
Hodges’ construction that will be of some use in the rest of the work.

e The principal insight that can be found in Hodges’ construction consists in the passage from

assignments to teams, and from the games G (¢) to the games G¥(¢). By increasing the
complexity of the semantical objects upon which the satisfaction relation is predicated, he
managed to let the truth condition of any formula be a function of the truth conditions of the
components; or, and by the above theorem this is the same, he managed to let the existence
of uniform winning strategies for G% (¢) be a function of the existence of uniform winning
strategies for games corresponding to the subformulas of ¢.

The fact that “positive satisfiability” and “negative satisfiability” had to be considered sep-
arately is a consequence of the well-known fact that the law of the excluded middle does not
hold in logics of imperfect information ([5]).

A typical example of this can be seen by considering the formula

¢ :=Vx(Fyp)(z =y),
corresponding to the game

1. Player I (Abélard) picks an element m € M;
2. Player I1 (Eloise) picks, independently from the value of m, an element n € M;
3. Player II wins if m = n, otherwise Player I wins.
It can be easily seen that, if the model M has at least two elements, neither Abélard nor

Eloise? have a winning strategy for the game G%}(gb); and indeed, by applying Hodges’
compositional semantics one can verify that

M| > 1= M ey 6, M g, 6.

“In the rest of this work, we will use “Abélard and Eloise” or “Player I and Player II” interchangeably, with a
preference for the latter.

34

e There is an asymmetry between the rules for positive satisfiability and those for negative sat-
isfiability. Not only the conditions for positive satisfiability of disjunction and quantification
are formally different from those for the negative satisfiability of the same connectives, but
the rule for M =5 32\ ¢ does not even mention the set of variables V!

The reason for this is that restricting what information is accessible to Abélard does not
influence in any way the existence of uniform winning strategies for Eloise: if she can guarantee
a victory against all “blind” strategies of Abélard, she can also guarantee a victory if Abélard
has access to all possible information about her moves. As the converse is obvious, this implies
that - as long as we are only concerned with the existence of winning strategies of Eloise, that
is, with positive satisfaction - slashed universal quantification behaves precisely as unslashed
universal quantification: if ¢ is any formula, and ¢* is obtained from ¢ by substituting each
negatively occurring subformula 3z\y+ with Jz¢*, we have that

MY ¢+ My ¢

The same phenomenon would occur if we added to our language “backslashed disjunctions”
¢ Vy ¢: one could verify that M |:} ¢ Vy v if and only if there exist teams X7 and X5 such
that

X C XU Xy;

- MY, ¢

M X, ¥

For all 5,8 € X, if sy = 3\/\/ and s € X; then s’ € X; too

but M =y ¢ Vy ¢ if and only if M =y ¢ and M =5 1.

For simplicity reasons, the backslashed disjunction connectives will not be considered in the
rest of this work; they could however be added without much difficulty, if one were so inclined,
by generalizing the notion of splitting function (Definition 4.4) in order to be able to require
a splitting function Sp to be determined by a set V' of variables.

2 Equilibrium Semantics

As we saw, it is possible for a formula ¢ of DF-Logic to be neither true nor false in a model M
and with respect to a team X, and it is hence possible that neither player has a uniform winning
strategy in the corresponding game G/ ().

Hence, as Miklos Ajtai first noticed ([1]), it may be worthwhile to ask what is the value of the
game when we allow both player to randomize their strategies. This intuition was made more precise
and turned into a formal definition in ([9]); later, ([2]) developed - independently from Sevenster’s
result - a compositional semantics for Probabilistic Dependence Logic and proved the equivalence
between the values it computes and those of Behavioural Nash Equilibria for the corresponding
semantic games.?

5 In a behavioural strategy, at each stage of the game the active player chooses a probability distribution for the

35

Independently from Galliani, and working with mixed strategies rather than with behavioural
ones, Sevenster and Sandu then defined Equilibrium Semantics for IF-Logic in ([10]) and proved
a number of results about its expressive power and the complexity of computing these equilibria;
however, no compositional semantics equivalent to Equilibrium Semantics was presented.

In the rest of this section, we will adapt Sevenster and Sandu’s approach to D F-Logic; then, in
the next two, we will extend Hodges’ approach from the usual “Winning Strategy Semantics” to
Equilibrium Semantics, thus deriving a compositional semantics which is equivalent to it.

From now on, when we talk about strategies we will always implicitly require them to be
uniform, unless otherwise specified.

Definition 2.1 (Value of a pair of pure strategies). Let M be a finite model of signature X, let s
be an assignment, and let ¢ be any DF-Logic formula with FV (¢) C Dom(s). Then, for any two
strategies o and T for I and II in GM(¢), we define the value of this pair (o,7) as

M (40, 7) = 1 if (o;7) is winning for II,
2T = 00 if (o;7) is winning for I

where (o;7) is the unique play of GM(¢) in which Player I follows o and Player II follows T.

Definition 2.2 (Mixed Strategy). Let M be a finite model of signature ¥, let s be an assignment,
and let ¢ be any DF-Logic formula with FV(¢) C Dom(s). Then a mixed strategy for Player
o € {I,II} in the game GM(¢) is a probability distribution over all pure strategies for o in the
same game, that is, a function from pure strategies for a to [0,1] such that

Z{u(a) - 0 is a pure strategy for o in GM(¢)} = 1.

Definition 2.3 (Value of a pair of strategies). Let u,v be two mixed strategies for Players I and
IT in GM(¢), where M, s and ¢ are as above. Then the value of the pair of strategies for Player

II s
M (s p, v ZZ (VM (¢50,7)

next position, whereas in a mixed strategy the player picks a pure (deterministic) strategy at the beginning of the
game and then plays according to it.

It is not difficult to see that all behavioural strategies correspond to mixed strategies, in the sense that for every
behavioural strategy v there exists a mixed strategy 4’ such that the payoff of the strategy profile (v, p) is equal to
that of the strategy profile (7', p) for all pure strategies (and, hence, also for all mixed and for all behavioral strategies)
p of the other player. Moreover, Kuhn’ Theorem ([7]) states that in all games of perfect recall (that is, those in which
a player has always access to the values of the choices previously made by him/her) all mixed strategies correspond
to behavioural strategies.

However, our semantic games are not necessarily games of perfect recall, and hence Kuhn’s Theorem does not hold:
for example, if the domain of the model M contains two elements a and b and ¢ is FxIy\g(z = y) then in the game
Gé”(d)) the mixed strategy 1/2(x := a,y := a) + 1/2(x := b,y := b) does not correspond to any behavioural strategy.

Choosing between considering mixed and behavioural strategies corresponds to choosing a specific concept of
dependence and independence between variables: for example, one may ask whether, according to the desired notion
of dependence and to the probability distribution over assignments induced by the above mixed strategy, the values
of x and y are independent on each other.

However, it must be stressed that the Minimax theorem only guarantees the existence of mized strategy equilibria
for semantic games G (¢), and only for finite models: if we are working with behavioural strategies or infinite models
then, in general, there is no guarantee that an equilibrium exists.

36

where o ranges over all pure strategies of Player I in Gé\/[(qﬁ) and T ranges over all pure strategies
of Player IT in GM(¢).

Definition 2.4 (Nash Equilibrium). Let GM(¢), i and v be as above. Then we say that the pair
(u,v) is a Nash Equilibrium if

e For all mized strategies ji' for Player I in GM(¢), VM (¢; u,v) < VM(p; i/, v);
e For all mized strategies V' for Player IT in GM(¢), VM (¢; u,v) > VM (¢; p, v/');

Lemma 2.1. If (u,v) and (i',v') are equilibria in GM(¢) then VM (p;u,v) = VM (g, v') =
VM (s v) = VM (3, v/).

Proof. By definition of equilibrium,
M5 p,v) <VM(gs i/ v) < VM (s 0)

where the first inequality comes from (u,r) being a Nash equilibrium, and the second one comes
from (', 1) being a Nash equilibrium.
Analogously,
Mg ") < VM (¢ p,0') < VM (G5 1,v)
and the result follows. O

The following is a restatement of the Minimax Theorem ([8]) for our semantic games:

Theorem 2.1. Let M be a finite model of signature 33, let ¢ be a DF-Logic formula and let s be
an assignment with FV(¢) C Dom(s). Then there exist two mized strategies u, v for Players I
and I in GM(¢) such that (u,v) is a Nash equilibrium.

These results justify the following definition (which is simply that of [10], adapted to the lan-
guage of Dependence Friendly Logic):

Definition 2.5 (Equilibrium Semantics). Let M, s and ¢ be as above. Then the value VM (¢) of ¢
in M according to s is VM (¢; u,v) where (u,v) is a mized strategy Nash equilibrium over GM (¢).

Example 2.1. Let us consider again the formula

¢ == Vrdyy(z =y)

and let M be a model with n elements.
Then VwM(d)) = 1/n: indeed, for any m € M let T™ be the strategy for Player 11 defined as
™" (Jpo(z = y), s, 1) = m, for all assignments s

and let v be such that v(7™) = 1/n for allm € M.

Then for all mized strategies ' of Player I it holds that VM (¢; p/,v) = 1/n: indeed, if x{c) is
the value that Player I assigns to x according to the pure strategy o then

VM (p; 4, v) Zu Z VWM(pio,7) = Z,u ZVM ¢, o, /n—Zu)-1/n=1/n

meM

37

where we used the fact that

Moo w1 ifz{o) =m;
Vit (¢i0,7)_{ 0 otherwise.

By the exact same argument one can show that if pu(o™) = 1/n for all m € M, where o™ is
the pure strategy for Player I which assigns the value m to x, VM (¢;u,v') = 1/n for all mived
strategies V' of Player II; hence, (u,v) is a Nash equilibrium, and

VM(¢) = VM (¢ v) = 1/n.

3 Lottery Augmented Games

In this section and in the next one we will adapt Hodges’ construction to Equilibrium Semantics
for DF-Logic, thus obtaining an equivalent compositional semantics.

The main obstacle to doing this is the fact that mixed strategies are complex objects, much
more so than pure strategies or even behavioral strategies: in particular, the behaviours that a
mixed strategy p induces on the subgames cannot, in general, be represented as mixed strategies
over the information partitions of the subgames.

Example 3.1. Let the domain of M be {a,b}, let ¢ = JxIy\p(x = y), and consider the mized
strateqy
v=1/2(x:=a,y:=a)+1/2(x :=b,y :=)

in the game GS"(gb).G

Over the two subgames corresponding to 3y\g(z = y), which are indistinguishable from the point
of view of Player I1, v induces the behaviour “if x = a, let y = a; if instead x = b, let y = b”. But
this is not expressible as a mized strategy, since the choice of y is supposed to be independent on
the choice of x!

Taking a hint from Hodges’ construction, we sidestep this issue by increasing the complexity
of our games, thus turning the mixed strategies of the original game into pure strategies for the
modified game, which we will then be able to carry over to the subgames in a more direct way.

The following observation can be used both as the starting point and as justification of the
change that we will make to the definition of the games G (¢):

Definition 3.1 (Graphical representation of mixed strategies). Let o', 02,...0" be an enumeration
of all pure strategies of Player o € {I, 1T} in GM(¢), where M is finite, and let i be a mized strategy
for a in the same game.

Then we can represent the strategy p as a partition A of the unit segment in n intervals
Aq ... A, where the length of each A; is exactly (o).

SHere, as in Footnote 5, (x := a,y := a) is the pure strategy 71 which assigns the value a to both 2 and y, (z :=
b,y := b) is the pure strategy 72 which assigns the value b to both z and y, and 1/2(x := a,y := a)+1/2(z := b,y :=b)
is the mixed strategy which selects 71 and 72 with equal probability 1/2.

38

Figure 3.1: Graphical representation of a mixed strategy

A1XBQ AQXBQ AgXBQ

Figure 3.2: The graphical representation of a strategy profile

Given this representation, we can then recover our probability distribution by considering, for
each i = 1...n and according to the uniform distribution over [0, 1], the probability that = € A;:
indeed,

Prob(z € A;) = / dzx = (o).
A;
Definition 3.2 (Graphical representation of strategy profiles). Let p and v be two mized strategies
for Player I and Player II in GM(¢), and let A = (A;)icr, B = (Bj)jecs be the representations of
w and v as partitions of the unit intervals.

Then consider the partition (A; X Bj)ier jes of the unit square [0,1]%: we say that this partition
is a representation of the strategy profile (u,v).

For any i € I and j € J, the area of A; x B; (and, hence, the probability that a point in the
unit square, picked according to the uniform probability distribution, belongs to it) is given by
fAixBj dxdy = fAi dz - fBj dy = pu(c®)v(77). Hence the following result holds:

Proposition 3.1 (Values of strategy profiles as measures). Let M be a finite model of signature
Y, let ¢ be a DF-Logic formula in the same signature, and let s be an assignment with F'V (¢) C

39

A1><BQ AQXBQ A3X32
I wins I wins II wins

pu(th)
A1><Bl AQXBl A3><Bl
1T wins I wins I wins
0 1 1 2
0 p(o?) plo?) +p(c”) 1

Figure 3.3: The same profile represented in Figure 3.2, but with the winning region for Player 17
grayed out

Dom(s). Then, if A= (A)icr and B = (Bj)jcs are the representations of p and v and define the
subset Wiy C [0,1]? as
Wri(A,B) = {(a,b) € [0,1)>: Ji € I,j € J s.t. a € A;,b € B and 1T wins (¢';77)} =
= Jtdi x B; : VM (00, 77) =1}

we have that

VM (s 1, v) = / dady.

Wir(A,B)
Proof.
VM (v) =3 uo () VM (g0, 7)) =YY VM (450t 1) / drdy = / dzdy.
iel jeJ il jeJ AixBj Wrr(A,B)

O

At this point, it may help the reader’s intuition to think of Players I and II not as single
players, but as coalitions of players whose interests are aligned. Before a given play of the game,
each coalition is allowed to come to an agreement about which pure strategy they will use (possibly
with the aid of a coin-flip or the roll of a die). Once play begins no further coordination between
the players is allowed; however, during play some players’ actions may be observed by other players.
The players are allowed to use their observations when deciding how to act.

For example, imagine two American football teams facing each other on the field. When the
clock is stopped, the coach of the team on offense calls the play and relays it to the quarterback.

40

At the same time, the defensive coach chooses a defense and informs the middle linebacker. Both
sides form a huddle. The quarterback tells the offense which play was called, taking care not to let
the defense overhear. On the other side of the ball, the middle linebacker tells the defense how to
line up. Once the ball is snapped, the players execute their assignments more or less independently,
reacting as best they can to what they see happening on the field. For instance, if the middle
linebacker sees the quarterback hand the ball off to the running back, he will try to tackle him,
whereas if the he sees the quarterback drop back to pass, he will fall back into pass coverage.

Now imagine the members of each coalition are dispersed around the globe so that they are
unable to gather together to coordinate their strategies. For example, suppose that Player I is a
team of CIA agents, and Player I1 is a group of KGB agents. Before leaving headquarters, each
group distributes a code book to its members. Once in the field, the agents await a signal indicating
which strategy they should execute. For example, if, at a certain time, BBC Radio 4 broadcasts
an advertisement for a non-existent brand of laundry detergent, the CIA agents will execute the
strategy on page 19 of their code book. At approximately the same time, Soviet state television
broadcasts an homage to Vladimir Lenin containing a certain agreed-upon word, telling the KGB
agents to execute the strategy on page 42 of their code book. During the course of the operation
a given CIA agent may be able to observe the actions taken by some of her fellow agents, as well
as the opposing agents, before executing her assignment. Her actions may be observed in turn and
affect subsequent choices made by friend and foe alike.

In terms of our mixed-strategy diagrams, we can think of the real number a as encoding a
signal to Player I, and b as encoding a signal to Player I1; and these signals allow each coalition
to coordinate its pure strategy without leaking any information to their opponents. In order to
formalize such signals, we define a new version of the extensive game that adds two random moves
the beginning of each play in order to extract the “lottery numbers” a and b, and we adapt Hodges’
definition of team in order to represent the partial plays associated to each pair of lottery numbers.

Definition 3.3 (Grids, functions respecting grids). A grid is a pair (A, B) of finite, measurable
partitions of [0,1]. A partial function H on [0,1]? is said to respect such a grid if it is constant
over the rectangles A x B for all A € A and B € B, that is,

a,d € Ac Aandb,b € BeB imply H(a,b)= H(d,V).

Here we allow ourselves to write H(a,b) = H(a',b') in the case when both H(a,b) and H(da',b') are
undefined.

The following definition is for Equilibrium Semantics what the concept of Team is for Winning
Strategy Semantics (that is, for the usual game semantics in terms of winning strategies for logics
of imperfect information):

Definition 3.4 (Strategy guide). Let V be a finite set of variables, let M be a suitable finite
structure, and let (A, B) be a grid. A strategy guide with assignments over V in the model M is a

partial function H :[0,1]* — MYV that sends points in the unit square to assignments with domain
V' and respects (A, B).

Definition 3.5 (Lottery-augmented games). Let M be a finite model of signature 3, let ¢ be a
DF-Logic formula, and let H be a strategy guide with assignments over some V 2 FV(¢).

Then we define the game G (¢) as follows:

41

Ayl T2 D T:a x:b
y:b y:a yra
A T:a xT:c xT:c
y:c y:b y:b
By By B3

Figure 3.4: Graphical representation of a strategy guide

1. The set of all positions of the game is given by P = {(1, s, @) : 1 is an instance of a subformula
of ¢, s is an assignment with Dom(s) 2 FV (¢) and o € {I,I1}}.

As before, we write Py for the positions in the form (1, s,I) and Py for the positions in the
form (1, s,II).

2. At the beginning of the play, a pair (a,b) € [0,1]? is extracted according to the uniform
distribution. If H(a,b) = s, the initial position is (¢, s,11); if instead H(a,b) is undefined,
the play ends with a draw (neither player receives any payoff).

3. The set S(p) of the successors of a given position and the set Wy, of the winning positions for
player a € {I, 11} is exactly as for the game GM(¢) (Definition 1.3).

Definition 3.6 ((a,b)-play, Complete play, Winning play). Let M, H and ¢ be as above, and let
(a,b) € Dom(H). Then an (a,b)-play is a sequence p; ...py, for some n >0, where

o p1 = (¢, H(a,b),II);
o Foralli<n, pi+1 € S(p;).

Such a play is complete if p, is a terminal position, and is winning for Player a € {I,I1} if
and only if the last position is winning for «, in the sense of Definition 1.35.

Definition 3.7 (Lottery-augmented strategy, Play following a strategy). A strategy o for Player
I in GM(¢) is a family {0, : a € [0,1]}, where each o, is a uniform strategy for GAH4(a *)(¢), and

H(a,*) ={H(a,b) : b e [0,1], H(a,b) is defined}.

42

Player I is said to follow a strategy o in an (a,b)-play p1 . . . pn if and only if, for alli € 1...n—1,
pi € Pr = piy1 = 0a(pi).

Analogously, a strategy T for Player IT in G¥ (¢) is a family {r, : b € [0,1]}, where each T, is
a uniform strategy for G]\H/[(* b)(¢) and

H(x,b) ={H(a,b) : a € [0,1], H(a,b) is defined}.
and Player I1 is said to follow T in an (a,b)-play p1...pn if and only if
pi € Prr = piv1 = 7(pi)-
Given two strategies o, T and given (a,b) € Dom(H), we let
(@57)ap = (0a;)
where (oq4;7) is the only play of G%(a,b)(qﬁ) in which Player I follows o, and Player IT follows .

Definition 3.8 (Measurable strategy). A strategy o (respectively T) for Player I (respectively IT)
in QJ\H‘[(¢) is said to be measurable if and only if, for the parameter a (respectively b) ranging over
[0, 1], the equivalence classes

lalls = {a’ € [0,1] : 04 = 04/}

(respectively, ||b|lr = {V' € [0,1] : 7, = Tv}) partition [0,1] in finitely many Lebesque-measurable
intervals.

Definition 3.9 (Winning regions). Let M be a finite first order model, let H be a strategy gquide
over a set V' of variables, let ¢ be a DF-Logic formula with FV(¢) C V', and let o, T be strategies
for Players I and IT over GM ().

Then the winning regions for Player I and Player II are given by

Wit (¢;0,7) = {(a,b) : Player I wins (c;T)q}

and
Wit (¢;0,7) = {(a,b) : Player IT wins (0;7)ap}-

For ease of notation, we will write WI{\I/[(¢;0,7) for WH%(QS; a,7) and W%(qﬁ; a,T) for WI%((;b; a,T).
Lemma 3.1. W%(qﬁ;g, T)U T//‘\/I]}/[((b;g, 1) = Dom(H) and W%((ﬁ;g,)N W%(@g, T)=10.

Proof. Let a,b € R be such that H(a,b) is defined. Then the play (g;7), is winning for either
Player I or Player I, and hence

(a,0) € Wi (30,7) UWH (650, 7).
Furthermore, no play (g, 7), is winning for both players, and therefore

W (¢;0,7) "W (¢;0,7) = 0.

43

Definition 3.10 (Value of a strategy profile). Let M, H, ¢, o and T be as above. Then the value
of the strategy profile (o, T) is the probability that, once the point (a,b) € [0,1]? has been extracted
according to the uniform distribution, the play (o, T)p,q 15 winning for Player 11, that is,

V¥ (pi0,1) = / dxdy.
Wi (¢50,1)

Analogously,
~M

Vy(po,1)= /A dxdy.
Wi (¢io0,1)

Proposition 3.2. Let M, H, ¢, o and T be as above. Then

V¥ (di0,7) + Vi ($i0.7) = / dzdy.
Dom(H)

Proof. By Lemma 3.1,

/ dxdy = / - dxdy = / dxdy + /A dxdy =
Dom(H) WM(¢;0,0)UWM (¢;0,7) WM(pio,7) WM (¢;0,7)

~M
=V¥(p;0,7) + Vi ($50,7)

as required. O

Definition 3.11 (Equilibria in G¥ (¢)). Let M, H and ¢ be as usual. Then a couple of strategies
o, T for G¥(¢) are said to be in equilibrium if and only if

Vil (¢30,17") < Vi (¢30.7) < Vi (¢:0,7)
for all pairs of strategies o’ and T'.
Lemma 3.2. Let (¢0,7) and (¢, 7') be equilibria for G¥ (¢). Then
Vil (¢;0,7) = Vi (¢;0', 7).
Definition 3.12 (V¥ (¢)). Suppose that (o, 7) is an equilibrium in G¥(¢): then we say that
Vil (¢) = Vif (¢;0,7).

Definition 3.13 (Hj). Let s be any variable assignment over a finite model M. Then we define
H as the unique strategy guide such that

H,(a,b) = s for all (a,b) € [0,1]%.

As the graphical representation of mixed strategies suggests, mixed strategies in a game G ()
correspond precisely to (pure, uniform) strategies in QAHi (¢), and vice versa:

44

Definition 3.14 (Lot(p), Lot(v)). Let ¢ be a DF-Logic formula, let M be a suitable finite structure,

let s be a variable assignment with domain M, let ot ...o™ be an enumeration of all (pure, uniform)

strategies for Player I in GM(¢) and let i be a mived strategy for Player I in the same game.
Then let Ay ... A, be the segments of the unit interval defined as

Ay =0, pu(ch));
Ay = [u(oh), u(oh) + p(0?));

n—1

> pu(eM),1

k=1

and let Lot(p) be the strategy for Player I in QJ}I/[S (¢) such that, for all i € 1...n and for all
a € A, Lot(in), = 0.
Analogously, if ' ... T
strategy we let By ... By, be the segments of the unit interval defined as
By = [0,v(7h));
By = (), v(T") + v(7%));

Ay =

™ are the pure strategies for Player I1 in the same game and v is a mized

k=1
and we let the strategy Lot(v) for Player II in Q%(qb) be such that, for all j € 1...m and for all
b€ Bj, Lot(v), = 77.

Proposition 3.3. Let ¢ be a DF-Logic formula, let M be a suitable finite structure, let s be an
assignment with FV (¢) € Dom(s), and let u, v be two mized strategies for Players I and II in

GY(9).
Then

VM (s p,v) = Vi (65 Lot (), Lot(v)).
Proof. By definition,
V¥ (¢: Lot(u), Lot(v)) = /

WL (¢;Lot (1), Lot (T

dedy = % VM(¢50',7) / dady =
)

icl jeJ AixBj
= w@ (VM (g0t) = VM (g).
iel jeJ
OJ

Definition 3.15. Mixz(c), Mixz(r) Let o and T be strategies for Players I and IT in Q%S(qﬁ) Then
Mix(c) and Mix(r) are the mized strategies for Players I and IT in GM(¢) defined as

Miz(o)(o") = / da;

{a€[0,1]:04=0"}

Mia(r)(+7) = / dy

{be[0,1]:m,=77}

45

for all pure strategies o* and 7.

Proposition 3.4. Let M, s, and ¢ be as usual, and let o, T be strategies for Player I and Player
II in Q%S (¢). Then

Vil (¢:0.1) = VM (¢; Miz(), Mix(1)).
Proof. For each suitable i and j, let

A? ={a€[0,1]:0,=0"}

and A
By ={be0,1]: 7 =1}
Then
v 6o = | dady =YY VM (6i0',) [dady
Wiy (¢i0.7) Zl: Zj: AZx BT
=3 Mix(o)(o"), Miz(z)(r))VM (50, 77) = VM (¢; Miw(o), Mix(z))
A

as required. 0

Lemma 3.3. Let ji and v be mized strategies for Players I and IT in GM(¢). Then Mix(Lot(u)) =
w and Miz(Lot(v)) = v.

Proof. By definition, for all pure strategies o of Player I

Miz(Lot(p))(o") = / dx = / dx = p(o?)
{a:Lot(u)q=0"} Al
and
Miz(Lot(v))(t7) = / dy = / dy = v(1?)
{b:Lot(u)p=07} Bi
where A and BJ are the sets used in Definition 3.14. O

In general, we do not know if there exists an equilibrium in a game QJ\H4 (¢). However, the
following corollary follows from Theorem 2.1, Propositions 3.3 and 3.4 and Lemma 3.3:

Corollary 3.1. For all formulas ¢, finite models M and assignments s with FV (¢) C Dom(s),
the game QJ\Hi(qﬁ) has an equilibrium and

VM(p) = VI (¢).

