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QUESTION

Take standard first order language.
Question: What can we express over complete linear orders?

Same question with one (1) monadic predicate symbol?
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Theorem
If0 < & < B < w® with B = w, then Ay € L(x), but
Aoc,B ¢ I—(B)

Theorem
IfO<a<p <w®, then A% € L(«*), but A% ¢ L(B*).



PRELIMINARIES

£ be a countable first-order language which includes the
propositional constant L

» fix a universe of objects U

v

vV V. v v VY

Kripke frame (K, R) (usual conditions on domains and
accessibility relation R), in addition assume R to be linear

upward closed subsets of K: Up(K), totally ordered by C
smallest element Ox = 0, largest element 1x = K
intervals [a, b] for a,b € Up(K)

LIN axiom: (A - B)V (B — A)

CD axiom: Vx(A V B(x)) — (A V VxB(x))



VALUATION

Let ¢ be a mapping from atomic formulas with constants for U
into Up(K).
Extension of ¢ to all well-formed formulas is defined as follows
> @(ANAB) =¢(A)N¢(B)
> o(AVB) =¢(A)Ue(B)
> (A B) = K @(A)g@(B)
¢@(B) otherwise
> @(VxA) = {e(A(w)): ue U}
> o(IxA) =Ulp(A(uw)): ue U}



DEFINITION OF THE LOGIC

Definition

The logic defined by a linear Kripke frame K = (W, R), denoted
by L(K), is the set of all £-formulas A such that for all Kripke
models (K, U) and all valuations ¢ of (K,U), ¢(A’) = 1k, where
A’ is a closure of A.
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DEFINITION OF THE LOGIC

Definition

The logic defined by a linear Kripke frame K = (W, R), denoted
by L(K), is the set of all £-formulas A such that for all Kripke
models (K, U) and all valuations ¢ of (K,U), ¢(A’) = 1k, where
A’ is a closure of A.

But: reasoning in Kripke frames is difficult, as we actually reason

in the (linear) order of the upsets of the frame.

Fortunately in the linear case, we can switch sometimes to Godel
logics. ..



First ORDER GODEL LoGIcs

Fix a truth value set {0,1} C V C [0, 1], V closed
Interpretation ¢ consists of

» anonempty set U, the universe of ¢
» for each k-ary predicate symbol P a function P® : U* — V
» for each variable x an object x® € U
Extend the valuation to all formulas
» (A AB)=min{@(A), 9(B)}and
@(AV B) = max{@(A), ¢(B)}

. o(A - B) — {@(B) if 9(A) > ¢(B)
1 if p(A) < ¢(B)

> o(VxA(x)) =inf{e(A(u)): u e U}

> @(IxA(x)) =sup{e(A(u)): ue U}



MAPPING KRIPKE WORLDS INTO THE REALS

Embed Up(K) into the truth value set such that the order and
existing infima and suprema are preserved.




EQUIVALENCE RESULT WITH LINEAR KRIPKE FRAMES

Godel logic to Kripke frame

For each Godel logic there is a countable linear Kripke frame such
that the respective logics coincide.

Kripke frames to Godel logic

For each countable linear Kripke frame there is a Godel truth
value set such that the respective logics coincide.
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History

Timeline
1991
1933 1959 1969 1934 1998
Godel Dummett Horn  Takeuti-Titani
Avron
Hajek

t-norm based logics



History

Timeline since goies
1991
1933 1959 1969 1984 1998

#

Godel Dummett Horn  Takeuti-Tita

Ay

i
yToNn

Hijek

Viennese group

proof theory, #, Kripke, qp, fragments, . ..
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DEescrirTIVE SET THEORY

Cantor-Bendixon Derivatives and Ranks
Polish spaces, i.e. separable, completely metrizable topological
spaces. R is a Polish space: X’ = {x € X: x is limit point of X}

Theorem (Cantor-Bendixon)

Let X be a polish space. For some countable ordinal oy, X* = X0
for all o« > g (X*0 is the perfect kernel).

CB Ranks for countable closed sets
» If X is countable, then X*® = 0.
(every perfect set has at least cardinality of the continuum)
» rank of an element: rkcg(x) = sup{a: x € X*}
» rank of X: rkcg(X) = sup{rkcg(x): x € X}
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Kripke frame

For any ordinal k < w® define two linear Kripke frames over
constant domain K(k) and K(k*) as
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LoGICcs UNDER DISCUSSION

Kripke frame

For any ordinal k < w® define two linear Kripke frames over
constant domain K(k) and K(k*) as

We consider the logics L(k) = L(K(k)) and L(k*) = L(K(x*)).

Theorem

The logics L(«), L(B), L(oc*), L(B*) for w < o # B < w® can
already be separated within the fragment of one monadic
predicate symbol. (Finite cases are trivial)
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EXPRESSING ORDERS

Relativized CB rank
Let rkycp(c) = rkep(c) in the closure of {@(P(u)): u € U}

A<B=(B—A)—B

Tk @(A) < @(B)

Evaluation: ¢(A < B) =
ol ) {(p(B) otherwise

Q(c) .= Vx((Pc < Px) — Px)

Lemma:

0(Q(c)) = {@(P(CJJ if @(P(c)) = Ty or tkocs(c) > 1

succ(@(P(c)) otherwise
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EXPRESSING INFIMA

Let

Info(x) = 1L — L
Inf™*" (x) = vy((Px < Py) — 3z(Inf" (z) A Px < Pz < Py))

Core lemma
For n > 0 we have

1x if o(P(c)) =1k orrkycp(c) =n
@(Inf"(c)) = { @(P(c)) 0 <rkgcp(c) <n
succ(@(P(c))) rkeep(c) =0
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SIMPLE CASE — SEPARATION FORMULA

In the following we consider only k = w™.

