A problem for inquisitive semantics of conditionals

Dean McHugh

Institute of Logic, Language and Computation
University of Amsterdam

ESSLLI 2019 Student Session 13 August 2019 Let *U* be an utterance and *c* a context suitable for *U*.

What is $[U]^c$?

Are there any data to help answer this?

Alternatives in counterfactual antecedents

- (1) a. [There are delays at the airport.] If you had taken the plane, you would have been late.
 - b. If you had grown wings and flown, you would have been on time.
 - c. If you had taken the plane, or grown wings and flown, you would have been late.

(cf. Nute 1975; Alonso-Ovalle 2006)

Contemporary semantics of conditionals distinguish:

(e.g. Alonso-Ovalle 2006; Fine 2012; Ciardelli et al. 2018b)

- the alternatives raised by a conditional antecedent
- the mechanism used to hypothetically assume each alternative

Each alternative is assumed separately

⇒ Disjunctive antecedents are represented by sets of propositions Alonso-Ovalle (2006)

Conditionals are a playground

Theory of conditionals Semantic content Stalnaker (1968); Lewis (1973) possible worlds semantics Kratzer (1986) possible worlds semantics Alonso-Ovalle (2006) alternative semantics Fine (2012) truthmaker semantics Santorio (2018) truthmaker/alternative semantics Willer (2018) dynamic semantics Schulz (2018) modified inquisitive semantics Ciardelli et al. (2018b) inquisitive semantics

Rooth (1985, 2016); Kratzer and Shimoyama (2002); Alonso-Ovalle (2006)

2 Inquisitive semantics

Ciardelli, Groenendijk, and Roelofsen (2018a)

Downward closure

A set *A* is downward closed iff for all $p \in A$ and $q \subseteq p : q \in A$.

	Alternative semantics	Inquisitive semantics
Semantic content:	Any set of propositions	Any downward closed set of propositions

$$B \stackrel{?}{\equiv} B \vee (A \wedge B)$$

Alternative semantics

$$[B] = \{|B|\}$$

$$[B \lor (A \land B)] = \{|B|, |A| \cap |B|\}$$

The downward closure of a set *A* is $A^{\downarrow} := \{ q \mid \exists p \in A : q \subseteq p \}.$ Inquisitive semantics

$$[B] = \{|B|\}^{\downarrow} = [B \lor (A \land B)] = \{|B|, |A| \cap |B|\}^{\downarrow}$$

Alternative semantics Inquisitive semantics

$$B \not\equiv B \lor (A \land B)$$
 $B \equiv B \lor (A \land B)$

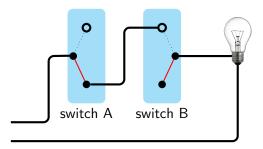


Figure: The light is on just in case A is down and B is up.

- (2) If switch B was up, the light would be on. a.
 - If switch B was up, or switches A and B were up, b. the light would be on. $B \vee (A \wedge B) > On$

Hurford's constraint

- A disjunction in which one disjunct entails the other is generally infelicitious

 Hurford (1974)
- (3) #The ring is made of gold or metal.
 - Hurford's constraint also appears in conditional antecedents.
- (4) #If the ring is made of gold or metal, it will be heavy.

Hurford antecedents

Some Hurford disjunctions are acceptable Gazdar (1979)

(5) Alice ate some or all of the cookies.

This extends to conditional antecedents:

(6) If switch B was up, or switches A and B were up, ...

- (7) Alice ate exh(some) or all of the cookies. \equiv Alice ate some (but not all) or all of the cookies.
- Apply Roelofsen and van Gool (2010)'s exh operator for inquisitive semantics: (cf. also Aloni and Ciardelli 2011)

$$exh(B) \lor exh(A \land B) \equiv (B \land \neg A) \lor (A \land B)$$

B

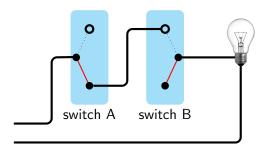


Figure: The light is on just in case A is down and B is up.