Proof. By Theorem 2.1, there exists a Nash equilibrium (u, v) for the game G (¢). Consider now
the strategy profile (Lot(u), Lot(v)) for QMS(<Z>): by Proposition 3.3,

Vi (5 Lot(p), Lot(v)) = VM (¢; p,v) = VM (9).

46

Moreover, (Lot(u), Lot(v)) is an equilibrium for Q]\H/{g(gb): indeed, suppose that
V3 (650, Lot(v)) < Vi (¢; Lot(p), Lot(v)).
Then

VM (3 Mix(o'),v) = VM(¢; Miz(c'), Miz(Lot(v))) = Vi (¢;0', Lot(v)) <
< Vi1 (¢; Lot(p), Lot(v)) = VM (¢; p,v),

where the first equality follows from Lemma 3.3, the second follows from Proposition 3.4 and the
third follows from Proposition 3.3: and therefore, (u,r) is not a Nash equilibrium for the game
GM (), contradicting our assumption.
Analogously, if
Vi (¢; Lot(p), ') > Vi (¢; Lot(u), Lot(v))

then
VM (¢ p, Miz(r')) = VM (¢ Miz(Lot(p)), Miz(r')) = Vi (¢; Lot(p), ') >
> Vi (¢; Lot(p), Lot(v)) = VM (¢ p, v)

and again (y,v) is not a Nash equilibrium for G (¢).
So in conclusion (Lot(u), Lot(v)) is an equilibrium and

Vil (¢) = Vi (¢ Lot (), Lot(v)),

as required. O

4 A compositional semantics for Lottery games

In this section, we will develop a similar result to Theorem 1.1 for lottery-augmented games, thus
finding a compositional semantics for the computation of VA (¢) (if it exists). By the last corollary
of the previous section, this will also give us a compositional semantics for the computation of the
Nash equilibria VM (¢).

We will need to consider three operations over strategy guides:

Definition 4.1 (Transposition). Let M be a finite model, let V' C Var, and let H be a strategy
guide over the set V of variables. Then the transpose H' of H is given by

HY(b,a) = H(a,b)
for all (a,b) € Dom(H).

Lemma 4.1. If H is a strategy guide, H' is a strategy guide too. Furthermore,

/ dxdy = / dxdy.
Dom(H) Dom(HT)

47

Proof. Let (A, B) be a grid for H. Then (B, A) is a grid for H”: indeed, for all b,b’ € B € B and
a,a’ € A € A we have that H(a,b) = H(a’,b') and hence that HT (b,a) = HY (b/,d’), as required.

The proof of the equivalence [Dom(r) drdy = / Dom(pry drdy is trivial. O

Definition 4.2 (Supplementation function, measurable supplementation function). Let M be a
finite model and let V. C Var. Then a family of functions F = {F, : MV — M | b € [0,1]} is a
supplementation function over the model M and the domain X, and it is measurable if and only
if, for every b € [0,1], the equivalence classes

Jblle = (¥ € [0,1): Fy = Fy}

partition [0,1] in finitely many measurable sets.
Given a set of variables W C V', we say that F is determined by W if and only if, for all
assignments s, s’ with domain V and all b € [0, 1],

S\w = s"W = Fy(s) = Fp(s).

Definition 4.3 (Supplementation). Let M be a finite model, let V- C Var, let H be a strategy
guide over the set V of variables, let x € Var and let F be a supplementation function over M with
domain V. Then H[F/x] is defined as

H[F/x)(a,b) = H(a,b)[Fy(H(a,b))/x]
for all a,b € [0, 1].

Lemma 4.2. If H is a strategy guide and F is a measurable supplementation function, then H[F /x|
s a strategy guide.

Proof. Let (A, B) be a grid that H respects, and define
B ={Bn|bllr:bel0,1]}

where, as before,

bl = {b € [0,1] : F(t') = F(b)}.

Since each B N ||b]|r is measurable, (A, B’) is a grid; furthermore, if a,a’ € A € A and b,V €
BeBN|bllr € B, then

H(F/x|(a,b) = H(a,b)[Fy(H(a,b))/x] = H(d',V')[Fy (H(d', b)) /2] = H[F/z](a',V)
and therefore H[F/x| respects (A, B'). O

Definition 4.4 (Splitting function). Let M be a finite model and let V' be a set of variables. Then
a splitting function Sp over M with domain V is a family of functions {Spy : MV — {L, R}}.
Such a splitting function is measurable if and only if, for every b € [0,1], the equivalence classes

16]|sp = {¥' €[0,1] : Spy = Spy }

partition [0, 1] into finitely many measurable sets.

48

Definition 4.5 (Splitting). Let M be a finite model, let V be a set of variables, let H be a strategy
guide over M and V', and let Sp be a splitting function over M with domain V. Then we say that
Sp splits H into Hy and Hs, where

Dom(Hy) = {(a,b) € Dom(H) : Spy(H (a,b)) = L},
Hy(a,b) = H(a,b) for all (a,b) € Dom(H;)

and

Dom(Hs) = {(a,b) € Dom(H) : Spy(H (a,b)) = R},
Hs(a,b) = H(a,b) for all (a,b) € Dom(Hz).

Lemma 4.3. If H is a strategy guide, Sp is a measurable splitting function and Sp splits H into
Hy and Hy then Hy and Ho are strategy guides.

Proof. Let (A, B) be a grid that H respects, and define
B' ={Bn|b|s,: B € B}

where ||b||gp is defined as in Definition 4.4.

Then each B N ||b||sp is measurable, and hence (A, B') is a grid.

Let us verify that H; and Hs respect (A,B’). Suppose that a,a’ € A € A and b,V €
B € BN |bllsp € B, and furthermore that (a,b),(a’,t') € Dom(H): then, since H respects
(A,B) and B’ is a refinement of B, H(a,b) = H(d',b'). Moreover, as b/ € ||b||sp, we have that
Spb(H(CL, b)) = Spb’(H(a/v b/))

By the definition of splitting, this implies that (a,b) € H; < (a/,V) € H; for i € {1,2};
furthermore, if (a,b), (a/,b') € H; we have that H;(a,b) = H(a,b) = H(d,V') = H;(d,V), as
required. O

We may now write and prove the main result of this work:

Theorem 4.1. Let M be a finite model, let ¢ be a formula of the same signature, and let H be
a strategy guide over the model M and the variables V-2 FV(¢). Furthermore, suppose that the
game G¥(¢) has an equilibrium.

Then

1. If ¢ is atomic,
V(o) = | dody
¢oH

where

¢poH = {(a,b) € Dom(H) : M Epyp) ¢};

2. If ¢ is —,
lﬁwzﬁ(mmmw%w;

49

3. If ¢ is 1 Vo,
Vir' (9) = maox(Vigy (v1) + Vi, (v2))

where the maximum is taken over all measurable splitting functions Sp, and Hy, Hy are the
strategy guides that H is split into according to Sp;

4. If ¢ is v\,
Vii' (¢) = max Vif{p/ ()

where the mazximum is taken over all supplementing functions F which are determined by W.

Proof. 1. If ¢ is atomic, the game ends as soon as the initial assignment s = H (a, b) is calculated,
and therefore the only strategies available to the two players are the trivial ones o and 7. If
H(a,b) is undefined, neither player receives any payoff; otherwise, Player 1T wins if and only
if M =, ¢. Thus the set of pairs (a,b) such that Player I1 wins the play (g, 7g)ap is

Wi (9. 70) = {(a,b) : IT wins (¢; To)ap} = {(a,b) € Dom(H) : M Ep(ap) ¢} = ¢ o H.
Then, by definition,

Vit (¢) = Vi (¢3 09, 7o) =/ dxdy :/ dzdy,
W (¢300,70) doH

as required.

2. Suppose that ¢ is = and let (¢,7) be an equilibrium for G¥(—). Then consider the
strategies 77, o for QJI‘{JT (1) defined as

TbT(easaI) = Tb(aasvll);
ol(0,s,IT) = 0,(0,s,1)

for all subformulas 6 of ¢: then every (a,b)-play (¢,7)ap of G} (4) contains a (b, a)-play
(T, gT)b@ of Q%T with the roles of the players swapped, and hence
Wi (= a3 7) = Wi (=5 "5 67).

Therefore,

Vi) = [dody = | ddy =
W (—=s0,7) WM (T o T)

—[sy~ | dody= [dody - Vil (17 7).
Dom(HT) WM (T o) Dom(H)

Furthermore, (77, o) is an equilibrium for Q%T (v): indeed, if it were the case that

Ve Wi p.o”) < Vile (i, o)

50

for some strategy p of Player I then, for the strategy p’ of Player IT in Q% (=) defined as

p;)(_'wv‘g?II) = (%&D;
op(0,8,11) = py(0, s, I) for all subformulas € of 1

it would hold that Wl (—;0,p') = WIJ}/[T (¥; p, o) and hence that

VY (~0.0) = /

dredy—V 3 (5 p,a”) > / dedy—V 2 (0,77, 0T) = VM (—b; 0, 1)
Dom(H)

Dom/(H)

and thus (¢, 7) would not an equilibrium for G¥ (—¢)). A similar argument takes care of the
strategies for the other player, so in conclusion (77, ¢7) is an equilibrium for G¥r () and

Vi) = Vi = [dedy-VifirTo") = [dady - Vi)
Dom(H) Dom(H)
as required.

. Suppose that ¢ is ¥ V ¢, and let (¢;7) be a Nash equilibrium for G} (¢). Then consider
the splitting function Sp defined as follows:

. L ifTb(l/Jl\/wg,S,I[):(T/Jl,S,II>;
Spo(s) = { R if (i1 V o, 8, IT) = (o, 5, 11).

Sp is also measurable: indeed, T is a measurable strategy, and hence for every b € [0, 1]

16llsp = {V : Spy = Spy} = {V : Vs, 7y (Y1 V abo, 8, IT) = (¢1,8, 1) < Spy(s) = L} =
= (W |l- : Vs, 7 (41 V ha, 5, 1T) = (1, 5, IT) < Spy(s) = L},

where each ||b/||; = {b" : 7,» = Ty} is measurable by hypothesis, and there exist only finitely
many distinct ||8/||;. But the union of finitely many measurable sets is measurable, and hence
Sp is measurable, as required.

Thus, Sp splits H into the two strategy guides
Hy = {(a,b) € Dom(H) : (11 V 1o, H(a,b),IT) = (1, H(a,b),1I)}

and
Hy = {(a,b) € Dom(H) : 1,(¢1 V 12, H(a,b),IT) = (v2, H(a,b),I1)}.

1

Now, let us consider the strategies o/, 7/, ¢” and 7" for the two players, in QJ\H{ (11) and

QJ‘H/[2 (1p2) respectively, defined as

ol (0,8, 1) =04(0,5,1),
(0,8, 1I) = 1,(0, 5, IT)
(

/! / /
Ua(Xvs 71) = 0a\X,$S 71)7
Té,(X, & IT) = p(x, ', IT) for all subformulas x of s.

} for all subformulas 6 of ;

51

Now, (¢’,7') is an equilibrium for Q%l (¢1) and (¢”,7") is an equilibrium for QJ\H/IQ (12), other-
wise (g, 7) would not be an equilibrium for QAH/[(¢); and moreover, WI]}/[(¢;0,7) is the disjoint
union of WM (1150’ 7') and WAL (12; 0", 7). Therefore,

V(o) =Vi(¢;0,7) = / dady = / dady + / dady =
W (¢50,7) W ($r50’,1) Wi (230" ")

=VY (W10, 7) + VY, (230", ") = VI (1) + VI (12).

Now, suppose that Sp’ is another measurable function splitting H into H{ and H), and let
(c®, 7MY and (¢, 7?)) be equilibria for QJ\H/[{(dJl) and Q%Z (12) respectively. Then define

the strategies ¢’ and 7/ for Player I and IT in Q]\H/[(i/fl V1hg) as

o0, 8", 1) if 0 is a subformula of ¥
oP(0,s', 1) if 0 is a subformula of s

—

ol (0,s,1)= {

and as
/ _ (¢1787]I) if Spé(&’) :L7
Tb(wl \ ¢2737[I) - { (1/)2,8,[]) if Spé(s) _ R;
70,8, 1T) = Tél)(ﬁ, s, II) if 6 is a subformula of 1)1;
o Tb(2)(9, s, II) if 6 is a subformula of 5.

Then WH (1 V 4ha;0’,7') is the disjoint union of W]Vé (150, 7)) and Wé\é (¢2;0, 7)),
and therefore
VH (W1 Vs 0’ 7)) = / (1 V ;0) dwdy = / dwdy + /

wit WX (1;00,rD) WM (3hg;0(2),7(2)

! !
Hy Hy

= Vi (136, 70) + VL (402, 73) = Vi (1) + ViYL (9).

dxdy =

The pair of strategies (7,7) may not be an equilibrium for G¥ (¢), but we know that Player
I cannot decrease the expected utility by modifying ¢’ because otherwise either (g(l), z(l))
or (¢?,73) would not be an equilibrium for the corresponding game. Therefore,

Vi (1) + Vg, () = Vi (41 V s o', 1) S V(1 V 30, 1) = Vi (41 V 1),
which proves that the splitting function Sp is optimal.

. Suppose that ¢ is 3z\¢), and let (¢, 7) be an equilibrium for GM(¢). Then, for each b € [0, 1],
let F}, : MV — M be such that

T (Be\wb, s, [T) = (¢, s[Fy(s) /], IT).

By definition, F' = {F} : b € [0,1]} is determined by W, and it is measurable since 7 is
measurable; let us then consider the strategies o', 7’ for Q%[F/a) (¢) defined by

Ué(ea 5,71) = Ua(97 8/71);
Tl;(g? Slall) = Tb(e’ 8/711)

52

for all subformulas 6 of 1.
Then W (Ge\wtbi 0,7) = Wh (i’ 7'), and hence
Vi Govwt;0,7) = Viilp (i a', 7).
Furthermore, (¢/,7') is an equilibrium in QJ\H/[[F /2] (1), since if either player could improve

their payoff by changing strategies in this game they could also improve their payoff in
Q%(Hﬂﬁ\wlﬁyga I)> and thus

Vi Govwt) = Ve ().

Now suppose that F’ = {F}: MV — M | b € [0,1]} is another measurable supplementation
function which is determined by W, and let (¢/,7") be an equilibrium for Q%[F2)(¥)-

Then, extend ¢’ and 7’ to strategies ¢” and 7 for Q%(Ex\ww) by setting
ol(0,s,1)=al(0,5,1)
and

Té’(ﬂx\ww,s,fl) = (¢, s[Fi(s)/x], I1);
(0,8, 1) =7(0,5,1I).

Then W%F,/x} (0,7 = W%(Hx\wiﬁ;g”,z”), and hence

Vit g ($ia, 7)) = Vi Geywy;a”,).

The pair of strategies (¢, 7") may not be an equilibrium for QJ\H/[(EIQJ\W@Z)), but we know that
Player I cannot decrease the expected utility by modifying ¢’ because otherwise (o”,7")
would not be an equilibrium for Q%[/(). Therefore,

VI%F//Q;} () = VfJ}J[F//x}(w;lell) = Vé”(ﬂxw;g”,z”) < sz(aef\wl/f) = V]%p/m] (¥)

which proves that F' is optimal.
O

This result, combined with Corollary 3.1, yields a compositional semantics equivalent to Equi-
librium Semantics, and this concludes this work.
References

[1] A. Blass and Y. Gurevich. Henkin Quantifiers and Complete Problems. Annals of Pure and
Applied Logic, 32:1-16, 1986.

[2] P. Galliani. Game Values and Equilibria for Undetermined Sentences of Dependence Logic.
MSc Thesis. ILLC Publications, MoL—-2008-08, 2008.

[3] P. Galliani. Probabilistic Dependence Logic. Forthcoming, 2008.

53

[4]

[5]
[6]

[7]

L. Henkin. Some Remarks on Infinitely Long Formulas. In Infinitistic Methods. Proc. Sympo-
stum on Foundations of Mathematics, pages 167—183. Pergamon Press, 1961.

J. Hintikka. The Principles of Mathematics Revisited. Cambridge University Press, 1996.

W. Hodges. Compositional Semantics for a Language of Imperfect Information. Journal of
the Interest Group in Pure and Applied Logics, 5 (4):539-563, 1997.

H.W. Kuhn. Extensive Games and the Problem of Information. In Contributions to the Theory
of Games III, pages 193-216. Princeton University Press, 1953.

J. Von Neumann. Zur theorie der gesellschaftsspiele. Mathematische Annalen, 100(1):295-320,
1928.

M. Sevenster. Branches of imperfect information: logic, language, and computation. PhD
Thesis, Institute for Logic, Language and Computation, DS-2006—-06, 2006.

M. Sevenster and G. Sandu. Equilibrium semantics of languages of imperfect information.
Annals of Pure and Applied Logic, 161:618-631, 2010.

T. Tulenheimo. Independence Friendly Logic. http://plato.stanford.edu/entries/logic-if/,
2009.

J. Vaananen. Dependence Logic. Cambridge University Press, 2007.

J. Vadnanen. Team Logic. In J. van Benthem, D. Gabbay, and B. Lowe, editors, Interactive
Logic. Selected Papers from the Tth Augustus de Morgan Workshop, pages 281-302. Amsterdam
University Press, 2007.

54

A Comparison of Independence Friendly logic
and Dependence logic

Theo M.V. Janssen

Introduction

Independence Friendly logic, henceforth IF logic, is introduced by Hintikka (see
e.g. [1]). It is a logic in which it can be indicated that some quantifier ¢y which
occurs within the scope of a quantifier ()2, nevertheless is independent of Q5.
The logic is claimed to be useful for many phenomena: in natural language
semantics examples are the de dicto-de re ambiguity and branching quantifier
sentences, and in mathematics an example is the distinction between continuity
and uniform continuity.

Dependence logic, introduced by Vaaninen, see [2], is a logic with the com-
plementary approach. For a quantifier Q3 it can be indicated on which subset
of quantifiers it depends (from the quantifiers that have scope over Q3). So
instead of marking independence as a special case, dependency is marked. This
logic should be applicable to the above mentioned phenomena as well.

In a certain sense the two logics seem to have the same expressive power: for
a sentence (i.e. a closed formula) in the one logic there is one in the other logic
that is true in the same models (but that is misleading, because the logics have
richer notions of meaning). For open formulas there is not such an relation: for
an open formula in the one logic there is no formula at all in the other logic
that it true with respect to the same sets of assigments. As a consequence there
cannot be compositional translation from the one logic into the other.

In this contribution we will compare these two logics for their possibilities in
(two) applications; which logic is most suitable? We will argue that in IF logic
a compositional semantic for interesting phenomena in natural logic is possible,
whereas that is not possible for Dependence Logic. Since in both approaches
claims are made about applications, but not really worked out, we had to do so
for an example; and we took the classical distinction between a de dicto reading
and a de re reading.

De dicto-de re

The sentence John believes that a stranger crippled his cow is ambiguous. One
reading concerns the situation that John has no particular person in mind,
but that he believes that whatever the situation is, it will be such that some
stranger crippled his cow (the de dicto reading). The other reading is that there
is particular person in reality of whom John believes that he crippled his cow
(the de re reading).

55

Let Bel(w,J) denote the belief-alternatives of John in possible world w,
C(y, J) that y is the cow of John, Cr(w,x,y) hat = crippled y in world w, and
let a be the actual world. Then the de dicto reading is represented in IF logic
by (1), and the de re reading by (2). In (2) the subscript ,,, indicates that z is
independent of w.

(1) W I[C(y, J) NVwepei(a,r) 3 [Str(z) A Cr(w, 2, y)]].
(2) W[C(y) AVwepei(a,) I /0 [Str(z) A Cr(w, z,y)]].

In Dependence Logic we have to indicate what the quantifier depends on.
Then de dicto reading is represented in (3), where =(y,w,z) indicates that
variable depends only on y and w. The de re reading is given in (4), where
the w is omitted from the dependency information.

(3) Ely [O(yv ‘]) A vu}EBel(a,J) Jz [:(yv w, ‘T) A St?"(ﬂf) A C’I’(U}, €L, y)H
(4) Ely[c(yv J) A vwEBel(a,J) Elx[:(ya LL‘) A St?”(ﬂ?) A C’r(w, Z, y)]]

Now consider the variant Some man believes that a stranger crippled his cow.
In IF logic the de dicto and the de re reading are respectively (5) and (6):

(5) 323y [M(2) A Cly, 2) AVwepei(a,z) 32 [Str(z) A Cr(w, z, y)]].
(6) 323y [M(2) A C(y, 2) AVweBei(a,=) 3% /u[Str(x) A Cr(w, z,y)]].

In Dependence logic the de dicto reading in (7), and the de re reading in (8).
(7) 323y [M(2) AC(y, 2) AVwe Bei(a,2) 32 [=(2,y, w, @) AStr(z) ACr(w, z, y)]].
(8) Fz3y [M(2) A C(y, 2) AVwepei(a,2) 3 [=(2,y,2) A Str(z) A Cr(w, z,y)]].

This example exhibits the difference between the two logics. In IF it is
possible to give a representation for the de re reading of believes that a stranger
cripples y’s cow (viz. (9)), but that is not possibe in Dependence Logic because
there the representation depends on the context in which the formula is used.
For the de dicto reading the same holds, in IF we have (10), but in dependence
logic the representation depends on the context.

(9) Jz[Str(x) A Cr(w,x,y)]
(10) 3z, [Str(z) A Cr(w,z,y)].

The same situation arises when one considers further embeddings, such as
in A woman thinks that some man believes that a stranger crippled his cow: in
IF logic the same representations for the embedded clause can be used for the
de dicto and for the de re reading respectively. For Dependence Logic this is
not the case: again new the representations are needed in order to account for
the additional quantifier introduced by a woman.

56

This shows that using IF logic a compositional semantics for compound
sentences can be given. For Dependence Logic this is not the case. Hence with
that logic a compositional semantics for natural language seems not possible.

(Uniform) continuity

In both logics the standard versions of continuous and uniformly continuous
can be represented. If we consider the variants continuous on an interval and
uniformly continuous on an interval, a quantifier over intervals is introduced,
and the other quantifiers depend on this. In IF logic the difference between
the two properties remains the same: independence of value of the argument
(i.e. the place in the the interval). So the representations for continuous and
uniformly continuous can be used in the new situation as well. In dependence
logic a new representation must be used, thus suggesting that a new property
plays a role. Again, IF logic is possible to formalize the continuity notions in a
compositional way, whereas Dependence Logic this is not, because it considers
the phenomenon from the angle of dependency.

Discussion

An explanation might be that the phenomenona under discussion are a phe-
nomenon of independence, and Independence Friendly Logic is suitable to de-
scribe this. Dependence Logic describes a complementary phenomenon, viz.
dependence, and it essential of that phenomenon that the dependency relation
may change under embeddings. Dependence Logic is suitable for situation where
dependence is basic, maybe data bases are an example, but in many other ap-
plications independence seems to be the fundamental notion, and Independence
Friendly Logic is the logic to be used.

References

[1] J. Hintikka and G. Sandu (1977), ‘Game-theoretical semantics’, in J. van
Benthem and A. ter Meulen, Handbook of Logic and Language Elsevier, Ams-
terdam, pp. 361-410.

[2] J. Vadndnen (2007), Dependence logic; a new approach to Independence
Friendly logic, vol. 70 in London mathematical Society students texts, Cam-
bridge university Press, Cambridge.

57

Coherence and computational complexity of
quantifier-free dependence logic formulas

Jarmo Kontinen

June 21, 2010

Abstract

We study the computational complexity of the model checking for
quantifier-free dependence logic (D) formulas. We point out three
thresholds in the computational complexity: logarithmic space, non-
deterministic logarithmic space and non-deterministic polynomial time.

1 Introduction

Dependence logic D [5] incorporates explicit dependence relations between
terms into first-order logic (FO). The dependence relations between terms
are expressed in terms of dependence atoms

=(t1, ..., tn) (1)

which are taken as atomic formulas. The intuitive meaning of (1) is that
the values of the terms tq,...,t,_; determine the value of the term ¢,. The
expressive power of D equals to that of existential second order logic (X1)
[5].

We are interested in characterizing the computational complexity of model
checking of D-formulas. The problem of charting fragments of logics which
fall under specific computational classes is widely studied question. Fagin’s
classical result [1] establishes a perfect match between Y1-formulas and lan-
guages in NP. It is known that D-formulas have a definition in 31 and vice
versa [5]. When we combine this with Fagin’s result that X} = NP, we get
that the properties of finite structures definable in D are exactly the ones
recognized in NP.

We characterize the computational complexity of the model checking for
quantifier-free formulas of dependence logic. An essential notion we will use

58

in the characterization is the k-coherence of a formula. We say that a formula
¢ is k-coherent, k € N, if for all teams X it holds that ¢ is satisfied by X" if
and only if all k-element subsets of the team X" satisfy ¢. Coherence allows
us to evaluate the satisfiability of the formula in finite fixed size sub-teams,
which is very useful as the teams are potentially very large.

We will first give characterization for the k-coherence of a formula. We
will show that all atomic formulas are coherent and that conjunction pre-
serves coherence whereas disjunction does not. We will show that disjunction
of two distinct dependence atoms is not coherent for any k£ € N.

We use coherence to characterize the model checking for quantifier-free
D-formulas. We will show that for all k-coherent formulas the model checking
can be done in logarithmic space (L). When there can be at most one dis-
junction in the formula, the model checking can be done in non-deterministic
logarithmic space (NL). Furthermore we will show that the model checking
of two distinct dependence atoms is complete for NL. Last we will show
that the model checking becomes already non-deterministic polynomial time
(NP)-complete when one allows more than one disjunction in the formulas.

2 Preliminaries

Definition 2.1. The syntax of D extends FO, defined in terms of Vv, A, —,
V, 3, by new atomic formulas of the form

=(t1,...,tn) (2)
where t1,...,t, are terms. We will denote the set of free variables of ¢ by

The semantics of D is given in terms of sets of assignments, teams. We
define two operations on teams before giving the semantics.

Definition 2.2. Suppose X is a team of domain V and range M, and F :
X — M is a function. Let X' (F,x,) denote the supplement team

{s(F(s)/xn) | s € X},
where s(F(s)/z,) is the tuple obtained by replacing (z,, s(x,)) in s with
(@n, F'(s)).