Let
A™ = vxvy(Inf™ (x) A Inf™ (y) A Q(x) = Q(y))

Theorem
With the definitions from above, we have

A™ ¢ L(K™) (=G(Vh)
A" cL(K™) form<n (=G(V™)



A ¢ L(KY)

We have to give a counterexample, i.e., an evaluation that sends
A™ to a value less then 1.



A ¢ L(KY)

We have to give a counterexample, i.e., an evaluation that sends
A™ to a value less then 1.
Let U = V™ and defined

¢(P(u)) =u

Then it is easy to see that for x = 1 and y = 0 we have

@(Inf" (1)) =Tk because 1 is always infima of all degrees
e(Inf"(0x)) =1k because rky,cp(0k) =n

©(Q(1x)) =1k see above

©(Q(0x)) =0k  because 0 is not isolated



A" € L(K™)

We have to show that for all possible valuations of x and y the
inner formula is evaluated to 1k.



A" € L(K™)

We have to show that for all possible valuations of x and y the
inner formula is evaluated to 1k.

x Yy Ix| B lylecs Inf™ (x) Inf™ (y) Q(x) Qy) A™
1 1 / / i i 1 1 1
<1 1 0<.<n / x 1 x 1 1
0 / succ(x) 1 succ(x) 1 1
1 <1 / 0<.<n 1 Yy Yy 1
/ 0 1 succ(y) 1 succ(y) 1
<1 <1 0<.<mn 0<.<mn x y x y 1
0<.<n 0 X suce(y) X succ(y) 1
0 0<.<n suce(x) y suce(x) y 1
0 0 succ(x) succ(y) suce(x) succ(y) 1




A" € L(K™)

We have to show that for all possible valuations of x and y the
inner formula is evaluated to 1k.

x y IxlocB lylece Inf"(x)  Inf"(y) Q(x) Q) A™
1 1 / / i i 1 1 1
<1 1 0<.<n / x 1 x 1 1
0 / succ(x) 1 succ(x) 1 1
1 <1 / 0<.<n 1 Yy 1 Yy 1
/ 0 1 succ(y) 1 succ(y) 1
<1 <1 0<.<mn 0<.<mn x y x y 1
0<.<n 0 X suce(y) X succ(y) 1
0 0<.<n suce(x) y suce(x) y 1
0 0 succ(x) succ(y) suce(x) succ(y) 1

This completes the proof for the simple case.



(GENERAL CASE

Now assume we have to ordinals w < o« < 3

& = w"kn + - + wko

B =Wy 4+ + w0l

for some finite n, lg, ..., ln, ko, ..., kn withn >0, withn > 0,
ln > 0, and since o« < B there is maximal d < n such that
kg < lg. Let

o n-+1

_ n n d d
X = (] Xy ey XLy ey Xy e ey X ),



(GENERAL CASE CONT.

For arbitrary variables, let

n—1

chain(x1,...,xn) = (P(x1) = Q(x2)) V \/ (P(xi) = P(xi11)) .
i=2



(GENERAL CASE CONT.

For arbitrary variables, let

n—1
chain(x1,...,xn) = (P(x1) = Q(x2)) V \/ (P(xi) = P(xi41)) -
i=2
Reminder:
_Je(P(c)) if o(P(c)) =Tk orrkeyeg(c) > 1
@(Qle) = {succ(cp(P(c)) otherwise



(GENERAL CASE CONT.

For arbitrary variables, let
n—1

chain(x1,...,xn) = (P(x1) = Q(x2)) V \/ (P(xi) = P(xi41)) -
i=2

and define A g (X) and A4 g as follows:

Ag,p(X) = ( /\ /\ Inf"(x ) — chain(x)

u=di=1

and

).

Xl

An,p = VRAqp(



ExAMPLE
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ExAMPLE
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Theorem
If0 < & < B < w® with B = w, then Ay € L(x), but
Aoc,B ¢ I—(B)

Theorem
IfO<a<p <w®, then A% € L(«*), but A% ¢ L(B*).



FUTURE WORK - GENERALIZED CB-ANALYSIS

Combine the two methods (sup and inf ordering) to separate all
logics in the class of uniformly CB-structured Kripke frames.



FUTURE WORK - GENERALIZED CB-ANALYSIS

Combine the two methods (sup and inf ordering) to separate all
logics in the class of uniformly CB-structured Kripke frames.

uniformly CB-structured

At any CB derivation step, the set of isolated (i.e., to be dropped)
points between any two remaining points (i.e., accumulation
points at that level), is either an inf-set, a sup-set, or an
inf-sup-set.



FUTURE WORK - GENERALIZED CB-ANALYSIS

Combine the two methods (sup and inf ordering) to separate all
logics in the class of uniformly CB-structured Kripke frames.

uniformly CB-structured

At any CB derivation step, the set of isolated (i.e., to be dropped)
points between any two remaining points (i.e., accumulation
points at that level), is either an inf-set, a sup-set, or an
inf-sup-set.

An infinite subset of isolated points of a linear order is an inf-set
(sup-set; inf-sup-set) if it has a supremum (infimum; neither
supremum nor infimum).
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