- (8) a. If switch B was up, the light would be on.
 - b. If switch B was up (and A not up), or switches A and B were up, the light would be on. $(B \land \neg A) \lor (A \land B)$

A subtle difference

Alternative semantics:

$$[\![B]\!] = \{|B|\}$$
$$[\![B \lor (A \land B)]\!] = \{|B|, |A| \cap |B|\}$$
$$[\![(B \land \neg A) \lor (A \land B)]\!] = \{|B| \cap |\neg A|, |B| \cap |A|\}$$

Inquisitive semantics:

A three-valued switch

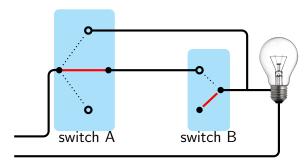


Figure: The light is on iff A is up, or A is in the middle and B is up

- (9) a. If B was up, the light would be on.
 - b. If B was up, or A and B were up, the light would be on.
 - c. If B was up and A not up, or A and B were up, the light would be on.

Observation

 $B \lor (A \land B)$ and $(B \land \neg A) \lor (A \land B)$ seem to raise different hypothetical scenarios

- When *A* is not mentioned, its position is kept fixed
- When $\neg A$ is mentioned, its position is not kept fixed
 - In particular, $\neg A$ invites considering A down

Schulz (2018)'s experiment

 In counterfactual antecedents, mentioning something already true does not make the same contribution as not mentioning it at all.

Comparing alternative and inquisitive semantics

In alternative semantics, without downward closure, the right distinctions fall out immediately:

$$[\![B]\!] = \{|B|\}$$
$$[\![B \lor (A \land B)]\!] = \{|B|, |A| \cap |B|\}$$
$$[\![(B \land \neg A) \lor (A \land B)]\!] = \{|B| \cap |\neg A|, |B| \cap |A|\}$$

Compare with inquisitive semantics:

$$[\![B \lor (A \land B)]\!] = [\![B]\!]$$

$$[\![\operatorname{exh}(B) \lor \operatorname{exh}(A \land B)]\!] = [\![(B \land \neg A) \lor (A \land B)]\!]$$

A pragmatic explanation of (9c)'s interpretation

(9c) If B was up and A not up, or A and B were up, the light would be on.

Alternative semantics:

- $B \lor (A \land B)$ is an alternative to $(B \land \neg A) \lor (A \land B)$
- The speaker chose to express $\{|B| \cap |\neg A|, |B| \cap |A|\}$ rather than $\{|B|, |B| \cap |A|\}$
- But *A* is already not up
- If the speaker wanted to keep A fixed, she should have used $\{|B|, |B| \cap |A|\}$
- \Rightarrow The speaker wants me not to keep switch A fixed

Inquisitive semantics:

- No meaning of the sort $\{|B|, |B| \cap |A|\}$ exists
- ⇒ No pragmatic comparison of alternatives

Downward closure makes inquisitive semantics blind to some meanings – e.g. $\{|B|, |A| \cap |B|\}$ – which the interpretation of conditionals requires.

Why downward closure?

Alternative semantics Inquisitive semantics

Any set of propositions Any downward closed set of propositions

Alternative semantics is too permissive (Ciardelli, Roelofsen, and Theiler, 2017; Ciardelli and Roelofsen, 2017)

In particular, it cannot account for Hurford's constraint:

(10) # John is from Paris or France.

(Hurford, 1974)

Katzir & Singh (2013) on redundancy

1. Avoid redundancy

A sentence is deviant if its logical form contains a binary operator \circ applying to two arguments A and B, and the outcome $A \circ B$ is semantically equivalent to one of the arguments

2. Contextual Equivalence

X and *Y* are contextually equivalent in context *c* iff

$$\{w \in c : [X](w) = 1\} = \{w \in c : [Y](w) = 1\}$$

(cf. Schlenker 2012)

In alternative semantics,

- (11) a. $[\![John is from France]\!] = \{|John is from France|\}$
 - b. [John is from Paris or France] = {|John is from Paris|, |John is from France|}

where
$$|P| = \lambda w$$
. *P* is true in *w*

- John is from Paris or France. $\not\models$ John is from France.
- John is from France. $\not\models$ John is from Paris or France.

No entailment!