Definition 2.3. Suppose X is a team of domain V and range M. Let
X (M, x,) denote the duplicated team

{s(a/z,) |a e M, s € X},

where s(a/z,) is the tuple obtained by replacing (z,, s(z,)) in s with (z,, a).

59

Definition 2.4. (Semantics) Suppose T is a vocabulary, X’ is a team of
domain V' and range M, M a 7-structure and ¢ and 6 formulas of D(7).
The semantics of D-formulas is defined in the following way:

1. M Ex =(t),iff for all s,s" € X it holds s(t) = §'(¢).

2. M Ex =(t1,...,ty), n > 1, iff for all s,¢ € X it holds that, if
s(t;) = §'(t;) for i <m — 1, then s(t,) = ' (t,).

wo

M Ex o =(t, ... t,) T X =0

4. M Ex =ity iff for every s € X, s(t1) = s(ta).

5. M Ex - &tity, iff for every s € X, s(t1) # s(ta).

6. M |Ex R(t,...,t,), iff for every s € X, (s(t1),...,s(t,)) € RM.
7. M Ex —R(ty,...,t,), iff for every s € X, (s(t1),...,s(t,)) € RM.
8 MEx NG if M=y ¢ and M =4 0.

9. M Ex ¢V 0, iff there exists Y and Z, such that YUZ =X, M |=y ¢
and M =z 6.

10. M =x 3z¢(z), iff there is F': V' — M, such that M Expa) ().
11. M ’:X qub(x), lffM ’:X(Af,x) gb(l‘)
Finally, a sentence ¢ is true in a structure M if M =g ¢.

Theorem 2.5. [5/(Downwards closure) Suppose ¢ € D and X and Y are
teams, such that Y C X. Then the following holds:

MEx o= My ¢.

3 Coherence

We will characterize quantifier-free formulas in terms of coherence. We will
show that conjunction preserves coherence whereas disjunction does not.

Definition 3.1. Suppose ¢(x; ..., z,) € D is a quantifier-free formula. Then
¢ is k-coherent if and only if for all structures M and teams X of range
dom (M), such that Fr(¢) C Dom(X) the following are equivalent:

1. Mz 6.

60

2. For all k-element sub-teams) C X it holds that M =y ¢.

We will start by going through the atomic formulas and connectives of
D and study the effect they have on coherence. We will observe that the
satisfiability of first-order formulas can be done in restricting to singleton
sub-teams whereas dependence atoms can be checked in restricting to two-
element sub-teams. Furthermore, we will show that conjunction preserve
coherence, whereas disjunction does not.

The following two propositions follow directly from the definition of se-
mantics for the atomic formulas.

Proposition 3.2. First-order atomic formulas and negated atomic first-
order formulas are 1-coherent.

Proposition 3.3. All dependence atoms are 2-coherent.

Proposition 3.4. Suppose ¢ and 1) are quantifier-free formulas such that ¢
15 k-coherent and 1 is l-coherent for [,k € N, | < k. Then ¢\ is k-coherent.

Proof. Suppose X = ¢ A 1. Then by Theorem 2.5 all subsets of X satisfy
¢ A, especially the k-element subsets.

The other direction: Suppose all k-element subsets Y C X satisfy ¢ A 1.
Then it holds that Y satisfy ¢ and v for all). Then, by the coherence of
¢ it follows that X satisfies ¢. By downward closure and the fact that all
[-element subsets of X are contained in some k-element subset, we conclude
that all [-element subsets of X satisfy v. Then by coherence of v, also X
satisfies 1. Thus X satisfies ¢ A . O

Disjunction does not preserve coherence in general. In some cases, how-
ever, we can show that disjunction does preserve it.

Proposition 3.5. Suppose ¢ and 1) are quantifier-free D-formulas, such that
@ 18 1-coherent and v is k-coherent for some k € N. Then ¢V is k-coherent.

Proof. Suppose it holds that X |= ¢ V 1, then by Theorem 2.5 X = ¢ V ¢
holds for all k-element subsets &), C X.

The other direction: Suppose that X = ¢ V ¢ holds for all k-element
subsets X, C X. Now the division of X’ into) and Z, such that) = ¢ and
Z |= 1 is obtained in the following way:

o sc)iff {s} E ¢ and s € Z otherwise.

Clearly, it holds that)} = ¢. Let us show that Z |= ¢. By k-coherence
of 1) we have to check that for all k-element subsets Z, C Z, it holds that

61

Zr | . Suppose Z C Z, such that Zj fails ¢p. Since all the singletons
s € Z fail ¢ it holds that Zj [~ ¢ V ¢, which is a contradiction with the

assumption. Thus all the k-element subsets of Z satisfy 1. Which means by
k-coherence of ¢ that Z = 1. Thus Y U Z = ¢ V ¢ holds. O]

As established in the previous proposition, combining a k-coherent for-
mula with a 1-coherent formula does not increase the coherence level. Thus
we have to have both disjuncts at least 2-coherent. Namely we have to con-
sider disjunctions over dependence atoms.

We denote the disjunction of size k over a single dependence atom =
(1,...,2n), by V) =(21,...,2,). We will next show that disjunctions over
the same dependence atom increases the coherence-level, i.e. the coherence-
level is increased by 1 for each disjunct.

Proposition 3.6. Suppose k € N and ¢ is a dependence atom. Then \/, ¢
is (k + 1)-coherent.

Proof. Suppose ¢ is the dependence atom =(xy,...,x,) and X is a team of
type V, =(z1,...,2,). Then, by downwards closure property all (k + 1)-
element subsets of X satisfy \/, =(x1,...,z,).

Other direction: Suppose all k + 1-element subsets of X" satisfy \/, =
(x1,...,2,). Let S(ai,...,a,_1) be defined in the following way for each
(ai,...,an_1) € M 1:

S(ar,...,an1) ={s€ X | (s(x1),...,8(xp_1)) = (a1,...,apn1)}

Let |S(a,...,an—1)|* be the number of different values of z,, under the as-
signments in S(ay,...,a,_1). We will show that the following are equivalent:

1. X EV, =(z1,...,2,).

2. |S(a)|* < k+1 for each a € M.

Suppose (2) holds. Then each S(ay,...,a,_1) can be divided into (k+1)-
element sets S(ay,...,a, 1)" 1 <i < k+1, such that z, is constant in each

S(ay,...,a,_1)". Now the following partition of X into sets X;, 1 <i < k+1,
is what we are looking for:

Xi = U S(al,...,an,l)i.
acMn—1

Next we will show that X; = =(x1,...,z,) for each X;, 1 <i < k+ 1.
Suppose s, s € X;, such that s and s" are from the same S(ay,...,a, 1)
for some (ay,...,a,-1) € M" 1. Now s and s will agree on z, since z,

62

is constant in each S(ay,...,a,_1)". Thus {s,s'} E =(z1,...,7,) holds.

Suppose s and s are from different sets, say s from S(ay, ..., a, 1) and s’ from
S(ay,...,a,_;). Then s and s’ will disagree on the sequence (z1,...,2,-1).

Thus {s,s'} E =(x1,...,2,) holds. Now &; = =(z1,...,x,) holds for each
X, 1 <i < k+1 by 2-coherence of dependence atoms.

Other direction: Suppose (2) does not hold. Then thereis (ag,...,a,-1) €
M", such that |S(ai,...,a,_1)| > k + 1. By pigeon hole principle' it is not
possible to divide S(ay,...,a,) into k + 1 subsets S(ay,...,a,-1)", 1 <i <

k+1, so that in each set S(ay,...,a,_1)" the value of x,, would be constant.
Since all the tuples in S(aq,...,a,) agree on sequence 1, ..., x,_; it follows
that =(z1,...,x,) will be failed in some subset independent of the division

of S(a1,...,a,). Thus X does not satisty \/, =(z1,...,2,).

The original assumption was that each (k + 1)-element sub-team of X
satisfies ¢. Thus it holds that there are no such (k + 1)-element subsets
in X where the assignments agree on the first n — 1 terms and all disagree
on the last term. Thus for each tuple (ai,...,a, 1) € M" ! it holds that
|S(a1,...,a,_1)]* < k+1. Thus the claim follows with the above established
equivalence. O

3.1 Incoherence

We will show that disjunction does not preserve coherence. Given a team
X and a disjunction of dependence atoms = (X;,y;), i@ € I, denoted by
Vier =(Xi,v:), we interpret the team as a multigraph in such a way that the
| I]-colorability of the multigraph corresponds to X satisfying \/,., =(Xi, y;).
Each assignment translates into a vertex in the graph. Each dependence
atom =(X;,y;), induces edges between the vertices in such a way that if two
assignments fail the dependence atom, then the corresponding vertices share

the corresponding edge ;.

Definition 3.7. Suppose X = {s1,...,s,} is a team of domain V' and range
M and ¢ € D is of the form \/,.; =(X;, y;). For each X and ¢ we construct

iel =
a multi graph G% = (V,{E;| i € I}) in the following way:

1. V:{Uj|SjEX}.
2. For each i € I, if {s;, 5} = =(Xi,v:), then (v;,v;) € E;.

The k-colorability of a multigraph is defined as an existence of a coloring
function o : V' — |I|, such that if two nodes share an edge E; then they

!Formally it states that there does not exist an injective function on finite sets whose
codomain is smaller than its domain.

63

cannot be colored both with the same color 7. The existence of a coloring
function matches exactly with the semantical condition of the disjunction in
Team-semantics under the interpretation 3.7.

Proposition 3.8. Suppose g;’; 15 a multigraph defined as in 3.7 for a team
X and formula ¢ =: \/,o; =(Xi,y:). Then the following two conditions are
equivalent:

1. There exists a function o : V. — I, such that if o(v;) = o(v;) = m,
then (v;,v;) € En,.

2. X = Ve, =(Xi,u).

Proof. Suppose o : V. — I is a function, such that if o(v;) = o(v;) = m,
m € I, then (v;,v;) € Ey,. Let X;, 1 <i <m, be defined the following way:

Xi={sn|sn€ X ANo(v,) =1}.

Since ¢ is defined on the domain G%, it holds that X = Uiem Xi- We will
show next that X; = =(Xj,y;) holds for each X; 1 <i < m:

Suppose s;, s, € AX;. Then, the corresponding vertices v; and v are
assigned the value ¢ under o. Then, by assumption on o, it follows that
(v, vk) € E;. Thus by 3.7, it follows that {s;,sx} = =(X;,v;). Further, it
follows from the 2-coherence of the dependence atoms that X; = =(X;, v;).
Thus X = V,.; =(Xi, y;) holds.

The other direction: Suppose X |= /.., =(Xj,y;) holds. Then, there is
a partition of X into sets Aj, such that &; | =(X;,y;) for each i € I, and
X = ;s &i- Then, let o be defined the following way:

o o(v,) =1,if s, € A.

Clearly, o is well defined and it holds that, if o(v;) = o(v;) = m, then
(Ui, Uj) g Em D

Next lemma will show that disjunction does not preserve coherence. An
important detail to notice is whether the disjuncts share some variables or
not. As we will show later, disjunctions of the same dependence formula stay
coherent.

Theorem 3.9. =(z,y)V =(z,v) is not k-coherent for any k € N.

Proof. We will actually show that a stronger claim holds, namely that =
(x,y)V =(z,v) is not f(n)-coherent for any function f : N — N, such that
f(n) < n, for all n. Here the meaning of f(n)-coherence is, that a formula

64

¢ is f(n)-coherent, if for all teams X, such that |X| = n, it holds that
X EopeYEo¢forevery Y C X, such that |Y| = f(n).

We will construct a team X for every k € N so that every proper subset
of the team satisfies =(x,y)V =(z,v), but the whole team fails to satisfy
=(z,y)V =(z,v). We represent the team as a multigraph as in 3.7. Each of
the vertices correspond to an assignment of the team. Suppose s,, s, € X.
There are two type of edges we assign between vertices in the following way.

o If {s,, 50} £ =(x,y), then we assign a smooth edge between the vertices
v and w.

o If {s,,s,} [~ =(z,v), then we assign a wavy edge between the corre-
sponding vertices v and w.

We will use "black" color to denote the vertices that do not allow wavy edge
and "white" color to denote the vertices that do not allow smooth edges.
A coloring of the multigraph will be a partition of the universe into two
sets, black and white vertices, such that the black vertices do not share any
smooth edges and the white vertices do not share any wavy edges. The graph
in figure 1 is such that every proper subgraph is 2-colorable, but the whole
multigraph is not.

Figure 1: Graph Gy

Gy is not 2-colorable: Suppose both the nodes ¢ and y are colored black.
Then vertices a, b, x, v should be colored white as they all share a wavy edge
either with ¢ or y. But since there is a smooth edge between a and b as well
as between v and x and the fact that white color did not allow smooth edges,
this cannot be a proper coloring. Thus the only way to properly color the
triangles is to color both ¢ and y white. The colors of a, b, x, v can be chosen
black or white as long as v,z and a, b are not both white. The two triangles

65

{a,b,c} and {x,y, z} are connected with a path (of even length). The path
is such that the edge alternates between smooth and wavy, which forces the
proper coloring also to alternate between black and white for the nodes on
the path. Since the length of the path is even, there cannot be a coloring for
the whole graph as the color of ¢ totally determines the coloring of the whole
path, in the same way as the color of y. They both force different colors on
the path, thus making the proper coloring impossible. Thus the whole graph
is not 2-colorable.

Figure 2: Coloring of the graph Gy

Every proper subgraph of Gy is 2-colorable: We will show that if we
remove a vertex from either of the triangles, then the coloring of the vertex
¢ (or y), which is connected to the path, can be chosen either black or white.
Suppose a is removed. Then we can choose so that ¢ is colored black and b
is with white. The vertex y has to be still colored with white. Now, since ¢
and y are colored with different colors and the path connecting them is even,
it holds that the whole graph can be colored. The cases where we remove
any other vertex from the two triangles are analogous to this one.

On the other hand, suppose one of the vertices from the path connecting
the two triangles is removed. Then we have two components of the graph
that are not connected by edges. The coloring of the whole graph reduces to
the coloring of the two subgraphs for which there is a trivial coloring induced
by the coloring of two nodes ¢ and y. The team, which corresponds to the
graph Gy is the following table 1.

As one can observe the values of the whole path are not explicitly given
in the picture. If two vertices share a smooth edge, the corresponding assign-
ments in the team in table 1 are assign the same value for x and different one
for y. Similarly, if two vertices share an wavy edge the corresponding assign-
ments assign the same value for z and different one for v. When we choose

66

assignment | X |y |z |V
Sq 0101010
Sp 0121010
Se 1121011
Se 1111112
Sf 2131113
Sq 2141214
Sy 4171315
Sy 4161315
Sy 3151314
Table 1:

the values for the assignments that correspond to a vertex in the the path,
we use always new values for the variables if possible. This way we ensure
that there will be no unintended edges between the vertices in the triangle
and the vertices in the path, just the ones that appear in the picture.

For example, for the assignment s. the value of x is assigned the same
as s.(x) and s.(y) is assigned different to s.(y), but s.(z) and s.(v) can be
chosen new values. With the next vertex on the path, which is f, we can
already assign the new values for x and y. We have to take care that the
values of sf(z) and sg(v) are assigned so that the dependence = (z,v) is
failed. At this point of the path the values, which the assignment s,, s, and
S. assign to variables x,y, z, v are no more assigned when we go left in the
path. Thus, the ranges of the variables under the assignments corresponding
to the vertices of the triangles are disjoint with ranges of variables under
the assignment that correspond to the vertices on the path (excluding the
endpoints of the path).

Let us show that the team in table 1 indeed translates into the graph in
figure 1. Recall that smooth edges are generated when two assignments fail
the dependence =(z,y) and wavy edges when the =(z,v) is failed,;

Smooth edges from vertex a: s,(z) = 0. It holds that s,(z) = 0 and since
$p(y) # s4(y) there is a smooth edge (a,b). All the other assignments assign
other value than 0 for z, thus there cannot be smooth edges from a to other
vertices.

Wavy edges from vertex a: s,(z) = s.(z) = 0 and s,(v) =0 # 2 = s,(v),

67

thus there is a wavy edge (a,c). Indeed s,(z) = 0 but sp(v) # s.(v), thus
there is no wavy edge (a,b). All the other assignments assign a value different
to 0 for z, thus there are no wavy edges between a and other vertices.

Smooth edges from vertex b: The only smooth edge from b is the one that
is shared with a. All other assignments assign a value different to 0 for z,
thus there are no other smooth edges from b.

Wavy edges from vertex b: sp(z) = s.(z) = 0 and sp(v) = 0 # 2 = s,(v),
thus there is a wavy edge (b,c). Again, s, and s, agree on z but disagree
on v, thus there is no wavy edge between them. All the other assignments
assign a value different to 0 for z. Thus there are no other wavy edges from
b.

Smooth edges from vertex c: Only assignment that assigns = as 1 is s..
Also they disagree on y. Thus there is smooth edge (c,e). As we earlier
noted, after the next vertex on the path, the values that are assigned by
the assignments that correspond to nodes that appear in the triangle do not
appear in the ranges of the assignments that correspond to the vertices that
come later in the path. Thus all the other assignments assign a value different
to 1 for x. Thus there are no other smooth edges from the node c.

Wavy edges from vertex ¢: The edges (¢, a) and (¢, b) have been already
established. Again, the value that s. assigns for z does not appear as a value
for z under assignment corresponding the nodes which appear later in the
path. Thus there are no other wavy edges from z.

The other triangle {z,y, z} is isomorphic to that of {a,b,c, }. It can be
checked analogous that exactly the edges that appear in the graph will be
generated under the translation 3.7.

Now we have given a construction of collection of graphs like in 1,which
are not 2-colorable, but for which hold that every proper sub-graph is. Now
by 3.8 the following are equivalent:

1. Gy is 2-colorable.
2. X = =(z,y)V =(z,v).

Thus the whole team X" as in table 1 does not satisfy =(z,y)V =(z,v), but
every proper sub-team of X satisfies =(z,y)V =(z,v). By increasing the
length of the path which connects the two triangles, we get the same counter
example for different cardinalities. O]

68

4 Computational complexity of quantifier-free
D-formulas

Model checking is one of the central problems considered in the finite model
theory. Given a structure M and a formula ¢ it is to decide wether M is a
model of . When we fix the formula ¢ and let the structure vary, we talk
about the model checking problem for a formula ¢. Each ¢ € D(7) defines
a collection of pairs (M, X'), where M is a 7-structure and X" is a team of
range M, such that Fr(¢) = dom(X'). Given a team X we define a relation
Rel(X) in the following way:

Rel(X) = {(s(z0),...,8(xn-1)) | s € X}.

Definition 4.1. Suppose ¢ € D(1). Model checking problem for a formula
¢, MC(¢), is to decide wether it holds that

M):X gbv
where M is a 7-structure and X is a team, such that Fr(¢) = dom(X)

We look for a connection between the computational complexity of the
model checking problem for a quantifier-free D-formula and the syntactic
form of ¢. We will use the following versions of Boolean satisfiability problem
in to show the NL- and NP-completeness of MC(¢) for certain ¢ € D.

Definition 4.2. Boolean satisfiability problem (SAT) is a decision problem to
determine wether a given propositional first order formula is satisfiable. The
variables are boolean and may occur positively or negatively in the formula.
The formulas are assumed to be in the conjunctive normal form. The problem
is to determine, whether there is an assignment, which evaluates the given
formula true. There are several variations of SAT from which we consider
the following two:

e 2-SAT: At most 2 disjuncts in each clause.

e 3-SAT: At most 3 disjuncts in each clause.

4.1 Logarithmic space

We will start by showing that the model checking for k-coherent formulas
can be done in LOGSPACE. We will establish this by showing that for every
k-coherent 7-formula there is an equivalent FO-sentence over vocabulary U
{R}, where R is an |dom(X)|-ary relation symbol interpreting the team.

69

Theorem 4.3. Suppose ¢ is a quantifier-free k-coherent D(7)-formula. Then
there is a sentence ¢* € FO(T U{R}, such that the following are equivalent:

1. MEx ¢
2. (M, Rel(X) = ¢"(R)
for all T-structures M and for all teams X, such that Fr(¢) C dom(X).

Proof. Suppose ¢ is a k-coherent D(7)-formula. Then for all teams X', such
that FFR(¢) C dom(X) the following are equivalent:

1. Mbx ¢
2. For all £ assignment sub-teams) C X holds M =y ¢.

Each k-assignment) C X defines a finite relation Rel()), which can be
characterize in FO up to isomorphism. Since the vocabulary is finite, there
are only finite number of different 7-isomorphism types of Rel()). Given k
distinct assignments) = {s1,...,sx} let ¥(Zy,... %) € FO be isomorphism
type of the relation Rel()). Let I? be the set of all different isomorphism
types of k-assignment teams), such that M =y ¢. Now ¢*(R) can be
written in the following way:

OF =: Vfl...V£k((Afi€RAfi%fj)—> \/ V(T Tn))
¥

i€k 1#£] el?

Suppose M =y ¢. Then by k-coherence of ¢ it holds that each k-assignment
sub-team) C X satisfies ¢. Thus for each k-assignment sub-team) C X
holds that Rel(}) is of the proper isomorphism type. Thus, ¢* holds.
Suppose (M, Rel(X)) | ¢*(R). Then, each k-element sub-team) C X
is of proper isomorphism type. Thus it holds that M =y ¢ for each k-element
sub-team. M [y ¢ follows by k-coherence of ¢.
m

It is known that the data complexity of the model checking of first order
formulas can be done in LOGSPACE (see [2] for details). This gives us the
following corollary:

Corollary 4.4. Suppose ¢ € D is a k-coherent formula. Then MC(¢) €
LOGSPACE.

70

4.2 Non-deterministic logarithmic space

We already established that all quantifier-free formulas without disjunction
are coherent. Furthermore we showed that with the use of one disjunction
one obtains already formulas which are incoherent. In this section we will
show that the model checking for all quantifier-free formulas with at most one
disjunction can be done in non-deterministic logarithmic space. We will also
show that the model checking of the formula =(z,y)V =(z, u) is complete for
NL.

Notice that in the following theorem we do not restrict the number of
disjunctions in the formula, but rather the coherence level of the disjuncts.
All formulas without disjunctions are at most 2-coherent.

Theorem 4.5. Suppose ¢ and 1) are 2-coherent quantifier-free D-formulas.
Then
MC(¢ V) <rogspack 2 — SAT.

Proof. Suppose we are given a team X = {s1,...,x;}. We will go through
all the two-element subsets {s;,s;} C &, and construct an instance of 2-SAT
in the following way:

o If {s;,s;} ¥~ ¢, then (z; Vz;) € C.
o If {s;,s;} ¥~ ¢, then (—x; vV —z;) € C.

We let Ox = /\¢>ec ¢. Clearly, ©x is a proper instance of 2-SAT. We will
next show that there is an assignment S, which satisfies ©x if and only if
X = ¢ V1 holds: Suppose there is an assignment S : Var(©x) — {0, 1},
which evaluates ©x true. Let us define the partition of A in the following
way:

o Z={s; € X|S(x;) =1}.
e V=X\2Z

Clearly it holds that X = Z U). Let us show that Z = and Y = ¢ hold:

Suppose s;,s; € Z. Since S satisfies Oy, (—z; V —z;) cannot be a clause
in Cx. By the construction above, it follows that {s;,s;} = ¢ holds. Now,
by 2-coherence of ¢ it follows that Z = .

Suppose s;,s; € Y. Since S was assumed to satisfy Cy, (z; V x;) cannot
be a clause in Cy. It follows by the construction above that {s;,s;} = ¢
holds. Again, from 2-coherence of ¢ it follows that) |= ¢ holds.

The other direction: Suppose X' |= ¢ V ¢ holds. Then, by Definition
2.4 it holds that there is a division of X into two sets Z and), such that
X=ZUY, ZNY=0,YE¢and Z =1 . Let S be defined the following
way:

71

o S(x;)=1,if s, € Z.
o S(z;)=0,if s; € V.

Clearly it holds that S : Var(©x) — {0,1} is a function. Let us show that
S satisfies ©x: Suppose 6 € C of form (z; V x;). Then {s;,s;} fails ¢ by
the construction of ©y. Then s; and s; cannot be both in Y, since) was
supposed to satisfy ¢. Thus, either s; or s; must be in Z. Then, it holds
that S(z;) = 1 or S(x;) = 1, which implies that S(z; V z;) = 1.

Suppose 6 is (—x; V 7). Then, by the construction of Oy, it holds that
{si,s;} fails 9. Then, s; and s; cannot be both in Z, since Z was supposed
to satisfy ¢). Thus either s; or s; must be in). Then, it holds that S(z;) =0
or S(x;) = 0, which implies that S(—z; V —z;) = 1.

Last, the complexity of this reduction is in LOGSPACE: We need to go
through the 2-element subsets of the team X and check if they fail ¢ or .
All the 2 assignment sub-teams of X can be generated in LOGSPACE when
X is given. Since ¢ and i were coherent, the model checking for both of
these formulas can be done in LOGSPACE. m

Now we will obtain the following corollary.

Corollary 4.6. Suppose ¢ and) are 2-coherent D-formulas. Then
MC(¢ V) e NL.

Next we will show that the model checking of the formula = (z,y)V =
(z,u) is complete for NL. We will reduce 2-SAT to the model checking prob-
lem of the formula =(x,y)V =(z,v).

Theorem 4.7. 2 — SAT SLOGSPACE MO(:<I,y)\/ :(Z, U))

Proof. Suppose 0(po, .. .,pm-1) is an instance of 2-SAT of the form A, E;,
where each conjunct E; = (A;, V Ay,), i € I, where A;;, j < 1, are positive
or negative boolean variables.

We will construct a team X', such that the following are equivalent:

1 X e =(a,y)V =(2,v).
2. 0(po, - -.,Pm—1) is satisfiable.

For each conjunct E;, i € I, we create a team Xy, where we code the infor-
mation required to satisfy F;. Now, E; will be satisfied if one of the disjuncts
will be true. Thus it has two conditions for being satisfied. We will code
these conditions into the team we construct in the following way:

72

We will have a variable z denote the clause E;, x denote the variables of
the clause, y the truth value of the corresponding variable and v that makes
sure we choose at least one of the assignments form each X, into the sub-set
of X which eventually codes the assignment which evaluates 6 true. Each
disjunct A;; gives a rise to one assignment. Now &’ is the union J;.; Xmi.

For example, the team X, for a clause (pi V p;) is the one in Table 2.
The team for the whole instance of 2—SAT:

(A01 V A()Q) VAN (AH vV A12) VAP (A[1 V AIQ)

is the one in Table 3, where t(A4;) = 1if A; is a positive variable and t(A;) = 0,
if A; is a negated variable.

2| x[y[v]
i lpr 1] 1
ipj 1

Table 2: Team for (py V p;).

DN | DN | DN~ <

n A[l t(AH) 1
n A[Q t(AIZ) 2

Table 3: Team |J,_; Xg;.

el

Suppose 0(po, . ..,pm—1) is satisfiable. Then there exists an assignment
F:A{po,...,pm-1} — {0,1}, such that F' evaluates 0(py, ..., pm_1) true. We
define the partition of the team X into two sets in the following way for each
s € X: s € &) if the following condition holds:

(s(x) = pi) = F(pi) = s(y). (3)

73

Otherwise s € X.

Condition (3) guarantees that the tuples that agree with the assignment
F are chosen to X). Since F evaluates \,_; E; to true, it evaluates every
conjunct F; true. As the satisfying conditions of each E; are coded into X,
the condition (3) is satisfied by at least one of the assignments in each Xp,.
Thus there will be at most one tuple from each Xp, in Xy. Thus A&, trivially
satisfies =(z,v) since all tuples in X, disagree on z. Next we will show that
Xy satisfies =(x,y): Let s,s" € &}, such that s(z) = s'(z) = p;. Then by (3)
it follows that s(y) = F(p;) = s'(y) holds. Thus X} = =(z,y).

The other direction: Suppose X = =(z,y)V =(z,v). Then there is a
partition of X into X and Xs, such that X} = =(x,y) and Xy = =(z,v). We
will define the assignment F': {po,...,pm} — {0, 1} in the following way:

e If 35 € A, such that s(z) = p;, then F(p;) = s(y).
e If Vs € X it holds s(x) # p;, then F(p;) = 1.2

Let us show that F': {po,...,pm-1} — {0,1} is a function, which evaluates
0(po, - .-, Pm—1) true:

1. Clearly, Dom(F) = {po,...,pm-1} and Range(F) ={0,1}.

2. Fis a function: Let p; € {po, ..., pm}- Suppose there exists s,s" € A},
such that s(z) = s'(r) = p; holds. Since X; = = (x,y) holds, it
follows that s(y) = s'(y) holds. Suppose there are no s € Xy, such that
s(x) = p;. Then by definition of F' it holds that F(p;) = 1.

3. F evaluates O x true: Note that z is constant and v is assigned different
value by each tuple in each Xp,. Thus X; contains at least one of the
tuples from each Xp,. Let sy € Xp,, such that sp € &}. Since each
tuple codes a satisfying condition of Ej; it follows that I’ evaluates one
of the disjuncts in E; true. Thus S(E;) = 1.

Each conjunct of 6 gives rise to a constant size team of two assignments with
domain {x,y,z,v}. Thus the team X can be constructed in LOGSPACE
when given 6.

O

The problem 2—SAT is known to be complete for NL [4]. Now we have
the following corollary:

Corollary 4.8. MC(=(z,y)V =(z,v) is complete for NL.

2If for all the assignments s € X; holds s(z) # p;, then the value of p; is not relevant
to the satisfiability of ©. Thus the value of p; can be chosen 0 or 1.

74

Next we will show that when we consider formulas with two disjunctions,
the model checking becomes NP-complete for certain formulas.

4.3 Non-deterministic polynomial time

We will reduce 3-SAT to the model checking problem of the formula =
(x,y)V =(z,u)V =(z,v).

Recall that an instance 6 € 3-SAT is a first-order formula in conjunctive
normal form, where each conjunct has at most three variables: A, ; £;, where
I is finite. Each E; is of form (A;, V A;, V A;,), where A, is either a positive
or a negated boolean variable. 6 is accepted if there is an assignment, which
evaluates 0 true. The reduction is analogous with the reduction given in
Theorem 4.7.

Theorem 4.9. 3 — SAT <;ocspace MC(=(z,y)V =(z,v)V =(z,v)).

Proof. Suppose 0(po, ..., Pm—1) is an instance of 3-SAT with conjuncts E;,
1 € I. We will construct a team X', such that the following are equivalent:

o X = =(z,y)V =(z,v)V =(2,v).
e 9(po,...,pm—1) is satisfiable.

For each conjunct E;, @ € I, we create a team Xp, where we code all the
satisfying conditions of the clause E;. Let X = J,.; Xg,. For example, a
clause E; = (p; V —p; V —pg) will be satistied if p, = 1 or p; = 0 or p;, = 0.
The team for (p; V —p; V —py) is the one in Table 4.

(2] x |y|v]
1pl 110
1p; [0]1
1 pe [0]2

Table 4: A team for (p, V —p; V —py).

Suppose 0(po, .. .,pm—1) is satisfiable. Then there exists an assignment
F:A{po,---,Pm-1} — {0,1}, such that F evaluates 0(py, ..., pm_1) true. We
define &) in the following way for all s € A: s € &) if

s(z) = p) — F(pi) = s(y) (4)

Since F' evaluates A, E; true, it evaluates every conjunct Ej true. Further-
more, since we coded all the satisfying conditions of E; into Xf,, it holds

75

that at least one assignment from each Xp, satisfies the condition (4). Thus
A contains at least one assignment from each Xpz,. Thus the two "leftover"-
assignment form each X, can be easily divided into X, and X in such a way
that =(z,v) holds in both of them. We just place one of the assignments into
X5 and one into Aj.

Let us show that &; = =(z,y): Suppose s,s’ € A}, such that s(z) =
§'(x) = p;. Then, by (4), it follows that s(y) = §'(y) = F(p;). Thus X; | =
().

The other direction: Suppose X |= =(x,y)V =(z,v)V =(z,v) holds. Then
by the truth definition of the disjunction, it follows that X can be partitioned
into three sets Xj, Xy and A3, such that X} = =(x,y), X» E =(z,v) and
X3 = =(z,v) hold. Let F be defined in the following way for each variable

pi.
e If Js € A}, such that s(x) = p;, then F(p;) = s(y).
o If Vs € A) it holds s(x) # p;, then F(p;) = 1.

Let us show that F' : {po,...,pm} — {0,1} is a function, which evaluates
O(po, - - Pm—1) true:

1. Clearly, F is well defined and the domain of F is {po,...,pm_1} and
the range is {0, 1}.

2. Fis a function: Let p; € {po, ..., pm}- Suppose there exists s,s" € A},
such that s(z) = §'(z) = p; holds. Since &) |= =(z,y) holds, it follows
that s(y) = §'(y) = F(p;) holds. If there exists no s € A&}, such that
s(xz) = p;, then it holds by the definition of F’, that F'(p;) = 1.

3. We will show that S evaluates each FE;, ¢« € I, true: Note that z is
constant and v gets different value by each tuple in each X'z,. Thus &)
must contain at least one of the tuples from each Xpg,. Since each tuple
in Xp, codes a satisfying condition for E; it means that F' agrees with
one of the satisfying conditions for E;. Thus F' satisfies F;.

Each conjunct of theta gives rise to a constant size team of three assignments
with domain {z,y, z,v}. Thus given 6, X can be constructed in LOGSPACE.
O

3-SAT is complete for NP [3]. We have the following corollary:

Corollary 4.10. MC(=(z,y)V =(z,v)V =(z,v)) is complete for NP.

76

References

[1] Ronald Fagin, Generalized First-Order Spectra and Polynomial-Time
Recognizable Sets, Complexity of Computation, ed. R. Karp, SIAM-AMS
Proceedings 7, 27-41, 1974.

|2| E. Gridel, P. G. Kolaitis, L. Libkin, Finite Model Theory And Its Appli-
cations Springer, 2007.

[3] R. M. Karp, Reducibility Among Combinatorial Problems, in R. E. Miller
and J. W. Thatcher (editors). Complexity of Computer Computations.
New York: Plenum. pp. 85-103, 1972.

[4] C.H. Papadimitriou, Computational Complezity, Addison Wesley, 1993.

[5] Jouko Vééninen, Dependence Logic: A New Approach to Independence
Friendly Logic, Cambridge University Press, 2007.

77

Logics of Imperfect Information without Identity

Antti Kuusisto*'
Department of Mathematics and Statistics

University of Tampere
Finland

Abstract

We investigate the expressive power of sentences of the family of
independence-friendly (IF) logics in the equality-free setting. Various
natural equality-free fragments of logics in this family translate into
the version of existential second-order logic with prenex quantification
of function symbols only and with the first-order parts of formulae
equality-free. We study this version of existential second-order logic.
Our principal result is that over finite models with a vocabulary con-
sisting of unary relation symbols only, this fragment of second-order
logic is weaker in expressive power than first-order logic. Such results
could turn out useful in the study of independence-friendly modal log-
ics. In addition to proving results of a technical nature, we consider
issues related to a perspective where IF logic is regarded as a speci-
fication framework for games, and also discuss the significance of un-
derstanding fragments of second-order logic in investigations related to
non-classical logics.

1 Introduction

We investigate the family of independence-friendly (IF) logics introduced
by Hintikka and Sandu in [8]. See also [7] for an early exposition of the
main ingredients leading to the idea of IF logic, and of course [5] for an
even earlier discussion of ideas closely related to IF logic. Variants of IF
logic have received a lot of attention recently; see [1, 4, 9, 10, 11, 13, 16] for
example. Therefore we believe that the time is beginning to be mature for
investigations not directly related to technical aspects concerning semantical
issues. The focus of our work is the expressive power of the equality-free
fragment of IF logic without slashed connectives. To be exact, we study the

*email: antti.j.kuusistoQuta.fi

tParticipates in the European Science Foundation project Logic for Interaction (LINT).
The research leading to the current article was supported by MALJA Graduate School in
Mathematical Logic (Academy of Finland grant 118815) and Tampere Graduate School
in Information Science and Engineering TISE (Academy of Finland grant 129892).

78

fragment of the system IF* (see [1]) without equality and without slashed
connectives. We denote this fragment by IF,,—.

Even though motivated by questions related to the expressive power of
IF o=, our study concerns a wider range of logics. In fact, our study focuses
on the system fESQO,,,— which is the version of existential second-order logic
where the second-order quantifiers quantify function symbols only and where
equality is not used. Here we allow for the function symbols to be nullary,
i.e., to be interpreted as constants. With a careful inside-out Skolemization
procedure preceeded by some preprocessing, any sentence of IF,,,— can be
turned into a sentence of fESO,,— that defines exactly the same class of
models as the original IF,,— sentence. However, results about fESO.,,—
automatically apply to a wider range of logics. For example, the delightfully
exotic looking expressions of the form

(V:L‘l 31'2

Vs Ty)tp($17$2,9€3,9€4),

where a finite partially ordered quantifier preceeds an equality-free FO for-
mula ¢(z1, e, x3,24) (With the free variables x1,x9, x3,x4), are equivalent
to sentences of fESO,,= by the definition of Henkin [5]. Hence, whatever
is inexpressible in fESO,,—, is automatically inexpressible with expressions
of the above type. Thus by studying fESO,,— we can kill multiple birds
with one stone. This is part of a more general phenomenon. Results about
fragments of second-order logic are very useful in the study of non-classical
logics with devices giving them the capacity to express genuinely second-
order properties. A typical such non-classical logic often immediately trans-
lates into a fragment of second-order logic. Then, armed with theorems
about fragments of second-order logic, one may immediately obtain a range
of metatheoretic results concerning the non-classical logic in question. Such
results could be, for example, related to decidability issues. By directing
attention to fragments of second-order logic rather than the full system of
second-order logic, one can often easily identify, for example, truth preserv-
ing model transformations etc. The very high expressive power of second-
order logic seems to often make it very difficult to obtain results like truth
preserving model transformation theorems applying to all sentences of the
system. These considerations provide part of the motivation for our study
of the system fESO.,o—.

In addition to contributing to the general program of studying frag-
ments of second-order logic, we believe that insights about sentences of the
equality-free systems IF,,,— and fESO,,— can be more or less directly useful
in the study of the independence-friendly modal logics of Tulenheimo [15]
and Tulenheimo and Sevenster [14] and others. This is due to the fact that
formulae of such systems tend to translate to formulae of IF,,,—. This real-
ization provides an example that demonstrates the significance of the claim
made about the study of fragments of second-order logic above.

79

In this paper we study the expressivity of sentences of IF,,— only. A
sentence of IF,,,— defines the class of models on which FEloise has a winning
strategy in the related semantic game. We begin the paper by observing that
fESOyo— can define properties not definable in first-order logic FO (with
equality), when the vocabulary under consideration contains at least one
binary relation symbol. We then define a simple model-transformation that
preserves the truth of fESO,,,— sentences, but not FO sentences. Therefore
we observe that fESO,,,— and FO are incomparable with regard to expressive
power. The same transformation of course also preserves the truth of IF,,,—
sentences. We discuss the significance of this observation in relation to the
use of IF logic as a specification language for games.

Finally, we ask whether fESO,,,— and FO are also incomparable with
regard to expressive power when attention is limited to vocabularies con-
taining only unary relation symbols. Our principal result is that over finite
models with such a vocabulary,

FOyuo= < fTESOyo= < FO,

where FO,,— denotes first-order logic without equality. So far we have not
succeeded in establishing these results without the use of somewhat involved
combinatorial arguments.

2 Preliminary Considerations

We assume the reader is familiar with first-order logic and independence-
friendly logic. For a tour of properties of IF logic, see [1]. The version
of IF logic studied in this paper is the version where slashed quantifiers
3z /{vo, ...yi}, Yx/{yo,...y;} are allowed, but disjunctions and conjunctions
do not have slash sets associated with them. To be exact, we study the
fragment of the system IF* (see [1]) without equality and without slashed
connectives. We call this logic IF,,—. For the semantics of IF,,—, see
Definition 4.2 in [1].

Our main tool in investigating IF,,— is the logic fESO,,—, whose for-
mulae are exactly the formulae of the type 3fp, where f is a finite vector
of function symbols and ¢ is an FO formula without equality. The function
symbols are allowed to be nullary, i.e., to be interpreted as constants. The
formulae of fESO,,,— are interpreted according to the natural semantics.

A sentence ¢ of IF* is called equivalent to a sentence 1t of fESO,,—
(or, equivalently, a sentence of FO) if and only if Floise has a winning
strategy in the semantic game defined by ¢ exactly on those models where
1 is true. Any equality-free sentence of IF* without slashed connectives,
i.e., a sentence of IF,,—, can be transformed to an equivalent sentence of
fESOyo=. We base this claim on Theorem 10.2 of [1] which implies that
any sentence of IF,,,— can be put to an equivalent prenex normal form with

80

exactly the original propositional skeleton, and the transformation can be
done so that connectives and quantifiers without slash sets associated with
them remain unslashed. As the propositional skeleton of the new prenex
sentence is the same as that of the original sentence, the transformation
process does not introduce equality symbols. Furthermore, we obtain a
sentence that is regular, implying that no quantifier for a variable occurs
within the scope of another quantifier for the same varible. See [1] for details.
A sentence in this normal form can then be Skolemized in a careful inside-
out fashion. The procedure eliminates existential quantifiers and introduces
fresh function symbols. The related functions encode the way FEloise can
play the semantic game. The procedure does not introduce equality or
slashed connectives. The slash sets associated with universal quantifiers
get eliminated. Finally, the fresh function symbols are prenex quantified
existentially, resulting in a sentence of fESO,,,— equivalent to the original
IF o= sentence.

The reader uneasy about this translation should note that the results in
the current paper are mainly about for fESO,,,—, and the statements about

IF o= are mostly nothing more than direct corollaries to results concerning
fESOyo=-

3 Expressivity of IF,,- and fESO,,— over Models
with a Relational Vocabulary

We begin the section by making the simple observation that IF,,— and
FO are incomparable with regard to the expressive power of sentences over
vocabularies containing at least one binary relation symbol. Here we do not
limit our attention to finite models only.

Proposition 3.1. Let V' be a vocabulary containing at least one binary
relation symbol R. Then there is a class of V-models definable by a sentence
of IF o= and also a sentence of fESOy0= that is not definable by a sentence
of FO.

Proof. Tt is well known that there is an IF sentence ¢ (with equality and
without slashed connectives) that is true in exactly those models whose
domain has an even or an infinite cardinality. Let ¢’ be the sentence obtained
from ¢ by replacing each atom of the type = y by the atom R(zx,y). Let
C be the class of finite V-models 2 such that

R*={ (a,a) | a € Dom(2) }.

It is clear that with respect to C, the sentence ¢’ defines the class Cepen
of models whose domain is even. A straightforward Ehrenfeucht-Fraissé
argument shows that the class Ceper, is not definable with respect to C' by

81

any FO sentence. Since there is no FO sentence that is equivalent over C' to
¢, there is no FO sentence equivalent to ¢'.

Since ¢’ can be transformed to an equivalent fESO,,,— sentence, it follows
that fESOy.— £ FO with regard to expressive power of sentences over the
class of V-models. [

3.1 Bloating Models

We now define a model-transformation under which the truth of fESO,,—
sentences is preserved.

Definition 3.2. Let V be a relational vocabulary containing only unary
and binary relation symbols. (We restrict our attention to at most binary
relation symbols for the sake of simplicity.) Let 2 be a V-model with the
domain A, and let a € A. Let S be some set such that SN A = (). Define
the V-model B as follows.

1. The domain of 9B is the set AU S.
2. Let P € V be a unary relation symbol. We define P? as follows.

(a) Forallve A, ve PP iff v e P2
(b) For all s € S, s € P? iff a € P*.

3. Let R € V be a binary relation symbol. We define R® as follows.

(
(

a) Forallm€ Ax A, 7€ R® iff v € R¥.

b) For all s € S and all v € A, (v, s) € R® iff (v,a) € R¥.
(c) For all s € S and all v € A, (s,v) € R iff (a,v) € R™.
(d) For all 5,5" € S, (s,5') € R® iff (a,a) € R*.

We call the model 98 a bloating of 2. Figure 1 illustrates how this model
transformation affects models.

Theorem 3.3. Let V' be a vocabulary containing unary and binary relation
symbols only. The truth of fESOy.—= sentences is preserved from V-models
to their bloatings.

Proof. Let 2 be a V-model and ¢ a sentence of fESO,,,—. We assume that
¢ is of the form Jf1, where the symbols f are function symbols (some
of them perhaps nullary) and v is a first-order sentence without existential
quantifiers and with negations pushed to the atomic level. This normal form
is obtained by first transferring the first-order part of ¢ into negation normal
form and then Skolemizing the resulting sentence. The freshly introduced
Skolem functions are prenex quantified existentially, so the vocabulary of

82

Figure 1: The figure shows three structures of a vocabulary consisting of
one binary and one unary relation symbol. The shaded areas correspond to
the extensions of the unary relation symbol. The structure in the middle
is a bloating of the structure on the left. The structure in the middle is
obtained from the one on the left by adding two new copies of the middle
right element. The structure on the right is a bloating of the structure in
the middle obtained by adding two copies of the middle left element.

3 is the same as that of ¢. The process of transferring ¢ into the described
normal form does not introduce equality.

Let 2 and ‘B be as in Definition 3.2. The models there had the domains
A and AUS, respectively, and the element a € A was used in order to define
B. We assume that A = If1 and expand A to a model 2’ = (A, f2) such
that 2’ = 1. We then expand 9B to a model B’ = (B, f%') as follows.

1. For each k-ary symbol f, we let f% | AF = % | A% Note that when
k =0, i.e., when f is a constant symbol, then f® = f%.

2. For each k-tuple w € (A U S)* containing points from the set S, we
define the k-tuple w’, where each co-ordinate value s € S of w is
replaced by the element a. We then set f% (w) = f¥ ().

We then establish that 8’ | 1. The proof is a simple induction on the
structure of ¢. For each variable assignment h with codomain A, let g(h)
denote the set of all variable assignments with codomain A U S that can
be obtained from h by allowing some subset of the variables mapping to
the element a to map to elements in S. We prove that for every variable
assignment h with codomain A and every subformula x of v,

W, h=x = V' € g(h)(B', 1 = x).

83

The cases for atomic and negated atomic formulae form the basis of the
induction. The claim for these formulae follows immediately with the help
of the observation that h(t) = h/(t) for all h and b’ € g(h) and terms ¢t
that contain function symbols, i.e., terms that are not variable symbols. We
will next establish this claim by induction on the nesting depth of function
symbols.

The basis of the induction deals with the terms of nesting depth one,
i.e., terms of the type f(x1,...,2x) and ¢, where the symbols x1, ..., x; are
variable symbols and the symbol ¢ is a constant symbol. It is immediate
that h(t) = h'(¢) for all h and b’ € g(h) and all such terms ¢ of nesting depth
one.

Now let f(t1,...,tx) be a term of nesting depth n + 1. By the induc-
tion hypothesis, for each one of the terms ¢; that is not a variable symbol,
we have h(t;) = h'(t;). For the terms ¢; that are variable symbols and
for which h(t;) # a, we have h(t;) = h'(t;). For the terms t; that are
variable symbols and for which h(t;) = a, we have either h/(¢;) = a or
B (t;) € S. We therefore notice that we obtain the tuple (h(t1),..., h(tx))
from the tuple (h'(t1),...,h'(t;)) by replacing the elements u € S of the
tuple ((h/(t1),...,h (tx)) by the element a. Therefore we conclude, by the
definition of the function f?', that

PR (), s W () = f2 (h(t1), ..., h(tg)).

This concludes the induction on terms and therefore the basis of the original
induction on the structure of ¢ has now been established. We return to the
original induction.

The connective cases are trivial and the quantifier case relatively straight-
forward. We discuss the details of the quantifier case here.

Assume ', h | Vza(z). We need to show that for all ' € g(h),
B’ 1 | Vra(r). Assume, for contradiction, that for some h” € g(h) we have
B’ 1" [~ Vrza(z). Therefore, for some u € AU S, we have B, h"% [~ a(x).
It suffices to show that h"% € g(hZ) for some v € A. This suffices, as the
assumption ', h |= Voa(r) first implies that A, A2 |= a(z), which in turn
then implies, by the induction hypothesis, that B', h"% = a(x).

If u € A, let v =wu. Then, as h"" € g(h), we have h"% = h"% € g(h2). If
u € S, welet v =a. Then, as h" € g(h), we have h"% € g(h%) = g(h%). O

An immediate consequence of Theorem 3.3 is that FO £ fESO,,— be-
cause there exist first-order sentences whose truth is not preserved under
bloating.

Theorem 3.3 is interesting when regarding IF logic as a kind of a spec-
ification language for games. Let V be a vocabulary of the type defined in
Theorem 3.3. Let the equality-free and slash connective-free IF sentence ¢
of the vocabulary V specify some class of games and assume we know some
board (i.e., a V-model) on which Eloise wins the game (i.e., ¢ is true on

84

that model). The theorem then gives us a whole range of new, larger boards
where she wins the game specified by ¢. On the other hand, non-winning
and in fact even indeterminacy are clearly preserved in reverse bloatings.
This follows directly by a dualization argument.

4 Expressivity of fESO,,—- and IF,,— over Finite
Models with a Unary Relational Vocabulary

We now turn our attention to finite models whose vocabulary contains only
unary relation symbols. Over such finite models, the picture is quite different
from the case where there is a binary relation symbol in the vocabulary. We
will show that over the class of finite models whose vocabulary contains only
unary relation symbols,

FO o= < fESO4o= < FO.

We first discuss the latter inequality and then the former one.

4.1 {fESO,.,~ < FO over the Class of Finite Models with a
Unary Vocabulary

In this subsection, we establish that fESO,,,— < FO over the class of finite
models with a unary relational vocabulary. Therefore also IF,,,— < FO over
that class. We begin by making a number of auxiliary definitions.

Let U be a finite vocabulary containing unary relation symbols only. A
unary U-type (with the free variable x) is a conjunction 7 with |U| conjuncts
such that for each P € U, exactly one of the formulae P(z) and =P(z) is
a conjunct of 7. Let T' = {71,..., 77} be the set of unary U-types. The
domain of each (finite) U-model 2 is partitioned into some number n < |T|
of sets S; such that the elements of S; realize, i.e., satisfy, the type 7; € T.
(Here an element a € Dom(2l) realizes (satisfies) the type 7; if and only if
2 = 7;(a) in the usual sense of first-order logic.)

Let n € N>y, and let £ = 2". Any relation

R C NF\ {0}*

is called a spectrum. We associate sentences of FO and fESO,,,— with spectra
in a way specified in the following definition.

Definition 4.1. Let V be a vocabulary containing unary relation symbols
only. Let ¢ be a sentence of FO or fESO,,,— of the vocabulary V. Let U C V
be the finite set of relation symbols occurring in . Let T' = {71, ..., 77|} be
the finite set of unary U-types, and let <7 denote a linear ordering of the
types in T defined such that 7; <7 7;j iff i < j. Define the relation R, C NI
such that (ny,...,np|) € R, iff there exists a finite U-model 2 of ¢ such that

85

for all i € {1, ...,|T"|}, the number of points in the domain of A that satisfy
7; is n;. We call such a relation R, the spectrum of ¢ (with respect to the
ordering <7).

Notice that the class of finite V-models defined by ¢ is completely char-
acterized by the spectrum R, C NITI. We next define a special family of
spectra and then establish that this family exactly characterizes the ex-
pressive power of FO over the class of (finite) models with a vocabulary
containing unary relation symbols only. See Figure 2 for an illustration of a
spectrum of a sentence of FO with a unary relational vocabulary.

[A\ P A < .
+——+—+++++++
+——+—+++++++
+——+—t++++++
+——+—H++++++
+——+—+++++++
+——+—+++++++

N e slelends sbegse oy e sfe ke e i SN0
FF—F—======
—++—+H+++++++
—+—+—+++++++ .-
+—+————————
—+—+++++++++

l |P|

Figure 2: The figure illustrates a stabilizing spectrum that corresponds to
some FO sentence ¢ of the vocabulary {P}, where P is a unary relation
symbol. A plus symbol occurs at the position (i,) iff there exists a {P}-
model 2 satisfying ¢ such that |P¥| = i and |4\ P*| = j, where A =
Dom(21). In other words, the number of points in the domain of 2 satisfying
the type P(x) is ¢ and the number of points satisfying the type —P(z) is j.
The spectra for FO sentences divide the xy-plane into four distinct regions.
The upper right region always contains either only plus symbols or only
minus symbols. In the bottom left region, any distribution is possible. (The
point (0,0) always contains a minus symbol though since we do not allow
for models to have an empty domain.)