Ciardelli and Roelofsen (2017) conclude:

- \Rightarrow No redundancy
- ⇒ No account of Hurford's constraint in alternative semantics

What is redundancy?

Two accounts

To be redundant is to...

- be contextually equivalent to a simpler alternative Simons (2001); Katzir and Singh (2013); Meyer (2013, 2014)
- 2 perform the same function as a simpler alternative

Accounting for Hurford's constraint

What is redunancy?

For an utterance to have a redundant part is for the part to fail to contribute to the utterance's function.

In general, for sincere speakers,

Utterance type:	Declarative	Interrogative	Conditional antecedent
71	Communicate	Raise	Raise contexts
	information	issues	of evaluation

The issue

Take an utterance *U* and your favourite semantics of declaratives/interrogatives/conditionals:

- Let info(*U*) be *U*'s informative content
- Let inq(*U*) be *U*'s inquisitive content
- Let *f* be a counterfactual selection function and define *U*'s hypothetical content to be:

$$\mathsf{hyp}(U, w) = \{ w' : w' \in f(p, w) \text{ for some } p \in \mathsf{alt}(U) \}$$

The issue

Let U be an utterance and U^* a simpler alternative to U. Then U is infelicitous if (but not only if)

- U is declarative and $info(U) = info(U^*)$
- U is interrogative and $inq(U) = inq(U^*)$
- U is a conditional antecedent, w is the actual world, and $\mathsf{hyp}(U,w) = \mathsf{hyp}(U^*,w)$

- (12)# If John were from Paris or France, he would speak French.
 - If switch B was up, or switches A and B were up, the light would be on.

According to any suitable semantics of conditionals:

$$f(|\text{John is from Paris}|, w) \subseteq f(|\text{John is from France}|, w)$$

 $f(|\text{switches A and B are up}|, w) \not\subseteq f(|\text{switch B is up}|, w)$

hyp(John is from Paris or France, w) = hyp(John is from France, w) $hyp(A \text{ and } B \text{ are } up, w) \neq hyp(B \text{ is } up, w)$

Alternative semantics predicts:

- ✓ (12a)'s redundancy (and hence infelicity)
- ✓ (12b)'s lack of redundancy (and hence felicity)

Upshot 2

Alternative semantics can account for Hurford's constraint by defining redundancy in terms of utterance function.

The issue

The question of semantic content is an empirical question

- **Upshot 1** Downward closure makes inquisitive semantics blind to some meanings e.g. $\{|B|, |A| \cap |B|\}$ which the interpretation of conditionals requires
- Upshot 2 Alternative semantics can account for Hurford's constraint by defining redundancy in terms of utterance function

eferences I

- Maria Aloni and Ivano Ciardelli. A semantics for imperatives, 2011.
- Luis Alonso-Ovalle. *Disjunction in alternative semantics*. PhD thesis, University of Massachusetts Amherst, 2006. URL
 - http://people.linguistics.mcgill.ca/~luis.alonso-ovalle/papers/alonso-ovalle-diss.pdf.
- Gennaro Chierchia. *Scalar Implicatures, Polarity Phenomena and the Syntax/Pragmatics Interface*, pages 39–103. Oxford University Press, Oxford, 2004.
- Gennaro Chierchia, Danny Fox, and Benjamin Spector. The grammatical view of scalar implicatures and the relationship between semantics and pragmatics. *Unpublished manuscript*, 2008.
- Ivano Ciardelli and Floris Roelofsen. Hurford's constraint, the semantics of disjunction, and the nature of alternatives. *Natural Language Semantics*, 25 (3):199–222, Sep 2017. doi:10.1007/s11050-017-9134-y.
- Ivano Ciardelli, Floris Roelofsen, and Nadine Theiler. Composing alternatives. *Linguistics and Philosophy*, 40(1):1–36, Feb 2017. doi:10.1007/s10988-016-9195-2.
- Ivano Ciardelli, Jeroen Groenendijk, and Floris Roelofsen. *Inquisitive* semantics. Oxford University Press, 2018a.