Definition 4.2. Let [= 2’ for some I’ € N>1. Let R € N be a spectrum for
which there exists a number n € N>y such that for all co-ordinate positions
i€ {1,...,1}, all integers k,k’ > n and all my,...,m;j_1,m;y1,...,m; € N, we

86

have
(m17 "'7mi—17k7mi+17 "'7ml) €ER
=
/
(ml, vy Mi—1, k , M1 1, ...,ml) € R.

We call such a number n a stabilizer of the spectrum R. A spectrum with
a stabilizer is called a stabilizing spectrum.

Proposition 4.3. A spectrum R is a stabilizing spectrum if and only if R
is a spectrum of some FO sentence.

Proof. Given a stabilizing spectrum, it is easy to write a corresponding FO
sentence by applying the quantifiers 3=/ and 327 expressible with the use
of the equality symbol. (Here 377z ¢(z) states that there exists exactly j
elements a such that o(a) holds, and 327 is defined analogously.)

The fact that each spectrum of an FO sentence is stabilizing follows by
a straightforward Ehrenfeucht-Fraissé argument. O

Next we define some order theoretic concepts and then prove a number of
related results that are needed for the proof of the main theorem (Theorem
4.7) of the current section.

A structure A = (A4, <¥) is a partial order if <* C A x A is a reflexive,
transitive and antisymmetric binary relation. Given a partial order 2 =
(A, <¥), we let <* denote the irreflexive version of the order <*. A partial
order is well-founded if no strictly decreasing infinite sequence occurs in it.
That is, a partial order 2 = (A4, <¥) is well-founded if for each each sequence
s : N — A there exist numbers i, j € N such that i < j and s(j) £ s(i).
An antichain S C A of a partial order 2 = (A, <*) is a set such that for all
distinct elements s, s’ € S, we have s £% s’ and s’ £* 5. In other words, the
distinct elements s and s’ are incomparable. A well-founded partial order
that does not contain an infinite antichain is called a partial well order, or
a pwo.

Let A = (4,<¥) and B = (B, <®) be partial orders. The Cartesian
product 2 x B of the structures is the partial order defined in the following
way.

1. The domain of & x 9B is the Cartesian product A x B.

2. The binary relation <**® C (Ax B)x (Ax B) is defined in a pointwise
fashion as follows.

(a,b) <*® (d V) (a <*d and b <® b’)

For each k € N>; and each partial order 2 = (A4, <*), we let AF = (A §mk)
denote the partial order where the relation gﬂkg AF x AF g again defined
in the pointwise fashion as follows.

k .
(a1,...,ar) <* (a},....,a}) o Vie{l,.. k}:a; <*d}

87

We call the structure 2* the k" Cartesian power of 2A. We let (N, <)
denote the k" Cartesian power of the linear order (N,<). When S C N*,
we let (S,<) denote the partial order with the domain S and with the
ordering relation inherited from the structure (N¥, <). In other words, for
all 5,5 € S, we have 5 <(53) ¢ if and only if 5 <5 . We simply
write u < v in order to assert that u S(Nké) ¥, when @, 7 € NF.

The following lemma is a paraphrase of Lemma 5 of [12], where the
lemma is credited to Higman [6].

Lemma 4.4. The Cartesian product of any two partial well orders is a
partial well order.

Variations of the following lemma are often attributed to Dickson [3].
The lemma follows immediately from Lemma 4.4.

Lemma 4.5. Let k € Nxy. The structure (N¥, <) does not contain an
infinite antichain.

Proof. The structure (N, <) is a pwo, and the property of being a pwo is
preserved under taking finite Cartesian products by Lemma 4.4. Therefore
the structure (N¥, <) is a pwo. By definition, a pwo does not contain an
infinite antichain. O

Let [€ N>; and let R C N’ be a relation such that for all @, 7 € N, if
€ R and w < 7, then 7 € R. We call the relation R upwards closed with
respect to (N!, <). When the exponent [is irrelevant or known from the
context, we simply say that the relation R is upwards closed.

Theorem 4.6. Let I’ € N>y and | = 2. Let R C N be a relation that is
upwards closed with respect to (N!, <). Then R is a stabilizing spectrum.

Proof. We begin the proof by defining a function f that maps each non-
empty subset of the set {1,...,l} to a natural number. Let C C {1,...,1}
be a non-empty set. Let R(C) denote the set consisting of exactly those
tuples w € R that have a non-zero co-ordinate value at each co-ordinate
position ¢ € C' and a zero co-ordinate value at each co-ordinate position
j€{1,...,1} \ C. Define the value f(C) € N as follows.

1. If R(C) = 0, let £(C) = 0.

2. If R(C) # 0, choose some w € R(C). Let W C R(C) be a maximal
antichain of (R(C) <) with w € W, i.e., let W be an antichain of
(R(C), <) such that for all w € R(C) \ W, there exists some v € W
such that w < v or v > u. By Lemma 4.5, we see that the set W is
finite. Thus there exists a maximum co-ordinate value occurring in
the tuples in W. Let f(C) to be equal to this value.

88

(Notice that we have some freedom of choice when defining the function f,
so there need not be a unique way of defining the function.)
With the function f defined, call

n=max({ f(C)| CC{1,...,1}, C#0}).

We establish that n is a stabilizer for the relation R. We assume, for
the sake of contradiction, that there there exist integers k,k’ > n and
M1,y ey Myi—1, Miy1, ...,y € N such that the equivalence

(M1, .y mi—1, kymig1, . my) € R
=
(ml, ...,mi,l,k",mHl, ...,ml) € R.

does not hold. Let & < k’. As by assumption the relation R is upwards
closed, it must be the case that

(01 oKy g o) & R
and
(ml) ey Myi—1, k/,mi+1, ey ml) € R.

Otherwise we would immediately reach a contradiction. Call

Wy = (ml, ey M1, kM1, "‘7ml)
and

— /

Wy = (ml, ...,mi_l,k s M1, "'7ml)'

Let C* C {1,...,1} be the set of co-ordinate positions where the tuple wy
(and therefore also the tuple wy) has a non-zero co-ordinate value. Let
W(C*) denote the domain of the maximal antichain of (R(C*), <) chosen
when defining the value of the function f on the input C*. The tuple Wy
cannot belong to the set W (C*), since the co-ordinate value k' is greater
than n, and therefore greater than any of the co-ordinate values of the
tuples in W(C*). Hence, as W(C*) is a maximal antichain of (R(C*), <)
and Wy € R(C*), we conclude that there exists a tuple w € W(C*) such that
Wy < W or u < Wy . Since k' > f(C*), we must have u < wy. Therefore,
as also k > f(C*), we conclude that @ < wWy. Since R is upwards closed and
u € R, we have wy € R. This is a contradiction, as desired.]

The following theorem is the main result of the current section.

Theorem 4.7. Over the class of finite models of a vocabulary V' containing
only unary relation symbols, fESOy0= < FO.

Proof. Tt is immediate by Theorem 3.3 that fESO,,,= # FO (over finite V-
models). It thus suffices to show that fESO,,— < FO over finite V-models.

To show that fESO.,.— < FO, by Proposition 4.3 it suffices to establish
that the spectrum R, of an arbitrarily chosen fESOy,— sentence ¢ is stabi-
lizing. By Theorem 3.3, the spectrum R, is upwards closed. Therefore, by
Theorem 4.6, R, is a stabilizing spectrum.]

89

Corollary 4.8. OQwver finite models of a vocabulary containing only unary
relation symbols, IF,,— < FO.

Note that Theorem 4.7 applies not only to fESO,,,— but to any system
such that the definable classes of models with a unary vocabulary are closed
under bloating. Note also that the method of proof seems nonconstructive
in the sense that it seems to leave open the question whether there is an
effective translation from the system considered into FO.

4.2 FOu,— < IF,,— over the Class of Finite Models with a
Unary Vocabulary

In this subsection we establish that over the class of finite { P}-models, where
P is a unary relation symbol, we have FO.— < IFy,—. The IF,,— sentence

Va3y3z/{z} (P(y) A (P(x) < P(2)))

is true on a model 9 with three points, two of which satisfy P. The sen-
tence is not true on a model 91 with two points, one satisfying P and one
not. However, FO,,— cannot separate the models 9t and 1. This is seen by
a straightforward Ehrenfeucht-Fraissé argument involving a version of the
Ehrenfeucht-Fraissé game that characterizes FO,,—. Instead of the usual
partial isomorphism condition, this game involves the following end condi-
tion between the pebbles ai,...,ary € A = Dom(2) and by,...,by € B =
Dom(B) picked during a play of the k-round game involving models 21 and
B with a relational vocabulary. A play of the game defines a binary relation
Z = {(a1,b1), ..., (ag,br)}. The relation Z is called a partial relativeness
correspondence between the models 2 and B if for all relation symbols R in
the vocabulary of the models, the condition Z(a},b), ..., Z(al,,bl) implies
R*d}, ...,al) < R®(Y),...,b). Here n is the arity of the symbol R. The
duplicator wins the play of the game if the relation Z defined by the play is
a partial relativeness correspondence. A discussion concerning the related
Ehrenfeucht-Fraissé characterization theorem can be found in [2].

Theorem 4.9. Over finite models of a vocabulary V containing only unary
relation symbols, FOyo= < IF 0.

Proof. Tt suffices to establish that the duplicator has a winning strategy in
the Ehrenfeucht-Fraissé game for FO,,,— for any number k& of rounds played
on the models M and D1 defined above. The duplicator employs a strategy
where the reply to each one of the spoiler’s moves is simply a pick of any
element in the correct model that satisfies exactly the same unary {P}-type
as the element chosen by the spoiler. O

Corollary 4.10. Owver finite models of a vocabulary V containing only unary
relation symbols, FO o= < fESOy0=.

90

5 Concluding Remarks

We have investigated the expressive power of the equality-free version of IF
logic without slashed connectives. The results obtained have been estab-
lished through a study of the logic fESOy,=. Our principal result is that
over finite models with a vocabulary containing only unary relation symbols,
the logics IF,,— and fESO,,,— are weaker than FO. We have also identified
a model-transformation that preserves the truth of IF,,,— sentences.

In the future we expect to tie up some loose ends that were left undis-
cussed here. This includes considering infinite models. Furthermore, we
wish to identify differences (rather than similarities) in the roles that differ-
ent logical constructors — such as negation and identity — play in versions
of IF logic and other logics of the same family such as dependence logic
[16]. The full systems of dependence logic and IF* coincide in expressive
power on the level of sentences, both being able to exactly capture exis-
tential second-order logic. However, the systems might perhaps differ in
expressive power when a suitable subset of the available logical constructors
is uniformly removed from both systems. Another possibility is to restrict
the number of available variable symbols to some finite number. The pos-
sibilities are endless indeed. Investigations along such lines should lead to
a deeper understanding of the strengths and weaknesses different systems
have in relation to different applications.

Acknowledgements. The author wishes to thank Lauri Hella, Kerkko
Luosto, Allen Mann and Jonni Virtema for valuable feedback.

References

[1] Caicedo X., Dechesne F. and Janssen T. M. V. Equivalence and Quan-
tifier Rules for Logic with Imperfect Information. Logic Journal of the
IGPL, 17(1):91-129, 2009.

[2] Casanovas E., Dellunde P. and Jansana R. On Elementary Equivalence
for Equality-free Logic. Notre Dame Journal of Formal Logic, 37(1):506-
522, 1996.

[3] Dickson L. E. Finiteness of the Odd perfect and Primitive Abundant
Numbers with n Distinct Prime Factors. American Journal of Mathe-
matics, 35(4):413-422, 1913.

[4] Galliani P. Probabilistic Dependence Logic. M.Sc. thesis, ILLC, 2008.

[5] Henkin, L. Some remarks on infinitely long formulas. In Infinitistic Meth-
ods: Proceedings of the Symposium on Foundations of Mathematics,
Warsaw, 29 September 1959, 167-183, Pergamon Press, 1961.

91

[6] Higman G. Ordering by Divisibility in Abstract Algebras. In Proceedings
of the London Mathematical Society 1952, s3-2(1):326-336, 1952.

[7] Hintikka J. Quantifiers vs. Quantification Theory. Dialectica, 27:329-358,
1973.

[8] Hintikka J. and Sandu G. Informational Independence as a Semanti-
cal Phenomenon. In Fenstad J. E. et al., editors, Logic, Methodology
and Philosophy of Science VIII, volume 126 of Studies in Logic and the
Foundations of Mathematics, 571-589, North-Holland, 1989.

[9] Kontinen Jarmo. Coherence and Complexity in Fragments of Dependence
Logic. Ph.D. thesis, ILLC, 2010.

[10] Kontinen Juha and Nurmi V. Team logic and second-order logic. In Pro-
ceedings of WoLLIC 2009, Springer Lecture Notes in Computer Science
5514, 20009.

[11] Kontinen Juha and Véaanénen J. On Definability in Dependence Logic.
Journal of Logic, Language and Information, 18(3):317-332, 2009.

[12] Malicki M. and Rutkowski A. On Operations and Linear Extensions of
Well Partially Ordered Sets. Order 21(1):7-17, 2004.

[13] Mann A. L. Independence-friendly Cylindric Set Algebras. Logic Jour-
nal of the IGPL, 17(6):719-754, 20009.

[14] Sevenster M. and Tulenheimo T. Approaches to Independence Friendly
Modal Logic. In van Benthem J., Gabbay D. and Léwe B., editors, In-
teractive Logic. Selected Papers from the Tth Augustus de Morgan Work-
shop, London. Texts in Logic and Games 1, Amsterdam: Amsterdam
University Press, 247-280, 2007.

[15] Tulenheimo T. Independence Friendly Modal Logic. Ph.D. thesis, De-
partment of Philosophy, University of Helsinki, 2004.

[16] Véananen J. Dependence Logic. Vol. 70 of London Mathematical Society
Student Texts. Cambridge University Press, 2007.

92

COMPLEXITY RESULTS FOR MODAL DEPENDENCE LOGIC

PETER LOHMANN AND HERIBERT VOLLMER

Institut fiir Theoretische Informatik

Leibniz Universitdt Hannover

Appelstr. 4, 30167 Hannover, Germany

E-mail address: {lohmann,vollmer}@thi.uni-hannover.de

ABSTRACT. Modal dependence logic was introduced very recently by Vdadn&nen.
It enhances the basic modal language by an operator dep. For propositional vari-
ables p1,...,pn, dep(p1,...,Pn—1;Pn) intuitively states that the value of p, only
depends on those of p1,...,pn—1. Sevenster (J. Logic and Computation, 2009)
showed that satisfiability for modal dependence logic is complete for nondetermin-
istic exponential time.

In this paper we consider fragments of modal dependence logic obtained by
restricting the set of allowed propositional connectives. We show that satisfibility
for poor man’s dependence logic, the language consisting of formulas built from lit-
erals and dependence atoms using A, [, O (i. e., disallowing disjunction), remains
NEXPTIME-complete. If we only allow monotone formulas (without negation, but
with disjunction), the complexity drops to PSPACE-completeness. We also extend
Viaananen’s language by allowing classical disjunction besides dependence disjunc-
tion and show that the satisfiability problem remains NEXPTIME-complete. If we
then disallow both negation and dependence disjunction, satistiability is complete
for the second level of the polynomial hierarchy.

In this way we completely classifiy the computational complexity of the sat-
isfiability problem for all restrictions of propositional and dependence operators
considered by Vadninen and Sevenster.

1. Introduction

The concept of extending first-order logic with partially ordered quantifiers, and
hence expressing some form of independence between variables, was first introduced
by Henkin [Hen61]. Later, Hintikka and Sandu developed independence friendly logic
[HS89] which can be viewed as a generalization of Henkin’s logic. Recently, Jouko
Vaanédnen introduced the dual notion of functional dependence into the language of
first-order logic [VAa07]. In the case of first-order logic, the independence and the
dependence variants are expressively equivalent.

Dependence among values of variables occurs everywhere in computer science
(databases, software engineering, knowledge representation, AI) but also the social
sciences (human history, stock markets, etc.), and thus dependence logic is nowadays
a much discussed formalism in the area called logic for interaction. Functional de-
pendence of the value of a variable p, from the values of the variables pi,...,pn_1

Key words and phrases: dependence logic, satisfiability problem, computational complexity, poor
man’s logic.

Supported in part by the NTH Focused Research School for IT Ecosystems and by DFG VO
630/6-1.

93

2 P. LOHMANN AND H. VOLLMER

states that there is a function, say f, such that p, = f(p1,...,Pn-1), i.e., the value
of p, only depends on those of pi,...,p,—1. We will denote this in this paper by
dep(p1, - -+ Pn—1;Dn)-

Of course, dependence does not manifest itself in a single world, play, event or
observation. Important for such a dependence to make sense is a collection of such
worlds, plays, events or observations. These collections are called teams. They are
the basic objects in the definition of semantics of dependence logic. A team can be
a set of plays in a game. Then dep(pi,...,Pn—1;Pn) intuitively states that in each
play, move p,, is determined by moves pi,...,p,—1. A team can be a database. Then
dep(p1,...,Pn—1;Dn) intuitively states that in each line, the value of attribute p,, is
determined by the values of attributes pi,...,pn_1, i. €., that p, is functionally depen-
dent on p1,...,pn—1. In first-order logic, a team formally is a set of assignments; and
dep(p1,--.,Pn_1;Dn) states that in each assignment, the value of p, is determined by
the values of p1,...,pn—1. Most important for this paper, in modal logic, a team is
a set of worlds in a Kripke structure; and dep(p1, ..., Pn—1;pn) states that in each of
these worlds, the value of the propositional variable p,, is determined by the values of
P1,---sPn-1-

Dependence logic is defined by simply adding these dependence atoms to usual
first-order logic [Vaa07]. Modal dependence logic (MDL) is defined by introducing
these dependence atoms to modal logic [Vaa08| [Sev09]. The semantics of MDL is
defined with respect to sets T of worlds in a frame (Kripke structure) W, for example
W, T = dep(p1,-..,pn—1;pn) if for all worlds s,t € T, if py,...,p,—1 have the same
values in both s and ¢, then p,, has the same value in s and ¢, and a formula

Odep(p1, .-+, Pn—1;Pn)

is satisfied in a world w in a Kripke structure W, if in the team T consisting of all
successor worlds of w, W, T = dep(p1,- -, Pn—1;Dn)-

MDL was introduced in [Vaa08]. Véananen introduced besides the usual inductive
semantics an equivalent game-theoretic semantics. Sevenster [Sev(09] considered the
expressibility of MDL and proved, that on singleton teams 7T, there is a translation
from MDL to usual modal logic, while on arbitrary sets of teams there is no such
translation. Sevenster also initiated a complexity-theoretic study of modal dependence
logic by proving that the satisfiability problem for MDL is complete for the class NEXP-
TIME of all problems decidable nondeterministically in exponential time.

In this paper, we continue the work of Sevenster by presenting a more thorough
study on complexity questions related to modal dependence logic. A line of research
going back to Lewis [Lew79] and recently taken up in a number of papers [RW00,
HemO1l, BHSS06, MMTVO0§| has considered fragments of different propositional logics
by restricting the propositional and temporal operators allowed in the language. The
rationale behind this approach is that by systematically restricting the language, one
might find a fragment with efficient algorithms but still high enough expressibility
in order to be interesting for applications. This in turn might lead to better tools
for model checking, verification, etc. On the other hand, it is worthwhile to identify
the sources of hardness: What exactly makes satisfiability, model checking, or other
problems so hard for certain languages?

We follow the same approach here. We consider all subsets of modal operators [,
and propositional operators A, V, = (atomic negation), T, 1 (the Boolean constants true
and false), 1. e., we study exactly those operators considered by Vaadnénen [Vaa08], and
examine the satisfiability problem for MDL restricted to the fragment given by these

94

COMPLEXITY RESULTS FOR MODAL DEPENDENCE LOGIC 3

operators. In each case we exactly determine the computational complexity in terms of
completeness for a complexity class such as NEXPTIME, PSPACE, coNP, etc., or by
showing that the satisfiability problem admits an efficient (polynomial-time) solution.
We also extend the logical language of [VAa08] by adding classical disjunction (denoted
here by) besides the dependence disjunction. Connective) was already considered
by Sevenster (he denoted it by e), but not from a complexity point of view. In this way,
we obtain a complexity analysis of the satisfiability problem for MDL for all subsets of
operators studied by Véadnanen and Sevenster.

Our results are summarized in Table [T} where + denotes presence and — denotes
absence of an operator, and * states that the complexity does not depend on the opera-
tor. One of our main and technically most involved contributions addresses a fragment
that has been called Poor Man’s Logic in the literature on modal logic [Hem01], i.e.,
the language without disjunction V. We show that for dependence logic we still have
full complexity (Theorem (3.5 first line of the table), i.e., we show that Poor Man’s
Dependence Logic is NEXPTIME-complete. If we also forbid negation, then the com-
plexity drops down to ¥5(= NPYY); i.e., Monotone Poor Man’s Dependence Logic is
Y:5-complete (Theorem [3.4] but note that we need @ here).

OO0 A|V]|T]|T]|L|dep| | Complexity | Reference
+ |+ x|+ x| x + * || NEXPTIME | Theorem
FlFHF]+ |+ x| =] = | = PSPACE Corollary
+l++ |+ =]]|+ x| * PSPACE Corollary(3.3b
+l+l+1 =+« = |+ b Theorem [3.4]
==+ = |+ ¥ Theorem
A+ =+ x| x| = | = coNP [Lad77],
[DLNT92]
1+ + ===+ = | = coNP Corollary[3.3k
+ =+ 1+ 4] %% * * NP Corollary|3.7h
— A+ F]+] k] | * NP Corollary [3.7a
+ =+ =+]| = * |+ NP Corollary [3.7h
-+l =+ %]« x|+ NP Corollary [3.7h
+ =+ =14+ %] % * — P Corollary 3.7b
— =+ %] x x | — P Corollary 3.7b
4=+ x| =]]| * x| * P Corollary [3.7¢
— |+ x| =] % | % * * P Corollary 37
x| ok || = | x| x| k| % x| * P Corollary [377d
x| x|k [x| — | x| — x| * trivial Corollary [3-3(d
e E R * | * || ordinary propositional logic
(@=V, dep(;-) =T)
+ : operator present — : operator absent x : complexity independent of operator

Table 1: Complete classification of complexity for fragments of MDL-SAT
All results are completeness results except for the P cases.

2. Modal Dependence Logic

We will only briefly introduce the syntax and semantics of modal dependence
logic here. For a more profound overview consult Véaanénen’s introduction [VAa08| or
Sevenster’s analysis [Sev09] which includes a self-contained introduction to MDL.

95

4 P. LOHMANN AND H. VOLLMER

2.1. Syntax

The formulas of modal dependence logic (MDL) are built from a set AP of atomic
propositions and the MDL operators O, {, A, V, = (also denoted —), T, 1, dep and &)
The set of MDL formulas is defined by the following grammar

o= T | L]|p| -p]| dep®i,....0n—150n) | ~dep(p1,-.-,Pn-1:Pn) |
eNe | oV | oQe | Op | Op,

where n > 1.
All formulas in the first row will sometimes be denoted as atomic formulas and

formulas of the form dep(p1,...,Pn—1;Pn) as dependence atoms. We sometimes write
VE for V...V (with V € {00, 0}, k € N).

——

k times

2.2. Semantics

A frame (or Kripke structure) is a tuple W = (S, R, w) where S is a non-empty
set of worlds, R C S x S is the accessibility relation and 7 : S — P(AP) is the labeling
function.

In contrast to usual modal logic, truth of a MDL formula is not defined with respect
to a single world of a frame but with respect to a set of worlds, as already pointed out
in the introduction. The truth of a MDL formula ¢ in an evaluation set T of worlds of
a frame W = (S, R,) is denoted by W, T |= ¢ and is defined as follows:

W, T = T always holds

W,T L if T=0

W, T = p iff pemn(s)forallseT

W, T E -p iff pé¢mn(s)forallseT

W, T k& dep(pi,-.-,Pn—1;Pn) iff for all s1,s9 € T with

w(s1) NP1, sPn-1} =7(s2) N{P1, ..., Pn-1}:

pn € 7(s1) iff p, € w(s2)

W.T E —dep(pi,...,Pn-1;Pn) iff =10

W, T = oAy iff W, T = pand W, T =

W, T E oV iff there are sets T, T» with T'= T, U T,
W, Ty = ¢ and W, T = ¢

WT £ Q@ i W,TEgor W,T o

W, T E Op ifft W, {s'|3IseT with (s,5') € R} = ¢

W, T E Op iff there is a set 7" C S such that W, T" = ¢
and for all s € T there is a s’ € T" with
(s,s') e R

By V we denote dependence disjunction instead of classical disjunction because the
semantics of dependence disjunction is an extension of the semantics of usual modal
logic disjunction and thus we preserve downward compatibility of our notation in this
way. However, we still call the) operator “classical” because in a higher level context
— where our sets of states are viewed as single objects themselves — it is indeed the
usual disjunction, cf. [AV09]. Note that rationales for the seemingly rather strange
definitions of the truth of Vi) as well as —~dep(p1, . . . , Pn—1; Pn) Were given by Vadnénen
[Vaa08|, [VAaa0T].

For each M C {O0,0,A,V,~, T, L,dep, @} define the set of MDL(M) formulas
to be the set of MDL formulas which are built from atomic propositions using only
operators and constants from M.

96

COMPLEXITY RESULTS FOR MODAL DEPENDENCE LOGIC 5

We are interested in the parameterized decision problem MDL-SAT(M):

Given: A MDL(M) formula ¢.
Question: Is there a frame W and a non-empty set T" of worlds in W such that
W, T = ¢?

Note that, as Vadnénen already pointed out [VA408, Lemma 4.2.1], the semantics
of MDL satisfies the downward closure property, i.e., if W, T |= ¢, then W, T’ |= ¢ for
all T/ C T. Hence, to check satisfiability of a formula ¢ it is enough to check whether
there is a frame W and a single world w in W such that W, {w} = ¢.

3. Complexity Results

To state the first lemma we need the following complexity operator. If C is an
arbitrary complexity class then 3-C denotes the class of all sets A for which there is a
set B € C and a polynomial p such that for all z,

x € A iff there is a y with |y| < p(|z|) and (z,y) € B.

Note that for every class C, 3-C C NPC. However, the converse does not hold in
general. We will only need the following facts: 3-coNP = X5, 3. PSPACE = PSPACE

and 3 - NEXPTIME = NEXPTIME.
Our first lemma concerns sets of operators including classical disjunction.

Lemma 3.1. Let M be a set of MDL operators. Then it holds:

a) Every MDL(M U {@}) formula ¢ is equivalent to a formula @:1' Wi with ¥; €
MDL(M) for alli € {1,...,2¢1}.

b) If C is an arbitrary complexity class with P C C and MDL-SAT(M) € C then MDL-
SAT(M U{@}) € 3-C.

Proof. a) follows from the distributivity of) with all other operators. More specifically
px (¥ @o) = (px¢) Q(pxo) for x € {A,V} and V(e @ ¢) = (Vo) @ (Vy) for
vV e {0, D} b) follows from a) with the observation that (\fol| 1; is satisfiable if
and only if there is an i € {1,..., QW} such that 1); is satisfiable. Note that given ¢ €
{1,..., QM} the formula v; can be computed from the original formula ¢ in polynomial
time by choosing (for all j € {1,...,|¢|}) from the jth subformula of the form ¢ Qo
the formula v if the jth bit of 7 is 0 and o if it is 1. [

We need the following simple property of monotone MDL formulas.

Lemma 3.2. Let M be a set of MDL operators with = ¢ M. Then an arbitrary
MDL(M) formula ¢ is satisfiable iff the formula generated from ¢ by replacing every
dependence atom and every atomic proposition with the same atomic proposition t is
satisfiable.

Proof. If a frame W is a model for ¢, so is the frame generated from W by setting all

atomic propositions in all worlds to true. L]

Hnterestingly, but not of relevance for our work, ¢ @ (¢ V o) Z (¢ @) V (¢ @0).

97

6 P. LOHMANN AND H. VOLLMER

We are now able to classify some cases that can be easily reduced to known results.

Corollary 3.3. o) If{0,0,A,V,7} C M C{O0,0,A,V,=, T, L, Q} then MDL-SAT(M)
is PSPACE-complete.

b) If {0,0,A,V, 1L} C M C{O0,0,A,V, T, L,dep, @} then MDL-SAT(M) is PSPACE-
complete.

¢) If {0,0,A, L} C M C{,0,A, T, L,dep} then MDL-SAT(M) is coNP-complete.

d) If M C{0,0,A,V, T,dep, @} then every MDL(M) formula is satisfiable.

Proof. a) follows immediately from Ladner’s proof for the case of ordinary modal logic
[Lad77], Lemma[3.1] and 3 - PSPACE = PSPACE. The lower bound for b) was shown
by Hemaspaandra [Hem0O1l Theorem 6.5] and the upper bound follows from a) together
with Lemma The lower bound for ¢) was shown by Donini et al. [DLN'92] and
the upper bound follows from Ladner’s algorithm [Lad77] together with Lemma d)
follows from Lemma together with the fact that every MDL formula with t as the
only atomic subformula is satisfied in the transitive singleton, i.e. the frame consisting
of only one state which has itself as successor, in which ¢ is true. [

3.1. Poor Man’s Dependence Logic

We now turn to the ¥:5-complete cases. These include monotone poor man’s logic,
with and without dependence atoms.

Theorem 3.4. If {0,O,A, -, € M C {T,0,A, =, T,L,Q or {O0,0,A, L, &} C
M C{O,0,A, T, L,dep, @} then MDL-SAT (M) is X5-complete.

Proof. Proving the upper bound for the second case reduces to proving the upper bound
for the first case by Lemma [3.2] For the first case it holds with Lemma [3.1] that MDL-
SAT(O,0,A, =, T, L,Q) € 3 coNP = XY since MDL-SAT(0J, 0, A, =, T, L) € coNP,
which follows directly from Ladner’s AP-algorithm for modal logic satisfiability [Lad77].

For the lower bound we consider the quantified constraint satisfaction problem
QCSP3(Ry/3) shown to be II5-complete by Bauland et al. [BBCTar]. This problem
can be reduced to the complement of MDL-SAT(OJ, 0, A, =/ 1, @) in polynomial time.

An instance of QCSP3(R;/3) consists of universally quantified Boolean variables
p1,---,Pk, existentially quantified Boolean variables pgy1,...,p, and a set of clauses
each consisting of exactly three of those variables. QCSP2(Ry/3) is the set of all those
instances for which for every truth assignment for pq, ..., px there is a truth assignment
for pgy1,...,pn such that in each clause exactly one variable evaluates to trueﬂ

For the reduction from QCSP2(R;/3) to the complement of MDL-SAT(O, ¢, A,
~/1,Q) we extend a technique from the coNP-hardness proof for MDL-SAT(OJ, O, A, 1)
by Donini et al. [DLNT92, Theorem 3.3]. Let p1,...,pr be the universally quantified
and pry1,...,Pn the existentially quantified variables of a QCSP2 (R /3) instance and
let C1,...,C,, be its clauses (we assume w.l.o.g. that each variable occurs in at least

2For our reduction it is necessary that in each clause the variables are pairwise different whereas
in QCSPg(Rl/g) this need not be the case. However, the Hg—hardness proof can easily be adapted to
account for this.

98

COMPLEXITY RESULTS FOR MODAL DEPENDENCE LOGIC 7

one clause). Then the corresponding MDL(O, ¢, A, 1, Q) formula is

k . .
Q= /\ (Vit --Vim Vii...Vim Dlilomkil p
i=1 . .
@ Om Oom szlomkfz p)
A /\ vil Vim vﬂ vzm Dk
i=k+1
A om o™ 0k 1

<> if i € Cj
O else '

For the corresponding MDL (O, , A, =, @) formula replace every | with —p.

To prove the correctness of our reduction we will need two claims.
Claim 1. For r,s > 0a MDL(O, 0, A, =, T, L) formula Opq A« - AQp, ATy A+ - - AT,
is unsatisfiable iff there is an i € {1,...,r} such that ¢; At A -+ A1) is unsatisfiable.
Proof of Claim 1. “<": If p; Ay A+ - A is unsatisfiable, so is QOp; AQlpy A - - A
and even more Q@ A -+ A O, A A -+ A Os.

“=: Suppose that ¢; A1 A -+ A 1)g is satisfiable for all ¢ € {1,...,7}. Then
Q1 A+ ANOw, AN A --- Al is satisfiable in a frame that consists of a root state
and for each ¢ € {1,...,r} a separate branch, reachable from the root in one step,
which satisfies p; A1 A -+ A 1hs. <<

Note that O A -+ A Qe ADwy A --- A is always satisfiable if » = 0.
Definition. Let v : {p1,...,px} — {0,1} be a valuation of {pi,...,pr}. Then ¢,
denotes the MDL([J, O, A, =/ 1) formula

where p is an arbitrary atomic proposition and V;; := {

/\ Vii---Vim Vii...Vim Di‘loDk‘i p

i€{l,....k},
v(pi)=1 , _
A /\ m Om Dz—1<>|:’k—1 P
i€{l,....,k},
v(pi)=0
A /\ V”Vm V“Vzm Dk p
i=k+1
A om om Ok -p/ 1L

Claim 2. Let v : {p1,...,pr} — {0,1} be a valuation. Then ¢, is unsatisfiable iff

v can be continued to a valuation v’ : {p1,...,pn} — {0,1} such that in each of the
clauses {C1,...,Cy,} exactly one variable evaluates to true under v’.

Proof of Claim 2. By iterated use of Claim 1, ¢, is unsatisfiable iff there are i1, ..., iom,
with

ij € ?e{l,...,n}|vij,=<>}\{z'e{1,...,k}v(pi)zo}
ie{l,...,n}|peCpi\{ie{l,....k} | v(p;) =0},

99

8 P. LOHMANN AND H. VOLLMER

. o
where j' := { j,_ m leflsje_ m , such that
Op(i1, .-y iom) = A Oi-1oOk—t P
i€{1,....k},
iG{il izm},
v(pi)=1))
A /\ szIODkfz D
ie{l,....k},
v(p;i)=0
A A Ok P
i€{k+1,...,n},
’L'E{ila-uﬂém}
A o~ -p/L

is unsatisfiable (¢) and such that there are no a,b € {1,...,2m} with a < b, V;,o =
Vi = O (this is the case iff p;, € Cyp and p;, € Cy) and i, # 4 (i4). The latter
condition is already implied by Claim 1 as it simply ensures that no subformula is
selected after it has already been discarded in an earlier step. Note that ¢, (1, ..., %2m)
is unsatisfiable iff for all ¢ € {1,...,k}: v(p;) =1 and i € {i1,...,i2m} or v(p;) =0
(and ¢ ¢ {i1,...,i2m}) (7).

We are now able to prove the claim.

“<”": For j = 1,...,2m choose i; € {1,...,n} such that p;, € Cj» and v'(p;;) = 1.
By assumption, all 7; exist and are uniquely determined. Hence, for all i € {1,...,k}
we have that v(p;) = 0 (and then i ¢ {i1,...,42m}) or v(p;) = 1 and there is a j such
that i; = ¢ (because each variable occurs in at least one clause). Therefore condition
(i') is satisfied. Now suppose there are a < b that violate condition (i7). By definition
of 4 it holds that p;, € Cy and v'(p;,) = 1. Analogously, p;, € Co and v'(p;,) = 1.
By the supposition p;, € Cy and p;, # p;,. But since v'(p;,) = v'(p;,) = 1, that is a
contradiction to the fact that in clause C,: only one variable evaluates to true.

“=7: If ¢, is unsatisfiable, there are i1,...,42,, such that (i) and (i7) hold. Let
the valuation v’ : {p1,...,pn} — {0,1} be defined by

1ifé e {i1,...,iom
' (pi) :z{ 0 else {ia 2m} .

Note that v’ is a continuation of v because (i') holds.

We will now prove that in each of the clauses Ci,...,C,, exactly one variable
evaluates to true under v’. Therefore let j € {1,...,m} be arbitrarily chosen.

By choice of 4; it holds that p;, € C;. It follows by definition of v that v'(p;;) = 1.
Hence, there is at least one variable in C; that evaluates to true.

Now suppose that besides p;; another variable in C; evaluates to true. Then by
definition of v’ it follows that there is a £ € {1,...,2m}, £ # j, such that this other
variable is p;,. We now consider two cases.

Case j < £: This is a contradiction to (i¢) since, by definition of ¢, p;, is in C} as
well as, by definition of ¢, in Cy and i; # 4.

Case £ < j: Since j € {1,...,m} it follows that £ < m. Since Cpr = Cyyppy it
holds that p;,,,, € Cp and p;,,, € Cymy. Furthermore £ < £+ m and thus, by
condition (#4), it must hold that iy = i¢4y,. Therefore p;, € C; and v'(p;,,,,) = 1.
Because j < £+ m this is a contradiction to condition (i¢) as in the first case. <<

The correctness of the reduction now follows with the observation that ¢ is equiv-
alent to

100

COMPLEXITY RESULTS FOR MODAL DEPENDENCE LOGIC 9

@, and that ¢ is unsatisfiable iff ¢, is unsatisfiable for all valuations
v:{p1,....pk }—{0,1}
v:{p1,...,px} — {0,1}.
The QCSP3(R,/3) instance is true iff every valuation v : {p1,...,pr} — {0,1}

can be continued to a valuation v’ : {p1,...,pn} — {0,1} such that in each of the
clauses {C4,...,C,,} exactly one variable evaluates to true under v’ iff, by Claim 2,
©y 18 unsatisfiable for all v : {p1,...,px} — {0,1} iff, by the above observation, ¢ is
unsatisfiable. [

Next we turn to (non-monotone) poor man’s logic.
Theorem 3.5. If {0, 0, A, ~,dep} C M then MDL-SAT(M) is NEXPTIME-complete.

Proof. Sevenster showed that the problem is in NEXPTIME in the case of @¢ M
[Sev09, Lemma 14]. Together with Lemma and the fact that 3 - NEXPTIME =
NEXPTIME the upper bound applies.

For the lower bound we reduce 3CNF-DQBF, which was shown to be NEXPTIME-
hard by Peterson et al. [PRAO1, Lemma 5.2.2]E|, to our problem.

An instance of 3CNF-DQBF consists of universally quantified Boolean variables
p1,--.,Pk, existentially quantified Boolean variables pg.1,...,pn, dependence con-
straints Pyt1,...,Pn C {p1,...,pr} and a set of clauses each consisting of three (not
necessarily distinct) literals. Here, P; intuitively states that the value of p; only depends
on the values of the variables in P;. Now, 3CNF-DQBF is the set of all those instances
for which there is a collection of functions fy.1,..., f, with f; : {0,1}% — {0,1} such
that for every valuation v : {p1,...,pr} — {0,1} there is at least one literal in each
clause that evaluates to true under the valuation v’ : {p1,...,pn} — {0,1} defined by

oo o) ifie{l,... k}
vpi) —{ ffvrpi) ifie{k+1,...,n}

The functions fx11,..., fn act as restricted existential quantifiers, i.e., for an i €
{k+1,...,n} the variable p; can be assumed to be existentially quantified dependent
on all universally quantified variables in P; (and, more importantly, independent of all
universally quantified variables not in P;). Dependencies are thus explicitly specified
through the dependence constraints and can contain — but are not limited to — the
traditional sequential dependencies, e.g. the quantifier sequence Vp;3dpsVp3dps can be
modeled by the dependence constraints P, = {p1} and Py = {p1,p3}.

For the reduction from 3CNF-DQBF to MDL-SAT([J, O, A, =, dep) we use an idea
from the PSPACE-hardness proof of MDL-SAT ([0, 0, A, =) over a restricted frame class
by Hemaspaandra [HemO1, Theorem 4.2]. Let p1,...,pr be the universally quantified
and pg41, .. -, Pn the existentially quantified variables of a 3CNF-DQBF instance ¢ and
let Pgt1,..., P, be its dependence constraints and {l11,112,113}, -« -, {lm1, lm2, lm3 } its

3Peterson et al. showed NEXPTIME-hardness for DQBF without the restriction that the formulae
must be in 3CNF. However, the restriction does not lower the complexity since every propositional
formula is satisfiability-equivalent to a formula in 3CNF whose size is bounded by a polynomial in the
size of the original formula.

101

10 P. LOHMANN AND H. VOLLMER

clauses. Then the corresponding MDL(O, O, A, =, dep) formula is

n

9(p) = A D100 ps A OO ') (4)
N AT AT AT A f) (i0)
AN Ordep(ly, Uy, Uy £7) (iii)
N DR KA A T A Al den(Pip) ()
where p1,...,Pn, f1, ..., fm are atomic propositions and [}, := i i ;Z i]p;

Now if ¢ is valid, consider the frame which consists of a complete binary tree
with n levels (not counting the root) and where each of the 2™ possible labelings of
the atomic propositions p1,...,p, occurs in exactly one leaf. Additionally, for each
i€ {l,...,m} f; is labeled in exactly those leaves in which l;; V ;2 V l;3 is false. This
frame obviously satisfies (), (i7) and (i4¢). And since the modalities in (iv) model the
quantors of ¢, f; is true exactly in the leaves in which I;; V ljp V l;3 is true and the dep
atoms in (7v) model the dependence constraints of ¢, (iv) is also true and therefore
g(ip) is satisfied in the root of the tree.

As an example see Fig. [1| for a frame satisfying g(¢) if the first clause in ¢ is

{ﬁvpn}'

P2 D2 D2 D2
Dn Dn Pn Dn
fi fi

Figure 1: Frame satisfying g(¢)

If, on the other hand, g(¢) is satisfiable, let W be a frame and ¢ a world in W
such that W, {t} = g(¢). Now (i) enforces W to contain a complete binary tree T' with
root t such that each labeling of py,...,p, occurs in a leaf of T'.

We can further assume w.l.o.g. that W itself is a tree since in MDL different worlds
with identical proposition labelings are indistinguishable and therefore every frame can
simply be unwinded to become a tree. Since the modal depth of g() is n we can assume
that the depth of W is at most n. And since (i) enforces that every path in W from ¢
to a leaf has a length of at least n, all leaves of W lie at levels greater or equal to n.
Altogether we can assume that W is a tree, that all its leaves lie at level n and that it

102

COMPLEXITY RESULTS FOR MODAL DEPENDENCE LOGIC 11

has the same root as T. The only difference is that the degree of W may be greater
than that of T

But we can nonetheless assume that up to level k the degree of W is 2 (x). This is
the case because if any world up to level £ — 1 had more successors than the two lying
in T, the additional successors could be omitted and (i), (i), (¢i¢) and (iv) would still
be fulfilled. For (), (#4) and (4i%) this is clear and for (iv) it holds because (iv) begins
with OF.

We will now show that, although 7" may be a proper subframe of W, T' is already
sufficient to fulfill g(¢). From this the validity of ¢ will follow immediately.

Claim. T, {t} E g(¥).

Proof of Claim. We consider sets of leaves of W that satisfy fi A -+ A frn A
Ni—j+1 dep(P;; p;) and that can be reached from the set {t} by the modality sequence
OkOm—k. Let S be such a set and let S be chosen so that there is no other such set
that contains less worlds outside of T' than S does. Assume there is a s € S that does
not lie in T

Let ¢ € {1,...,m} and let s’ be the leaf in T" that agrees with s on the labeling of
D1, Pn. Then, with W, {s} = f; and (iii), it follows that W, {s'} = fi.

Let " := (S\ {s})U{s’}. Then it follows by the previous paragraph that W, S’ |=
fiN A fm. Since W, S = /\;L:,CJr1 dep(P;; p;) and s’ agrees with s on the propositions
P1,- .., pn it follows that W, 8" = A'_, .| dep(P;;p;). Hence, S’ satisfies N Afm A
Ny, 41 dep(P;; p;) and as it only differs from S by replacing s with s’ it can be reached
from {t} by O¥O"~* because s and s’ agree on py, . .., px and, by (), W does not differ
from T up to level k. But this is a contradiction to the assumption since S’ contains
one world less than S outside of T'. Thus, there is no s € S that does not lie in 7" and
therefore (iv) is fulfilled in T'. Since (i), (i4) and (¢i7) are obviously also fulfilled in T,
it follows that T, {t} = g(¢). <<

(i9) ensures that for alli € {1,...,m} there is aleaf in W in which —=(l;; Vi;2VIi3)Af;
is true. This leaf can lie outside of T'. However, (iii) ensures that all leaves that agree
on the labeling of I;1, I;2 and ;3 also agree on the labeling of f;. And since there is a leaf
where —(l;1 V02 Vi;3) A fi is true, it follows that in all leaves, in which —=(l;1 V12 Vi;3) is
true, f; is true. Conversely, if f; is true in an arbitrary leaf of W then so is l;; V lj2 V I3

The modality sequence (0*¢"~* models the quantors of ¢ and /\?ZIH_1 dep(P;; pi)
models its dependence constraints. And so there is a bijective correspondence between
sets of worlds reachable in 7' by ("™ ™% from {t} and that satisfy A!_, ; dep(Pi;p;)
on the one hand and truth assignments to p1, ..., p, generated by the quantors of ¢ and
satisfying its dependence constraints on the other hand. Additionally, by (xx) follows
that fi A -+ A fy, implies A/~ (Li1 V li2 V l;3) and since T, {t} = g(p), ¢ is valid. =

3.2. Cases with Only One Modality

We finally examine formulas with only one modality.

Theorem 3.6. Let M C {O0,0,A,V, =, T, L, Q@ with O ¢ M or & ¢ M. Then the
following hold:

a) MDL-SAT(M U {dep}) <P, MDL-SAT(M U{T, 1}), i.e., adding the dep operator
does not increase the complexity if we only have one modality.

103

12 P. LOHMANN AND H. VOLLMER

b) For every MDL(M U {dep}) formula ¢ it holds that Q) is equivalent to V, i.e., ©
is equivalent to every formula that is generated from ¢ by replacing some or all
occurrences of) by V and vice versa.

Proof. Every negation —dep of a dependence atom is by definition always equivalent to
1 and can thus be replaced by the latter. For positive dep atoms and the) operator
we consider two cases.

Case O ¢ M. If an arbitrary MDL(O, A, V, =, T, L, dep, @) formula ¢ is satisfiable
then it is so in an intransitive singleton frame, i.e. a frame that only contains one world
which does not have a successor, because there every subformula that begins with a [
is automatically satisfied. In a singleton frame all dep atoms obviously hold and &) is
equivalent to V. Therefore the (un-)satisfiability of ¢ is preserved when substituting
every dep atom in ¢ with T and every) with V (or vice versa).

Case 0 ¢ M. If an arbitrary MDL(Q, A, Vv, =, T, L, dep, @) formula ¢ is satisfiable
then, by the downward closure property, there is a frame W with a world s such that
W, {s} | . Since there is no O in ¢, every subformula of ¢ is also evaluated in a
singleton set (because a ¢ can never increase the cardinality of the evaluation set).
And as in the former case we can replace every dep atom with T and every () with V
(or vice versa). L]

Thus we obtain the following consequences — note that with the preceding results
this takes care of all cases in Table [Il

Corollary 3.7. a) If {A\,"} C M C{0,0,A,V,~, T, L,dep, @, M N{V,Q} #0 and
|M N{0O,0} =1 then MDL-SAT(M) is NP-complete.

b) If {A\,} C M C{0,0,A, 7, T, L,dep} and |MN{0O,0}| =1 then MDL-SAT(M) €
P

c) If{n} C M C{O0,0,A,V, T, L,dep, @} and |[MN{, 0} = 1 then MDL-SAT (M) €
P

d) If A ¢ M then MDL-SAT(M) € P.

Proof. a) follows from [HemOI, Theorem 6.2(2)] and Theorem [3.6h,b. b) follows
from [Hem0I, Theorem 6.4(c,d)] and Theorem [3.6p. c¢) follows from [Hem01, Theo-
rem 6.4(e,f)] and Theorem ,b.

For d) the proof of [Hem01 Theorem 6.4(b)] can be adapted as follows. Let ¢ be
an arbitrary MDL(M) formula. By the same argument as in the proof of Theorem [3.6p
we can replace all top-level (i.e. not lying inside a modality) occurrences of) in ¢
with V to get the equivalent formula ¢’. ¢’ is of the form Oy V -+ -V O V Qoy V
-V Qo Vay V- Vas where every 1; and o; is a MDL(M) formula and every a; is
an atomic formula. If k& > 0 or any a; is a literal, T or a dependence atom then ¢
is satisfiable. Otherwise it is satisfiable iff one of the o; is satisfiable and this can be
checked recursively in polynomial time. [

4. Conclusion

In this paper we completely classified the complexity of the satisfiability problem
for modal dependence logic for all fragments of the language defined by restricting the
modal and propositional operators to a subset of those considered by Vaananen and
Sevenster. Interestingly, our results show a dichotomy for the dep operator; either
the complexity jumps to NEXPTIME-completeness when introducing dep or it does

104

COMPLEXITY RESULTS FOR MODAL DEPENDENCE LOGIC 13

not increase at all — and in the latter case the dep operator does not increase the
expressiveness of the logic.

In a number of precursor papers, e. g., [Lew79] on propositional logic or [BHSS06]
on modal logic, not only subsets of the classical operators {OJ, 0, A, V,~} were con-
sidered but also propositional connectives given by arbitrary Boolean functions. The
main result of Lewis, e. g., can be succinctly summarized as follows: Propositional sat-
isfiability is NP-complete if and only if in the input formulas the connective ¢ A =) is
allowed (or can be “implemented” with the allowed connectives).

We consider it interesting to initiate such a more general study for modal depen-
dence logic and determine the computational complexity of satisfiability if the allowed
connectives are taken from a fixed class in Post’s lattice. Contrary to propositional or
modal logic, however, the semantics of such generalized formulas is not clear a priori —
for instance, how should exclusive-or be defined in dependence logic? Even for simple
implication, there seem to be several reasonable definitions, cf. [AV09].

A further possibly interesting restriction of dependence logic might be to restrict
the type of functional dependency. Right now, dependence just means that there is
some function whatsoever that determines the value of a variable from the given values
of certain other variables. Also here it might be interesting to restrict the function to
be taken from a fixed class in Post’s lattice, e. g., to be monotone or self-dual.

Related is the more general problem of finding interesting fragments of modal
dependence logic where adding the dep operator does not let the complexity of satis-
fiability testing jump up to NEXPTIME but still increases the expressiveness of the
logic.

Finally, it seems natural to investigate the possibility of enriching classical tem-
poral logics as LTL, CTL or CTL* with dependence as (at least some of them) they
are extensions of classical modal logic. The questions here are of the same kind as for
MDL: expressivity, complexity, fragments, etc.

References

[AV09] Samson Abramsky and Jouko Vaananen. From IF to BI. Synthese, 167(2):207-230, 2009.

[BBCTar] Michael Bauland, Elmar Béhler, Nadia Creignou, Steffen Reith, Henning Schnoor, and
Heribert Vollmer. The complexity of problems for quantified constraints. Theory of Com-
puting Systems, To appear.

[BHSS06] Michael Bauland, Edith Hemaspaandra, Henning Schnoor, and Ilka Schnoor. Generalized
modal satisfiability. In STACS, pages 500-511, 2006. Revised version: [HHSS08].

[DLN*92] Francesco M. Donini, Maurizio Lenzerini, Daniele Nardi, Bernhard Hollunder, Werner
Nutt, and Alberto Marchetti-Spaccamela. The complexity of existential quantification in
concept languages. Artif. Intell., 53(2-3):309-327, 1992.

[HemO1] Edith Hemaspaandra. The complexity of poor man’s logic. Journal of Logic and Compu-
tation, 11(4):609-622, 2001. Corrected version: [HemO5]|.

[HemO05] Edith Hemaspaandra. The complexity of poor man’s logic. CoRR, ¢s.L0O/9911014v2, 2005.

[Hen61] L. Henkin. Some remarks on infinitely long formulas. In Infinitistic Methods, Proceedings
Symposium Foundations of Mathematics, pages 167—183, Warsaw, 1961. Pergamon.
[HS89] J. Hintikka and G. Sandu. Informational independence as a semantical phenomenon. In

J. E. Fenstad, I. T. Frolov, and R. Hilpinen, editors, Logic, Methodology and Philosophy
of Science, volume 8, pages 571-589. Elsevier, Amsterdam, 1989.