- Ivano Ciardelli, Linmin Zhang, and Lucas Champollion. Two switches in the theory of counterfactuals. *Linguistics and Philosophy*, 2018b. doi:10.1007/s10988-018-9232-4.
- Kit Fine. Counterfactuals without possible worlds. Journal of Philosophy, 109 (3):221-246, 2012. doi:10.5840/jphil201210938.
- Gerald Gazdar. Pragmatics: Presupposition, implicature, and logical form. New York: Academic Press, 1979.
- James R Hurford. Exclusive or inclusive disjunction. Foundations of language, 11(3):409-411, 1974. URL www.jstor.org/stable/25000785.
- Roni Katzir and Raj Singh. Hurford disjunctions: embedded exhaustification and structural economy. Proceedings of Sinn und Bedeuting, 18:201–216, 2013. URL https://semanticsarchive.net/sub2013/ SeparateArticles/Katzir&Singh.pdf.
- Angelika Kratzer. Conditionals. Chicago Linguistics Society, 22(2):1–15, 1986.
- Angelika Kratzer. Modals and conditionals: New and revised perspectives, volume 36. Oxford University Press, 2012.

References III

Angelika Kratzer and Junko Shimoyama. Indeterminate pronouns: The view from japanese. In Y. Otsu, editor, *The Proceedings of the Third Tokyo Conference on Psycholinguistics*, pages 1–25, 2002. URL https://people.umass.edu/partee/RGGU_2004/Indeterminate%20Pronouns.pdf.

David Lewis. Counterfactuals. John Wiley & Sons, 1973.

Marie-Christine Meyer. *Ignorance and grammar*. PhD thesis, MIT, 2013.

Marie-Christine Meyer. Deriving hurford's constraint. In *Semantics and Linguistic Theory*, volume 24, pages 577–596, 2014.

Donald Nute. Counterfactuals and the similarity of words. *The Journal of Philosophy*, 72(21):773–778, 1975. doi:10.2307/2025340.

Barbara Partee. Topic, focus and quantification. In *Semantics and Linguistic Theory*, volume 1, pages 159–188, 1991.

Floris Roelofsen and Sam van Gool. Disjunctive questions, intonation, and highlighting. In Maria Aloni, Harald Bastiaanse, Tikitu de Jager, and Katrin Schulz, editors, *Logic, Language and Meaning*, pages 384–394, Berlin, Heidelberg, 2010. Springer. doi:10.1007/978-3-642-14287-1_39.

Mats Rooth. *Association with focus*. PhD thesis, University of Massachusetts, Amherst, 1985.

References IV

- Mats Rooth. Alternative semantics. In Caroline Fry and Shinichiro Ishihara, editors, *The Oxford Handbook of Information Structure*. Oxford University Press, 2016. doi:10.1093/oxfordhb/9780199642670.013.19.
- Paolo Santorio. Alternatives and truthmakers in conditional semantics. *The Journal of Philosophy*, 2018. doi:10.5840/jphil20181151030.
- Philippe Schlenker. Maximize presupposition and gricean reasoning. *Natural Language Semantics*, 20(4):391–429, Dec 2012. doi:10.1007/s11050-012-9085-2.
- Katrin Schulz. The similarity approach strikes back: Negation in counterfactuals. In Uli Sauerland and Stephanie Solt, editors, *Proceedings of Sinn und Bedeutung* 22, volume 2 of *ZASPiL* 61, pages 343–360. Leibniz-Centre General Linguistics, Berlin, 2018. URL https://semanticsarchive.net/sub2018/Schulz.pdf.
- Mandy Simons. Disjunction and alternativeness. *Linguistics and Philosophy*, 24(5):597–619, Oct 2001. ISSN 1573-0549. doi:10.1023/A:1017597811833. URL https://doi.org/10.1023/A:1017597811833.
- Robert Stalnaker. A theory of conditionals. In Ifs, pages 41–55. Springer, 1968.

References V

Robert van Rooij and Katrin Schulz. Exhaustive interpretation of complex sentences. *Journal of Logic, Language and Information*, 13(4):491–519, Mar 2004. doi:10.1007/s10849-004-2118-6.

Malte Willer. Simplifying with free choice. *Topoi*, 37(3):379–392, Sep 2018. doi:10.1007/s11245-016-9437-5.