[HSS08] Edith Hemaspaandra, Henning Schnoor, and Ilka Schnoor. Generalized modal satisability.
CoRR, abs/0804.2729, 2008.

[Lad77] Richard E. Ladner. The computational complexity of provability in systems of modal
propositional logic. Siam Journal on Computing, 6(3):467-480, 1977.

[Lew79] H. Lewis. Satisfiability problems for propositional calculi. Mathematical Systems Theory,
13:45-53, 1979.

105

14

P. LOHMANN AND H. VOLLMER

[MMTVO08] Arne Meier, Martin Mundhenk, Michael Thomas, and Heribert Vollmer. The complexity

[PRAO1]

[RWOO]

[Sev09]
[V&aa07]

[Vaa08]

of satisfiability for fragments of CTL and CTL*. Electronic Notes in Theoretical Com-
puter Science, 223:201 — 213, 2008. Proceedings of the Second Workshop on Reachability
Problems in Computational Models (RP 2008).

G. Peterson, J. Reif, and S. Azhar. Lower bounds for multiplayer noncooperative games
of incomplete information. Computers & Mathematics with Applications, 41(7-8):957 —
992, 2001.

Steffen Reith and Klaus W. Wagner. The complexity of problems defined by boolean cir-
cuits. In Proceedings International Conference Mathematical Foundation of Informatics,
(MFI99), pages 25-28. World Science Publishing, 2000.

Merlijn Sevenster. Model-theoretic and computational properties of modal dependence
logic. Journal of Logic and Computation, 19(6):1157-1173, 2009.

Jouko Vaanéanen. Dependence logic: A mew approach to independence friendly logic. Num-
ber 70 in London Mathematical Society student texts. Cambridge University Press, 2007.
Jouko Véadndnen. Modal dependence logic. In Krzysztof R. Apt and Robert van Rooij,
editors, New Perspectives on Games and Interaction, volume 4 of Texts in Logic and
Games, pages 237-254. Amsterdam University Press, 2008.

106

Quantifier Independence and Downward
Monotonicity

Denis Paperno papernoQucla.edu

University of California, Los Angeles

1 Introduction

Game theoretical semantics interprets formulas of logical languages as games
with two players. Each player behaves according to one of the two roles,
Verifier and Falsifier (sometimes shortened as V' and F'). The roles can be
traded at certain points in the game (which is assumed to be the game-
theoretical denotation of negation), so that the Verifier becomes a Falsifier
and vice versa. The player who acts as the Verifier at the beginning of a game
is called Eloise, and the one who starts as the Falsifier is named Abelard.
Truth is defined in terms of existence of a winning strategy: a formula is true
iff Eloise has a winning strategy in the game it defines, and false if Abelard
has a winning strategy.

Semantic games defined by formulas of first order predicate logic are
games with perfect information, i.e. moves by players are totally ordered
and at each move a player has complete information about every preceding
move; in games of perfect information one of the players always has a win-
ning strategy, so closed formulas are always true or false in a model. There
are different approaches to incorporate imperfect information into semantic
games. For example, the language of Independence Friendly Logic directly
incorporates the requirement to ‘forget’ certain previous moves at a particu-
lar point in the game. Another approach, offering less flexibility in quantifier
independence, is based on the natural metaphor of two games running in
parallel.

Let us adopt the logical syntax proposed by Samson Abramsky, who
pursues the latter option. Abramsky defines the syntax for n-player multi-
agent logic as follows:

¢u=1]A]Qur |7)|¢Bav |0V]|o]l¢

107

where A ranges over literals, a ranges over agents, so that (), are quanti-
fiers and @, are connectives indexed by agents: the agent o makes a move at
Q. and @,; T ranges over permutations of the agent set (correspond to role
exchange in the game), and z ranges over variables. For the classic 2-player
games with players {V, F'} one can identify ©&y = V, & = A, Qy = 3,
Qr =V, and the only non-trivial permutation is (V, F') denoted by the nega-
tion symbol ~, which exchanges the roles of the Verifier and the Falsifier.

The crucial feature of this language is that it allows for parallel composi-
tion of two games ¢ || ¥, which can be thought of as encoding fully parallel
processing (Hintikka and Sandu 1995).

For the purposes of 2-player games the syntax can be defined as

pi=1]A|Qu|~o|oVe| oAy o0l

where () ranges over quantifiers 4, V.

2 Towards a Natural Language Application:
Branching Quantification

This language just described is capable of expressing quantifier branching,
including the Henkin quantifier:

(1) Vo -3y || Vz-Jw] - R(z,y, z,w),
as expressed by the English sentence

(2) Some relative of every townsman and some relative of every villager
hate each other, where R(z,y,z,w) =‘if x is a townsman and z is a
villager then y is a relative of x and w is a relative of z and y and w
hate each other’.

The Henkin quantifier is perhaps the best known example of branching
quantification in natural language, and also the simplest example of essential
branching quantification. But there are much less elaborate examples in
natural language that can’t be treated compositionally as simple iteration
of quantifiers involved, and are rather interpreted as involving quantifier
independence (cf. Barwise 1979):

(3) a. No man and no woman date each other. (synonymous to No man
dates any woman)

b. Two men and three women date each other.

c. Few men and few women are dating each other.

108

d. Not every man and not every woman know each other. (synonymous
to It’s mot the case that every man and every woman know each
other.)

As these examples show, both upward monotone and downward mono-
tone quantifiers can be scopally independent, and it is desirable to have
a representation of them in a logic that allows for quantifier independence.
Abramsky’s logical language comes close to this; for instance, it is tempting to
represent the semantics of the last English sentence as [~ Vx ||~ Vy|- H(z,y)
where H stands for the binary relation of mutual hate. However, the se-
mantics that Abramsky proposes for the formal language does not match
the meaning of the English sentence in consideration. In fact, since ~
in game theoretical semantics stands for role exchange, ~ Vx = dx, and
[~V ||~ Vy] - K(z,y) = [Fz || Jy] - K(z,y). But of course 3d in English is
not made true by the mere fact that some man and some woman know each
other.

The problem here lies in the fact that downward entailing quantifiers
like those expressed by English determiners not every or no can not be
translated in Abramsky’s language as syntactic units, unlike upward
entailing quantifiers some (3z), every (Vz), or even the Henkin quantifier
([Vz3y || Vz3w]). For example, the quantifier not every is expressible in the
language by formulas of the kind ~ (Vx - P(z)), but crucially this formula
does not have an immediate constituent excluding the formula P(x).

Note that (~ Vz)- P(z) is also a formula of Abramsky’s language, but the
game it defines isn’t isomorphic to ~ (Vz - P(z)); instead, since ~ Vo = Jz,
(~Vz)- P(z) =3z - P(x).

As we have seen, in order to capture branching quantification with the
device of parallel processing, we need to combine syntactically units of the
language that express the quantifiers involved. Once it comes to downward
monotone quantifiers, this move is no longer possible. We will now attempt
to alter the interpretation of the language minimally, in order to avoid this
issue. I will define a game-theoretic interpretation of the very same language
where in fact ~ (Va - P(x)) = (~ V) - P(x) (and no longer equivalent to
Jz- P(z)). The major change to the rules will be that role exchange (denoted
by ~) will not just affect the game that ~ is prefixed to, but also the games
that follow it in sequential composition.

3 Game Semantics Revised

The game definition given below is applicable to the general case of n-player
games that Abramsky discusses; winning rules specific for two player seman-

109

tic games are introduced later.

Notational remarks. We will write 1) to denote a game v played with
roles exchanged by permutation 7 (which may be any permutation including
the identity function). 7(¢)) will stand for the permutation of roles at the
end of the game denoted by 1, i.e. the function assigning each player her
role at the end of the game 1.

Formally, the rules of a game ¢ are defined as follows:

if ¢ =1, or ¢ is atomic, the players make no move;

in ¢ = 1y @, 1Yo, the player a chooses one of 11 and 1), which is then
played;

in ¢ = m, the game 9 is played.
in ¢ = Q,x, the player « assigns a value to the variable x.

n QZS = ¢1 . 77/)2, 77[}1 is played, then 7T(1/11)77Z)2;

For instance, 7(1) = Id, n(~ 3z) = (V, F). In the game 1-(~ Jz)-P(x),
first the empty game 1 is played; then »1y(~ 3z)-P(x) = (~ 3z) - P(z).
Then ~ dz =~ Qv is played: Abelard and Eloise exchange roles, then
Abelard, acting as the Verifier, chooses a value for x. The last portion
of the game is r(v3,)P(x) =,r) P(x), i.e. P(z) with roles exchanged;
in Game Theoretical Semantics the standard interpretation is that the
truth value of P(x) is assessed and whoever plays the Verifier role (in
this example, that is Abelard), wins iff P(z) is true.

in ¢ = 1y || e, 11 and 1y are played in parallel, without information
flow between the two games.

Let us now refine winning conditions of the classic 2-player semantic
games. For the first order subset of the language we will keep the interpreta-
tion equivalent to the standard game theoretic one. But since the language in
question goes well beyond the language of first-order logic (its proper subset),
we will use extra terms to describe the game compared to the usual game
theoretical semantics of first order languages. Thus, in addition to winning
and losing, we will also talk about failing a game. The underlying intuition is
this: some games like those defined by first-order formulas end with a robust
win; for instance, falsification of an atomic formula makes Abelard win and
Eloise fail the game; no matter what may follow in a longer game, Eloise can
not make up for this failure and always loses. But there are also games where
no substantial claims have been verified or falsified. The simplest example

110

is the empty game 1; of course Eloise wins it by default (since no claim she
defended was refuted), but we won’t say that Abelard failed in this game; in
a sense, every game may be seen as starting with the empty game, so in a
continuation of 1, either one of the players has the potential to win. In the
game ~ 1 the players’ roles change and Eloise loses by default; but again the
case isn’t lost completely, and if the game goes on, she may still, acting as a
Falsifier, win it. Winning conditions for the two-player game are defined as
follows:

in ¢ =1, the Verifier wins and nobody fails;

if ¢ is a true atomic formula, the Verifier wins and the Falsifier fails,
otherwise the Falsifier wins and the Verifier fails;

in ¢ = 11 A Y9, the Falsifier chooses one of ¢y and v, which is then
played; if a player wins, loses or fails that game, he also wins, loses or
fails ¢ correspondingly.

in ¢ = 11 V 1)q, the Verifier chooses one of ¢; and 1), which is then
played; if a player wins, loses or fails that game, he also wins, loses or
fails ¢ correspondingly.

in ¢ =~ 1), the outcome is as in game (v,).

in ¢ = 1)1-19, a player loses and fails and the other wins if she fails in 1)1;
if neither player fails 11, the outcome is determined by the subsequent

w(w1)¢2§

in ¢ = 11 || 19, the Verifier wins iff she wins both v, and 1y, and fails
iff she fails at least one of ¥; and s.

The game theoretic interpretation proposed here differs from Abramsky’s
original proposal. Some of his original equivalences still hold, e.g. for any
¢, ¢ =1-¢ = ¢-1; but equivalences involving role permutations no longer
hold, so e.g. 7(¢-1) = 7(¢) - 7(¢) is valid in Abramsky’s interpretation but
not ours.

4 On the Notion of Downward Entailment

Entailment relation can be defined in game theoretical semantics analogously
to classical logical entailment. A game of partial information ¢ can give rise
to three possible truth values: | ¢ |= T iff Eloise has a winning strategy,
| ¢ |= L iff Abelard has one, and | ¢ |= 0 otherwise. Entailment of closed
formulas in three valued logic is standardly defined as:

111

Definition. ¢ entails ¢ iff | ¢ || ¢ |, assuming the order relation to
be L <0=<T.

Open formulas do not have truth values; still, we would like to apply the
notion of entailment to them as well. Let us write ¢ for the game ¢ played
with free variables in ¢ assigned values by the assignment function 5. This
is a standard move; in each model, every formula / assignment pair has a
truth value. Now we can give the following definition:

Definition. ¢ entails 1 iff for every assignment 3, | ¢* || ¥° |,
assuming the order relation to be L <0 < T. ¢ ~ 1 iff ¢ entails
v and v entails ¢

So far we have been talking about monotonicity without a proper defi-
nition, assuming that a game-theoretic quantifier is downward monotone iff
it translates a downward monotone generalized quantifier. In our current
perspective quantifiers are formulas of the language that function as prefixes
to larger formulas. Modulo this syntactic status of quantifiers, we can give
completely standard definitions of downward and upward monotonicity:

Definition. A formula prefix ¢ is upward monotone iff for all
¥, &, if ¢ entails € then ¢ - entails ¢-&. ¢ is downward monotone
iff for all v, &, if ¥ entails £ then ¢ - £ entails ¢ - ¢

This definition covers both negation (or technically the game ~ 1 which,
when prefixed to a formula, is equivalent to the negation thereof) and down-
ward monotone quantifiers like ~ dz, and can extend to other downward
monotone operators (e.g. an operator that makes a formula antecedent of an
implication) if the language is enriched with them.

Definition. A formula prefix ¢ is trivial iff for all ¢, ¢ ~ ¢ - .

The definitions of entailment and monotonicity cited above are standard.
It turns out to be possible, however, to give a purely game-theoretic defini-
tion to downward monotonicity: a game prefix is downward monotone if it
exchanges the players’ roles. This is justified by the theorem:

Theorem on Monotonicity. A non-trivial formula prefix ¢ is down-

ward monotone iff it denotes a game in which the players’ roles are
permuted, w(¢) = (V, F).

112

5 Parallel Games vs. IF Notation

Parallel composition of two games ¢ || ¢ is so defined that there is no tem-
poral or causal order between choices or events in ¢ and 1. This has one
naturally appealing consequence, namely that parallel composition is com-
mutative, ¢ || ¥ is equivalent to ¢ || ¢. Thus, two independent quantifiers
can be reordered without changing the truth value of the formula. This also
holds sometimes for IF logic (with necessary adjustment of independence
marking); indeed, Vo (3y/Vx).R(z,y) = Jy(Vx/Ty).R(z, y).

Once downward monotone quantifiers come into play, commutativity may
become problematic. As we will see below, this can be captured in the ap-
proach that uses partially ordered quantifiers (or games with parallel com-
position), but it does not seem possible in the language with a total linear
order of quantifiers and special marking for independence like Hintikka’s slash
notation. Indeed, the choice of variable assignment can be independent of
previous choices but switching the role of the player makes a big difference.
Take the quantifier NOx to be equivalent to Vo ~ or ~ dz, and consider for
example the formulas

(NOz).(NOy/NOx).Pxy = Vx. ~ (Yy/Vz). ~ Pry = Vo.(Jy/Vz). ~~
Pzy =Vx.(Jy/Vz).Pry

and

(NOy).(NOx/NOy).Pxry = Yy. ~ (Yz/Vy). ~ Pry = Yy.(3z/Vy). ~~
Py = Vy.(3z/Vy).Pxy.

The former is true iff the first order formula JyVx.Pxy is true, and the
latter is true whenever daVy.Pxy is true. But these two first order formulas
obviously are not logically equivalent, hence independent downward mono-
tone expressions are not permutable in IF.

In a game with parallel composition, in contrast, (NOzx || NOy).Pxy =
(NOy || NOz).Pzxy if we interpret the game as follows: at NOz and NOy
the player F' (Vbelard) assigns values to the two variables (independently,
although the choice independence requirement is vacuous in this case), and
each negative quantifier also indicates the role switch for whatever follows.
Since neither of the NO quantifiers follows the other, the roles switch just
for the literal Pzxy, and the formula is actually equivalent to the first order
VaVy ~ Pxy. Interestingly, this is precisely the interpretation of natural
language sentences with scopally independent negative quantifiers, e.g. No
man and no woman are a perfect couple.

113

6 Identity of Permutations in Parallel Com-
position

Let me make explicit and justify the assumption made in the last paragraph.
We have been treating quantifier independence as parallel processing of two
games. We have also been assuming that negation is allowed outside literals
(contra some approaches languages with quantifier independence), sometimes
giving rise to downward monotone quantifiers. My central proposal was
that the role switch introduced by a negation in ¢ persists in a subsequent
part ¢ of the game ¢ -). But then, if we take parallel processing into
account, the game semantics risks being not well-defined. Indeed, consider
(NOz || Jy).Pxy. The downward monotone quantifier NOz requires a role
switch for the atomic formula Pzy, while the upward monotone dz maintains
the roles constant for the same formula. Parallel composition of the two
places incompatible requirements on players’ roles for whatever follows. I see
only one way to avoid this issue without giving up the symmetry between
two parallel games, by adopting the natural condition that subgames under
parallel composition must have the same monotonicity. Generalizing for the
multiple player setting, we may say that two parallel subgames must permute
the players in the same way:

Parallel Processing Well-formedness Condition. A game
¢ || ¥ is well-formed iff 7(¢) = 7(¢0), i.e. the role assignment at
the end of the games denoted by 7 and @ must be identical.

One may think of this condition graph-theoretically. If we represent
games with (ordered) graphs, parallel games can be encoded as cycles (in
the spirit of the usual graph representation of branching). Role assignments
may be seen as colors of edges and nodes of the graph, while role permuta-
tion symbols mark borders beween parts of the graph with different colors.
The Parallel Processing Well-formedness Condition makes sure that border
marking in cycles is coherent, and that two branches have the same color at
the point of convergence.

7 Applications to Natural Language Seman-
tics

This correctness condition evokes an analogy in natural language semantics:
as has been noticed already by Jon Barwise (1979), branching quantifiers
produce a coherent interpretation only if their monotonicities match:

114

(4) a. More than five men and more than siz women are dating each other
b. Fewer than five men and fewer than six women are dating each other

c. Fewer than five men and more than six women are dating each other

In 4a both quantifiers involved are upward monotone, and in 4b they are
both downward monotone. In 4c¢ one is downward monotone and the other
is upward monotone; Barwise’s observation is that while examples like 4c
is perfectly syntactically well-formed, speakers of English have much weaker
intuitions about the truth conditions of 4¢ and similar utterances than they
have about utterances like 4a or 4b. The strength of this contrast has been
challenged (Sher 1990), but the contrast itself appears to be real.

Apart from this observation, the logical language under discussion pro-
vides a natural compositional semantics for a class of independent quantifier
expressions in natural language. Indeed, take parallel composition to be the
interpretation of the conjunction and. Combinations of independent basic
upward monotone quantifiers then receive the correct interpretation:

(5) a. Some line and some plane are parallel [z || y] - P(x,y).

b. Every line and every plane are parallel [Vx || Vy] - P(z,y).

Game semantics correctly predicts these to be equivalent to sentences
without and, which, we assume, translate as an ordinary first order formulas
without parallel composition:

(6) a. Some line is parallel to some plane Iz - Iy - P(x,y).

b. Ewvery line is parallel to every plane Vx - Yy - P(x,y).

Indeed, if one of the players has a winning strategy in 5a and 5b, she can
apply it in 6a and 6b, and vice versa, and will still be guaranteed to win.

Consider now analogous examples with downward monotone quantifiers.
This paper proposed to apply the same formal language to represent these:

(7) a. No line and no plane are parallel [~ 3x ||~ Jy| - P(z,y).
b. Not every line and not every plane are parallel [~ Vzx ||~ Yy|-P(x,y).

The game theoretic semantics proposed here gives the formal expressions
just the truth conditions of the corresponding English sentences. For exam-
ple, 7a is true iff Abelard, acting as the Verifier, can not pick =z and y to
make P(x,y) true (Eloise makes no moves in this game). For Abelard to be

115

incapable of doing so, the relation denoted by P must be empty; and indeed,
the English sentence in 7a is true just in case the relation of being a parallel
for a line and a plane is empty. Analogously, 7b is true iff Eloise, acting
as the Falsifier, can pick x and y and win P(z,y), making it false (Abelard
makes no moves in this game). For Eloise to do this, the complement of the
relation denoted by P must be nonempty; and indeed, the English sentence
in 7a is true just in case the relation of intersecting (being non-parallel) for
a line and a plane is nonempty.

Other generalized quantifiers can also be expressed as syntactic units of
the language, take > 2 ‘two or more’:

> 2x.¢(x) is equivalent to JyTz.y # 2 AVr.¢p(x)V—(x = yVa = z) in first
order logic; but there is an equivalent formula [y - 3z -y # 2 AVx. 1V ~ (z =y V z = 2)]-
¢(x) where the part in square brackets corresponds to the quantifier and is
a syntactic constituent. Similarly, ‘at most one’ (< 1x.¢) is expressible as
Jy.Vx.y = 2V-¢, which can be restated in our language as [Jy - Vo - (y = z)V ~ 1]-
¢. Branching combinations of two upward monotone quantifiers are given
precisely the truth conditions described by Jon Barwise:

(8) a. At least two men and at least two women are dating each other.

b. (Fy-3z-y#2zAVxlV~(x=yVar=z)
| By -3z -y #2Z AV IV ~ (2 =y V' =2)]) D(x,2)

The last formula has truth value true iff Eloise can find two pairs z,y and
2',y, so that when Abelard picks a member x,x’ from each pair, D(x,x’) is
true, i.e. each member of one pair dates each member of the other pair.

8 A Remaining Issue

The only case when branching quantification in natural language does not fit
neatly with the game theoretical truth conditions is when two non-upward
monotone quantifiers like < 1 are combined:

(9) a. At most one man and at most one woman date each other.
b. ([(Fy -Vo-(y=2)V~1]| By Vo' (v =2")V ~1])- D(x,2).

In the game described by the formula, Eloise has a winning strategy even
in some cases when the corresponding English sentence seems to be falsel.

'T must note, though, that truth condition judgments on such sentences are somewhat
shaky.

116

Take a model where there is exactly one man m who dates anyone, and
multiple women wy, ..., w, that he dates. Then Eloise may pick y = m and
y' = w;. For a chance to win the game, Abelard has to pick x # y and 2’ # ¢/'.
But if both members of the pair x, 2’ are distinct from their counterparts in
m, wy, then by assumption D(z,2’) must be false in the model, and Abelard
(who is a Verifier at this point) loses.

A further refinement of game semantics for downward monotone operators
may be needed to accomodate such cases.

References

Abramsky, Samson (2007). A Compositional Game Semantics for Multi-
Agent Logics of Partial Information. Vol. 1 of Texts in Logic and Games,
11-48. Amsterdam University Press.

Barwise, Jon (1979). ’On Branching Quantifiers in English’, Journal of
Philosophical Logic 8, 47-80.

Jaakko Hintikka, Gabriel Sandu (1995). What is the Logic of Parallel
Processing? Int. J. Found. Comput. Sci. 6(1): 27-49.

Sher, Gila. (1990), ‘Ways of Branching Quantifiers,” Linguistics and Phi-
losophy 13: 393-422.

117

Expressing Second-order Sentences in Intuitionistic
Dependence Logic

Fan Yang
Department of Mathematics and Statistics
University of Helsinki
fan.yang @helsinki.fi

1 Introduction

Dependence Logic (DL), as a new approach to independence friendly logic (IF-
logic) [Hintikka and Sandu 1989], was introduced in [Vaanidnen 2007]. Hodges
gave a compositional semantics for IF-logic in [Hodges 1997a], [Hodges 1997b].
A recent research by Abramsky, Vidnidnen [Abramsky and Vidnidnen 2009] gener-
alized Hodges’ construction for team semantics and introduced BID-logic, which
extends dependence logic and includes both intuitionistic implication and linear
implication. We call the intuitionistic fragment of BID-loigc “intuitionistic de-
pendence logic (IntDL)”. In this paper, we study basic properties of intuitionistic
dependence logic. It is known that dependence logic is equivalent to second or-
der Z} fragment. We will show that sentences of DL (or Z} sentences) are all
expressible in IntDL. Moreover, sentences of the whole second-order logic are
expressible in IntDL. Together with the result in [Abramsky and Viindnen 2009]
that IntDL sentences are translatable into second-order logic, we conclude that
IntDL is equivalent to second-order logic, in the sense that there is a translation
from sentences of one logic into another.

We remark that intuitionistic dependence logic is not “intuitionistic” in the
usual sense, as the above-mentioned properties indicate already. When restricted
to first-order formulas, IntDL is in fact classical. It is only in the dependence for-
mulas, the intuitionistic implication plays a role.

Throughout the paper, we assume readers are familiar with the standard Tarskian
semantics of first-order logic and the standard semantics of second-order logic. We
denote the length of a sequence T = (x1,- -+ ,x,) of variables by len(Z); similarly
for sequences of constants and elements of models. For any assignment for &, we
write s(z) for (s(x1),- -, s(zy)). We use the standard abbreviation VZ to stand for
a sequence of universal quantifiers Vz| - - - Vz,, (the length of Z is always clear from
the context or does not matter); similarly for existential quantifiers.

118

2 BID-logic, Dependence logic and Intuitionistic Depen-
dence Logic

In this section, we introduce intuitionistic dependence logic, which is an intuition-
istic fragment of BID-logic introduced in [Abramsky and Vidnidnen 2009]. We
will also recall the dependence logic introduced in [Vdidndnen 2007] and its basic
properties in this general framework.

BID-logic is obtained from a general consideration of Hodges’ team semantics
[Hodges 1997a], [Hodges 1997b]. Well-formed formulas of BID-logic are given
by the rule

¢r=a|=(t1,--,tn) | 7 =(t1,-tn) | LY AX Y@ x [V)|
Y= x| Y —o x|V | Jzyp

where « is a first-order literal, £;,--- ,t, are terms. For the semantics for BID-
logic, we adopt and generalize Hodges’ team semantics. For any structure M,
a team X of M is a set of assignments with domain M. We define two opera-
tions on teams. For any team X of M, and any function F': X — M, the supple-
ment team X (F/xy,) = {s(F(s)/xy): s € X} and the duplicate team X (M /x,,) =
{s(a/xy):a € M, s € X}. To give the team semantics for BID-logic, we assume
all formulas of BID-logic to be evaluated are in negation normal form. Now, for
any model M and any team X of M,

e M E=x a with « first-order literal iff M =, « for all s € X in the usual
Tarskian semantics sense;

M Ex=(t1, - ,t,)iffforall s,s" € X suchthatt(s) =t;(s'), -, tn_1(s) =
tn—1(8"), we have t,,(s) = t,(s');

M):X —\:(tl,-“ ,tn) iff X =0;

M l=x Liff X =0;
M Ex ¢ AP iff M =x ¢ and M f=x 1;

M =x ¢ @1 iff there exist Y, Z C X such that X =Y U Z, M =y ¢ and
M [z

M Ex ¢V iff M =x ¢ and M f=x 15
M f=x ¢ — o iff forany Y C X, if M =y ¢ then M =y 1);

M Ex ¢ —o 9 iff for any team Y, if M =y ¢ then M |=xuy ¥

M Ex Jxoiff M |:X(F/x) ¢ for some function F': X — M;

M Ex Yoo iff M = x(a/a) ¢

119

The intuitionistic implication and linear implication are adjoints of conjunctions;
that is

PN EX = dEY X,

PRY EX=dEY—X.
The propositional fragment without dependence formulas of BID-logic is the BI
logic, the “logic of Bunched Implications” introduced in [O’Hearn and Pym 1999],
[Pym 2002]. The fragment with connectives A, & and quantifiers is the usual de-
pendence logic, while the intuitionistic fragment of BID-logic is called intuitionis-
tic dependence logic. More precisely, well-formed formulas of DL are formed by
the following rule

= |=(tr, - tn) |~ =1, ta) [V A X Y@ x | Voo | Tze)

where « is a first-order literal and ¢;,-- - , ¢, are terms.; and well-formed formulas
of IntDL are formed by the following rule

¢:=al=) | LIvAX[PVX[Y—= x| Ve | Tzy

where « is a first-order atom and ¢ is a term. Note that the dependence atoms of
IntDL have only single variables, the disjunction V is classical and the implication
— 1is intuitionistic.

The most important property of BID-logic is the downwards closure property
that for any formula ¢, if M E=x ¢and Y C X, then M =y ¢. A formula ¢ is said
to be flat if for all models M and teams X

M Ex ¢ <= (M [¢ forall s € X).

The left-to-right implication in the above clause follows from downwards closure
property of BID logic, while the other direction is non-trivial. However, two classes
of BID formulas are easily proved to be flat, as the following lemma and theorem
shows. We call the DL formulas with no occurrence of dependence subformulas
first-order formulas (of BID-logic).

Theorem 2.1. First-order formulas are flat.

Lemma 2.2. Sentences of BID-logic are flat.

3 First-order Formulas are Expressible in Intuitionistic
Dependence Logic

In this section, we show that every first-order formulas is logically equivalent to a

formula in intuitionistic dependence logic. First, we give a definition. Two BID

formulas ¢ and) are said to be logically equivalent to each other (in symbols
¢ =) if for any model M and any team X it holds that

M):X¢<:>M):Xw

120

Lemma 3.1. We have the following logical equivalences in BID-logic

@) =(t1, - ,tn) ==t1) A+ A=(tn—1) =>=(ty) for any terms ty,--- ,t,;
2) ¢ = ¢ — L whenever ¢ is an atom;

3) (¢ — L) — L = ¢ whenever ¢ is a flat formula;

@) o9 = (¢ — L) — 1 whenever both ¢ and 1 are flat formulas;

Proof. Ttems (1)-(3) are easily proved. We will only show (4). That is to show that
for any model M and any team X with dom(X) D Fr(¢)U Fr(¢) it holds that

MEx o< MEx (¢ — L) — .

—: Suppose M Ex ¢ ®1. Then there exist Y,Z such that X =Y U Z,
M Ey ¢and M =z 1. For any U C X with M =y ¢ — L, downwards closure
gives that forany s € U, M =5 ¢ — L, i.e. M [, ¢. Since M =y ¢, in view
of the flatness of ¢ we conclude that s € Y, thus U C Z, which implies M =y ¢
by downwards closure.

<—: Suppose M Ex (¢ — L) — 1. Define

Y:{SGX|M):{S}¢}andZ:{S€X’Mbé{s}gﬁ}.

Clearly, X =Y U Z. For any s € Z C X, we have that M):{s} ¢ — L, thus
since M [=¢4 (¢ — L) — v, we obtain that M =, 1. Now both M =y ¢ and
M =7 4 follow from the flatness of ¢ and . O

Remark 3.2. When restricted to singleton teams, connectives of IntDL behave
as first-order connectives. This explains why double negation law holds for flat
formulas.

Now we define expressibility.

Definition 3.3. Let £ be a sublogic of BID-logic. We say that a formula ¢ of
BID-logic is expressible in £, if there exists an . formula) such that ¢ = .

Theorem 3.4. Every first-order formula is expressible in IntDL.

Proof. Assuming that every first-order formula is in conjunctive normal form, the
theorem follows immediately from Items (2) and (4) of Lemma 3.1. In order to
demonstrate that the order of replacement is important in the translation, we give
an example as follows. The first-order formula ((—a ® 8) ®) A d in conjunctive
normal form, where «, 3,7, § are first-order atoms, can be translated into IntDL in
the following order:

(ra®@p)@y) Ao = (((ma®B) = L) =)Ao
= ((((ma) > L) = B) = L) =v)Ad
= ((((e=>L)=L)=)= 1) =)/l

121

4 Sentences of Dependence Logic and Z% are Expressible
in Intuitionistic Dependence Logic

It is known that IF-logic is equivalent to Z{ fragment of second-order logic. De-
pendence logic, which is equivalent to IF-logic is therefore also equivalent to Z}
fragment. Viidnédnen in [Viddnidnen 2007] gave a translation from one logic into
another.

Definition 4.1. Let .Z5o and ZB;p be sublogics of second-order logic and of
BID-logic, respectively.

1. We say that a sentence ¢ of Lprp is expressible in £s0, if there exists an
ZLso sentence v such that for any model M

ME <= M) ¢

2. We say that a sentence ¢ of L5 is expressible in £ p, if there exists an
Zprp sentence ¢ such that for any model M

Theorem 4.2 (Viidninen 2007). DL sentences are expressible in Z} fragment of
second-order logic.

We sketch the proof of the next theorem. In the next section, we will generalize
this translation to translate all second order sentences first into BID-logic, and in
the end into IntDL.

Theorem 4.3 (Viidnidnen 2007). Z} sentences are expressible in DL.

Proof. (sketch) Without loss of generality, we may assume every Z} sentence ¢ is
of the following special Skolem normal form

3f1---3fpVry - Ve,

where every occurrence of f; (1 <i <n)is of the form f;x;, - iy, The sentence

¢* == V.%'] o VﬂUmEyl o 'Hyn(:(xll P 7m1'm.1 7y1>/\ (1)

/\ :(xnl’... 7xnmn7yn)/\w/)7
where ¢/ is obtained from 1 by replacing everywhere f;x;, ©+ &y, by yi, is the
sentence of DL expressing ¢. O

Remark 4.4. Equation (1) with 1)’ in conjunctive normal form is a normal form of
DL sentences.

122

Note that in the normal form of a DL sentence, the only subformulas that are
not in the language of IntDL are dependence atoms and first-order formulas. As
we have proved in the previous section, these two kinds of formulas are both ex-
pressible in IntDL, therefore we have the next theorem.

Theorem 4.5. For any DL sentence ¢, there exists a sentence ¢* of IntDL which
is logically equivalent to ¢.

Proof. Without loss of generality, we may assume the DL sentence ¢ is of the
normal form (1). The IntDL sentence ¢* is obtained by replacing the subformulas

of the form =(;,, -, ;, ,y;) by the formula =(z;,) A+ A =(24,,) == (y:)
and the first-order formula ¢’ in (1) by its equivalent IntDL formula described in
Theorem 3.4. O

Theorem 4.6. Z% sentences are expressible in IntDL.
Proof. Follows from Theorem 4.3 and Theorem 4.5. O

Negation in dependence logic, as well as BID-logic does not satisfy the Law
of Excluded Middle and is therefore not classical. Dependence logic with classical
negation are called team logic, see Chapter 8 in [Viinédnen 2007] for further dis-
cussions on team logic. However, for sentences of intuitionistic dependence logic,
as shown in the next lemma we do get the classical negation. This is basically
because for sentences we only consider singleton teams (the team {0} with empty
assignment), and when restricted to singleton teams, the semantics of IntDL is in
fact classical, as it is pointed out in Remark 3.2.

Lemma 4.7. For any sentence ¢, we have that for any model M

M):{0}¢—)L<:>M%{0}¢

Using the intuitionistic (“classical””) negation for sentences, we are able to ex-
press I} sentences as well.

Corollary 4.8. I1] sentences are expressible in IntDL.

Proof. Let be a H} sentence. Note that ¢ is equivalent to some —¢, where ¢ is a
E% sentence. By Theorem 4.6, there exists an IntDL sentence ¢* such that

ME ¢+ M) ¢
for all model M. Since ¢* is a sentence, by Lemma 4.7, we have that
Mgy ¢" = L= M Fgy ¢" <= M jE o= M = —¢ <= M =,

thus ¢* — L is the sentence of IntDL expressing 1. O

123

5 Second-order Sentences are Expressible in Intuitionis-
tic Dependence Logic

In this section, we will generalize the proofs of Theorem 4.3 and Theorem 4.6 to
show that all sentences of second-order logic are expressible in IntDL. Together
with the result of the next theorem proved in [Abramsky and Vadndnen 2009], we
will be able to conclude that the expressive power of IntDL is so strong that it
in fact is equivalent to the whole second-order logic, in the sense that there is a
translation from sentences of one logic into another.

Theorem 5.1 (Abramsky, Vaandnen 2009). IntDL sentences are expressible in
second-order logic.

In order to proceed to the main theorem of this paper (Theorem 5.13), we first
recall the normal form of second order formulas.

Theorem 5.2. [Normal Form of second order formulas]
1. Every X! formula is equivalent to a formula

o cither of the form 3fWf2-- Y fr=13fnYz, where 1 is quantifier-
free, whenever n is odd,
e or of the form JfW 2. I3z, where 1 is quantifier-free,

whenever n is even;
2. Every 1}, formula is equivalent to a formula

e cither of the form VFEIF- - Afn=1¥ fn3ze), where 1) is quantifier-
free, whenever n is odd,

o or of the form ¥ f13f2.. .Y fn=13fn\z1), where v is quantifier-free,
whenever n is even.

In the main proofs, we will first focus on Hén and Z;n 41 sentences; later, we
will give translations of £}, and IT}, _, sentences out of those of IT}, and X} . |,
respectively.

The first step of the proofs is to turn every Hén and E%n 1 sentences into equiv-
alent sentences of a nice form. To this end, we need some lemmas.

Lemma 5.3. For any first-order L(f) formula ¢(ft;---t,), where f has an occur-
rence in ¢ of the form ft---t, for some terms t| - - - t,, we have that

Eo(fti-tn) Vo Ve, (G =x) A At =x0) = O(fr1-- 1)),

where x1,- -+ ,x,, are new variables and ¢(fx| ---xy,) is the formula obtained from
o(fty---t,) by replacing everywhere fty---t, by fxy---xy.

Proof. Easy. 0

124

Lemma 54. If (fxi, -, fx;, -~ xj,,) is a first-order L(f) formula, such that
in ¢ f has an occurrence of the form fx; ---x; and an occurrence of the form
faj -xj, with {x;, -2, N {xj -2, } =0, then we have that

< dgVa, Vl’n(¢(f37u © iy 9T "'xjm>
AN(ziy = z5) AN, = 25,,) = (fai, 26, = 925, 25,))),

where ¢(fx;, -+ -z, , g2, -+~ xj,) is the formula obtained from ¢(fx;, - - x;,, frj, -

by replacing everywhere fxj ---xj by gx; ---x;

Proof. Easy. O
Lemma 5.5. Every Hén formula is equivalent to a formula ¢ of the form
Vf11 .. .vfglgg% ... 39;1 YR .vf;}ngg? .. .gggnvgvjvg¢7
where
e 1) is quantifier free;

e cvery occurrence of f;’ (1<~y<n 1<i<p,)in is of the form f;’X"f’i,
where
XA/’Z — <':U’Yv7f'l R ’l"}’vio(f;/)>
is a subsequence of x;
e cevery occurrence of g? (1<6<n, 1<j<gqs)in) is of the form g?y‘;’j,
where
67 j —
y J - <y69j17.” 7y57.j () >
o(95)
is a subsequence of .

Proof. By Theorem 5.2, we may assume that every Hén formula y is in the fol-
lowing normal form:

Vfll“'vf;ﬂg%”'agél ...vfln...vfgnag?.--ﬂgg;bvw,

where 1) is quantifier-free. First, apply Lemma 5.3 to every function symbol oc-
curred in in such a way that the first-order part of the resulting formula ' satisfies
the condition of Lemma 5.4 for each occurred function symbol not in the required
form. Then several applications of Lemma 5.4 will give the formula ¢ of the re-
quired form. O

The next technical lemma will play a role in the proof of Lemmas 5.7 and 5.9.

125

“Zj,,)

Lemma 5.6. Let ¢(f,z) be any L(f) first-order formula, where the occurrences
of fi (1 <i<p)in ¢ is of the form

fii, -+ xi,,

where (x;, -+~ x;,,) (1 < i <p) is a subsequence of . Let (M,F) be any L(f)
model and s any assignment for T. Let y1,---,y, be new variables. Define an
assignment 3 for T,y1,- -+ ,Yp extended from s by taking

5(yi) = Fi(s(xi)), -+ ,s(wi,,) forall 1 <i<p
and 5(x;) = s(x;) forall 1 < j <n. Then
(M,F,S(J_;))): Qs(f_7j) =M):{5} ¢/7

where ¢' is the DL formula obtained from ¢ by replacing everywhere fix;, -+ x;
by y; foreach 1 <1 < p.

my

Proof. Tt is easy to show by induction that for any term ¢, s(t) = 5(¢'). Next,
we show the lemma by induction on ¢. The only interesting case is the case that
¢ =1V x. In this case, we have that

(M,F,s(Z)) EvVx <= (M,F,s(%)) =vor (M,F,s(Z)) Ex
&= M =53¢ or M |=(5; X' (by induction hypothesis)
— M):{5} 1/1/®X/.
]

Let o(f) denote the arity of a function symbol f. Let x = (x;,---,x,) be a
sequence of variables. The formula =(zy,---,x,,y) is abbreviated as =(x,y).
The duplicate team X (M /xy)---(M/x,) of a team X of M is abbreviated as
X(M/xy,--- ,xy). A sequence of functions with both superscripts and subscripts
Fi ... F!is abbreviated as F''; similarly for function-variables.

Lemma 5.7. H%n sentences are expressible in BID-logic.

Proof. Without loss of generality, we may assume that every Hin sentence ¢ is of
the form described in Lemma 5.5. Let

¢* :Vuu .. -Vul,pl .. -Vuml . 'Vun,anZV:Eng
(‘Pl — E|U171 . --Elvl,ql (@1 AN (lpz — 3@2,1 . --3027q2(®2 A (‘P3 e
= o110 I, (On1 APy = Fon 1+ Fng, (0, AY))) 1)),
—

2n

where
Py

¥, = A\ =(x"",u,,) forevery 1 <~ <n,

i=1

126

qs

Os5 = /\ :(yts’j?U(g’j) forevery 1 <5 <n

J=1

and 1)’ is the first-order formula obtained from 1) by replacing everywhere

° f?x%i by a new variable u, ; (1 <~y <n,1<i<p,),

o g?y‘svj by a new variable vs; (1 < <n, 1 <j <gy).

The rest of the proof is devoted to show that the sentence ¢* of BID-logic expresses
the Hén sentence ¢, i.e. to show that for any model M it holds that

ME¢<—= MEp ¢

= Suppose M = ¢. Then for any sequence of functions

Fl et g,

there exists a sequence of functions

GYF): MoW@) - M, -

such that

for any sequence of functions

FP MU 5 M-

there exists a sequence of functions

GP(F1,--- [F7): M°Y") — M,

such that

(M,F1,GT,--- [F",G") = Vavavi (Fl, g, F. 7).

Let Y7 be a subteam of

X = {0}<M/u1,1a"' yULpys - 7un117"'un7pn)(M/zajvg)

B MOUn) s

LG (1) preln) 5

JF o MoUe) — M,

qn

such that M =y, W;. It suffices to show that

M ':yl 31}1,1 . '3’01,(1' (@1 VAN (Tz — 3’02,1 s E|U27q2 (@2 A (IP3 s
— E|Un71’1 i 'E'Unfl,qn,l (®n71 A (lpn — EIvn,l i 'Elvn,qn (®n /\w,))) T)))) :

127

G (FU,.o F) s MOWan)

M

@)

—
2n—1

Forany 1 <i < p; and any d € M°(1), if there exists s € Y} such that s(x) = d,
then choose an s; g € Y1 that has this property. Pick a point ap € M. Define

functions F!(Y}) : M°U) — M forall 1 <i < p; by taking

- 3; (uy), if there exists s € Y7 such that s(x') = d;

)@ ={ %

ao, otherwise.

Inductively define for each 1 < j < ¢; a function

Bij:Yi(Bia/vig) - (Brj-1/vij-1) = M

by taking
Bi(s) = Gj(F'(Y1))(s(y")).
Put
Y =Yi(Bi1/vi1) - (Brg /viq)-

It suffices to show that M =y, © and

M 'ZYl’lPZ — E|U271 e Elvzm (@2 A (lP3 e

= 11 Ip-t,g, (Ot AP = Fop1 - T g, (On AY)))--+)).
—
2n—3
The former is obvious by the definitions of Y{ and (3 1,---, 51,4, To show the
latter, it suffices to show that for any subteams Y; of Y7/, ... , Y}, of Yr’h1 such that
M =y, ¥, ..., M =y, ¥, it holds that

M Ey; @y, M Ey; O, 3)

and M [=y; ¢/, where Y{,--- Y, are defined in the same way as above. By the
definitions of YJ,---.Y,) and 521, , 52,0, Bn.1s " » Bn.gn» (3) hold obviously.
To show M |=y; «, since ¢ is flat, it suffices to show M =, ¢’ for any s € Y,,.

Indeed, for the functions F (Y5) : MU s MA<~y<n 1<i< py) de-
fined as above, by (2) we have that

(M,FI(Y]),Gl(Fl(Yl)),'“ ,F”(Yn),G”(Fl(Yl),“' 7Fn(yn))7
8(2)?8(j)78(g)) ’:w(ﬁaaa 7?7.9?’27@7@)7

Note that for any sequence x4 (1< v <n, 1 <i<p,), by definition, we have that
s7 o (x7%) = s(x7), from which and the fact that M |=y. .., it follows that
,5(x7:%) v o

Fzﬂ/(Y’)’)(S(X%i)) = SZS(Xv,i)(u’Y,i) - s(u"/,i)'

Hence, applying Lemma 5.6 gives M =y, Y.

128

<=: Suppose M =gy ¢*. Then

M ':le — E|1)171 . ‘ElU],ql (@1 A (‘Pz — 31)27] . '-32)27,]2(@2/\ (‘Pg s

= Jon-1,1 It (On1 A(¥n = Fon1++ Fung, (On AY)))).

—_
2n—1
For any sequence of functions Fl1 : MU — M, ,Fpll L MO M, consider
the following subteam Y] of X:
}/] - {S 6{@}(M/U]7],"‘ y Ul pyy™ - 7un,17"'un,pn)(M/27:i‘7g)
| s(uy ;) = F(s(x")) foreach 1 <i <p;.}

]

Clearly, M =y, ¥; holds, thus we have that

M ':yl 31}1,1 . '3’01,[1' (@1 A (Tz — 3’02,1 o E|U27q2 (@2 A (IP3 s
— E|Un71’1 i 'E'Unfl,qn,l (®n71 A (lpn — EIvn,l i 'Elvn,qn (®n /\w,))) T)))) :
2n—1

So there exist functions

Bij:Y1i(Bra/vin) - (Brj-1/vij-1) = M

for all 1 < j < ¢ such that M |:y1/ ®; and

M):yl/‘Pz — 31}2,1 e 3'027(12(@2 A (IP3 e

= Fvp_11 1,9, (On 1 A(¥n = Fop 1+ Fup g, (O AY))) 1)),
—
2n—3
where Y{ =Y1(B1,1/v11) (Bra /v1.q)-
- 1
Forany 1 < j < ¢ and any d € M°93), by the definition of Y7, there must exist
s € Y/ such that s(y") = d; choose an sjl. i€ Y/ that has this property. Define for

each 1 < j < ¢, a function G} : M°9) —5 M by taking

GA(d) = 5! (v).

__ Repeat the same procedure to define inductively for any sequence of functions
F2 ... F" the subteams Y, of Y/, ..., Y,, of Y, | such that M =y, ¥, where the
extension YW/ of Y, satisfies M):yv/ ©,, for all 2 <~ < n, and to define inductively
functions

G3: Mear) - M,--- ,an - MO - M,

GT e MO — M, GE o MOWan) — M.

In the last step, we have that M =y: @, A+’ and the sequence of functions
G-+, G is defined. Now, for any sequences ¢,a,b in M with

len(¢) = len(Z), len(a) = len(), len(b) = len(),

129

there exists s € Y,, such that
s(z) =¢, s(x) =a, s(j) =b.

We have that M =, . Note that for each 1 < § <n and each 1 < j < g5, we
have that sis(yé,j)(y‘s’j) = s(y*), from which and the fact that M f=y; ©;, we
obtain that

GH(s(y™)) = 8] yous) (v5,5) = 5(v5,5)-
Hence, applying Lemma 5.6 gives

(M7ﬁ7a7 e 7ﬁ7@7 _,EL,B) ': w’
therefore M = ¢. O

Observe that in the sentence ¢* of the proof of Theorem 5.7, the only subfor-
mulas that are not in the language of IntDL are dependence atoms and first-order
formulas, both of which are expressible in IntDL, therefore we have the following
theorem.

Theorem 5.8. Hén sentences are expressible in IntDL.
Proof. Follows from Lemma 5.7, Lemma 3.1 and Theorem 3.4. O
Lemma 5.9. Zin 1 Sentences are expressible in BID-logic.

Proof. By a similar argument with that in the proof of Lemma 5.5, one can turn
every £} ., sentences into a sentence ¢ of the form

Hff"'af;}lVg%"'Vgé] c3ff e 3f VgVl
A3 v avavgyp,

Pn+1

where
e 1 is quantifier free;

e every occurrence of f] (1 <y <n+1,1<4<p,)in is of the form f;x7",
where

Vit — oL .
X - <m’y,117 al"y,lo(f_“/)>
K3
is a subsequence of T;

e every occurrence of g;-s (1<d<n,1<j<gs) iny is of the form g?y‘;’j,

where
6, __
y ! = <y5,j17"' »Y68,5 (8 >
o(95)

is a subsequence of .

130

Now, by a similar argument with that in the proof of Lemma 5.7, one can show
the following sentence ¢* of BID logic expresses the Z%n 41 sentence ¢:

¢* ZVUL] .. -V'Uqu .. -V'UnJ . -VUn,anEV£vz7
E|U171 cee Elul,pl (lpl A (@1 — HUQJ e E’UJz,pz(lPZ A (@2 —
= Fup,1 - Fnp, (P A (@n = Funi11 - Fngtp,,, (P AY)))--0)))),
aagacar
2n+1

where
Py

¥, = /\ :(X%i,u%i) forevery 1 <~ <n-+1,
i=1
a5 '
CIEA =(y*,v5;) forevery 1 <5 <n
j=1

and v’ is the first-order formula obtained from v by replacing everywhere
° f?x%i by a new variable u, ; (1 <y <n+1,1<1i<p,),

° g?y‘s’j by a new variable vs; (1 < v <n,1<j<gs).

Theorem 5.10. X} | sentences are expressible in IntDL.
Proof. Follows from Lemma 5.9, Lemma 3.1 and Theorem 3.4. 0

Remark 5.11. The proof of Theorem 4.6 is a special case of the proof of Theorem
5.10.

By adding dummy quantifiers, one may transform a Z%n sentence to an equiv-
alent £ | sentence in the normal form, and a I}, | sentence to an equivalent
Hén 4o sentence in the normal form. It then follows immediately from Theorem
5.8 and Theorem 5.10 that Zin and Hén 1 sentences are expressible in IntDL.

Alternatively, one may also obtain translations for Zén and H%n 1 sentences by
using intuitionistic negation as it is described in the next corollary.

Corollary 5.12. X} and I}, | sentences are expressible in IntDL.

Proof. Note that any Zén sentence ¢ is equivalent to a sentence —) with ¢ a Hén
sentence. Let ¢)* be an IntDL sentence expressing v, thus by a similar argument
with that in the proof of Corollary 4.8,)* — L is the IntDL sentence that expresses
¢. A similar argument applies to Hén 1 sentences as well. O

Finally, we arrive at the following theorem.
Theorem 5.13. Second order sentences are expressible in IntDL.

Proof. Follows from Theorem 5.8, Theorem 5.10 and Corollary 5.12. 0

131

References

[Abramsky and Viidnanen 2009] S. Abramsky, J Viddndnen, From IF to BI, Syn-
these 167(2): 207-230

[Hintikka and Sandu 1989] J. Hintikka ,and G. Sandu Informational Indepen-
dence as a Semantical Phenomenon, in Logic, Methodology and Philosophy of
Science, Vol. 8, J. E. Fenstad, I. T. Frolov, and R. Hilpinen (eds.), Amsterdam:
Elsevier, pp. 571C589.

[Hodges 1997a] W. Hodges, Compositional Semantics for a Langauge of Imper-
fect Information, Logic Journal of the IGPL, 5: pp. 539C563.

[Hodges 1997b] W. Hodges, Some Strange Quantifiers, in Structures in Logic and
Computer Science: A Selection of Essays in Honor of A. Ehrenfeucht, (Lec-
ture Notes in Computer Science, Volume 1261) J. Mycielski, G. Rozenberg,
and A. Salomaa (eds.), London: Springer, pp. 51C65.

[O’Hearn and Pym 1999] P. O’Hearn, and D. Pym, The Logic of Bunched Impli-
cations, Bulletin of Symbolic Logic 5(2), pp. 215-244.

[Pym 2002] D. Pym, The Semantics and Proof Theory of the Logic of Bunched
Implications, Kluwer Academic Publishers.

[Viddndnen 2007] J. Viindnen, Dependence Logic: A New Approach to Indepen-
dence Friendly Logic, Cambridge: Cambridge University Press.

132