Rethinking redundancy

Exhaustivity

Aloni and Ciardelli (2011):

$$s \models \mathsf{exh}(\varphi) \iff s \subseteq \mathsf{exh}(\alpha, |RA(\varphi)|) \text{ for some } \alpha \in Alt(\varphi)$$

Where

•
$$|RA(\varphi)| = \{ |\psi| \mid \psi \in RA(\varphi) \}$$

Roelofsen and van Gool (2010):

- $exh(\pi,\Pi) = \pi \bigcup \{\pi' \in \Pi \mid \pi \nsubseteq \pi'\}$
- $exh(\Pi) = \{exh(\pi, \Pi) \mid \pi \in \Pi\}$

$$RA(a) = \{a\} \cup C_a$$

$$RA(\varphi \vee \psi) = RA(\varphi) \cup RA(\psi)$$

$$RA(\varphi \wedge \psi) = RA(\varphi) \cup RA(\psi)$$

$$RA(\exp \wedge \psi) = RA(\varphi) \cup RA(\psi)$$

$$RA(\exp \wedge \psi) = \{\exp(\psi) \mid \psi \in RA(\varphi)\}$$

where C_a is a set of contextually relevant alternatives to a.

Schulz (2018)'s experiment

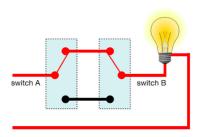


Figure: Scenario used in Ciardelli et al. (2018b)'s experiment

- (13) a. If the electricity was working, then the light would be on.
 - b. If the electricity was working and switch A was up, then the light would be on.
 - c. If the electricity was working and switch A and switch B were not both up, then the light would (still) be off.

Results from Schulz (2018)'s experiment

sentences	true	%	false	%	indet.	%
$E \leadsto On$	8	16%	42	82%	1	2%
$(E \wedge A) \rightsquigarrow On$	43	84%	5	10%	2	4%
$[E \wedge \neg (A \wedge B)] \rightsquigarrow On$	14	27%	27	53%	8	16%
$[E \wedge \neg (A \wedge B)] \leadsto On^*$	9	26%	20	59%	5	15%

Figure: Results from Schulz (2018)'s experiment

Conclusion

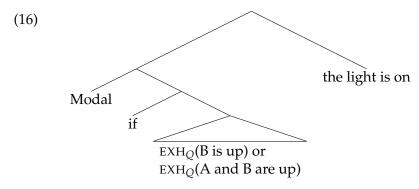
• The mechanism for making hypothetical assumptions in Ciardelli et al. (2018b) keeps too much fixed

Overt versus covert negation

- (14) a. If exh(B was up), or A and B were up, the light would be on.
 - b. If B was up and A not up, or A and B were up, the light would be on.
 - Perhaps exh should be sensitive to counterfactual alternatives
 - But this invites worries about compositionality
 - Perhaps overt negation has extra-semantic effects

- Inquisitive semantics: $exh(B) \lor (A \land B)$ and $(B \land \neg A) \lor (A \land B)$ are semantically equivalent
- Neither is a simpler alternative utterance to the other
- ⇒ They have the same redundancy conditions
 - And we cannot compare them with $\{|B|, |A| \cap |B|\}$
 - No meaning of the sort exists in inquisitive semantics

Explicit exhaustification is fine


- (15) a. The request may be extended to all or only some of the designs included in the registration. Latvian Patent Office https://www.latvija.lv/en/PPK/uznemejdarbiba/registri/p2667/ProcesaApraksts
 - b. The GGS-OCC data consist of employment, mean wage, and median wage estimates by occupation, presented for three groups of establishments: those with **none**, **all**, or **some**, **but not all**, of their revenue from green goods and services. US Bureau of Labor Statistics.

https://www.bls.gov/news.release/ggsocc.tn.htm

Counterfactual exhaustification

exh is calculated with respect to a question under discussion Q. Two options for Q:

- $\mathbf{0}$ Q =What are the positions of the switches?
- **2** $Q = \text{What } \frac{\text{happened}}{\text{happened}}$ to the switches when shifting to the counterfactual scenario?

