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Introduction

It has by now been recognised that coalgebras of
various different endofunctors can be used to give
semantics to a wide range of modal logics [5] and
the last decade has seen an intensive study of modal
languages based on predicate liftings [10] and logi-
cal languages based on the so-called cover modal-
ity, first introduced in [8]. Given an endofunctor
T : Set - Set on the category of sets and func-
tions, the role of frames is played by T'-coalgebras
(C,~) where C'is a set (the carrier) and y : C' - T'C
is a (transition) function. Different choices for T'
then define different types of frame classes. In this
framework, Kripke frames arise as T-coalgebras for
the covariant powerset functor 7' = P, (monotone)
neighbourhood frames arise as T'-coalgebras for T" =
& (resp. T' = M) where £X =P o P is the compo-
sition of the (contravariant) powerset functor with
itself, and M(X) = {N € £X | N upclosed}, and
probabilistic frames arise as coalgebras for T' = D
where DX is the set of finitely supported probabil-
ity distributions over X.

The idea behind the cover modality is to provide
a generic modal syntax that can be developed for all
classes of frames that arise as T-coalgebras, and the
endofunctor 7' that defines the frame classes serves
double duty as a syntax constructor. In case of
probabilistic frame, for example, the modal formu-
las are (finitely supported) probability distributions
over (already constructed) formulas. In general,
given T : Set — Set, the induced language L£(T)
contains the formula V® € £ whenever ® € TL,
the semantics of which is given by relation lifting.
If (C,7) is a T-coalgebra and ¢ € C, we have that
(C,7),c = V@ iff v(c)T ()P where T lifts the ac-
tion of 1" to relations, and can therefore be applied
to the satisfaction relation =c C' x £(7T') in a mean-
ingful way.

Languages arising in this way are by now well-
developed: Venema presents automata for fixpoint
logics based on the cover modality [12], complete
axiomatisations may be found in [3, 7] and Moss’
original paper [8] establishes the Hennessy-Milner
property.

While the cover modality provides a generic
treatment of many different classes of frames, all
of the above results rely on the assumption that
the functor that defines the frame classes preserves
weak pullbacks which precludes the instantiation
of the generic theory to important examples such
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as (monotone) neighbourhood frames [6] or condi-
tional frames [4]. The conceptual reason for requir-
ing that the underlying endofunctor preserve weak
pullbacks lies at the very heart of the definition of
the semantics of the cover modality: the endofunc-
tor needs to be lifted to relations and weak pull-
back preservation is required to ensure functoriality
of this lifting.

The question of possible ways to extend the
treatment of the cover modality to classes of (coal-
gebraic) frames without requiring the preservation
of weak pullbacks has so far remained open. Taking
formulas to be elements of the final sequence of the
underlying endofunctor removes the requirement for
weak pullback preservation [9], but does not pro-
vide a syntactial notion of modal operator. Other
advances have been made for monotone neighbour-
hood frames [11] (where weak pullback preserva-
tion fails) by means of changing the definition of
relation lifting, however it seems difficult to obtain
a generalisation to arbitrary classes of frames.

Here, we take a different approach. Given that
the extension of an arbitrary endofunctor 7" : Set —
Set to relations is problematic, we argue that the se-
mantics of modal formulas should not be defined by
extending 1" to relations, but simply by applying T’
to functions, where logical properties can be derived
in terms of the functor laws. Rather than defining
the semantics of the cover modality by applying (the
lifting of) T to the satisfaction relation we propose
an alternative semantics that arises by applying T'
to the theory map. In particular, this entails that
logics conceived in this way are no longer mono-
tonic which precludes e.g. fixpoint extensions in the
style of [12]. Our main findings indicate that this
is nonetheless a viable approach that leads to a rich
theory: we are able to establish a Hennessy-Milner
property, a logical distributive law and a complete
tableau calculus without any assumptions on the
endofunctor that defines the underlying frame class.

Syntax, Semantics and Properties

Suppose that 7" : Set — Set is an endofunctor. A
T-frame is a T-coalgebra (C,v) where C' € Set
and v : C - TC is a function. A T-model is
a triple (C,~,m) where (C,v) is a T-frame and
7w : C - P(V) is a valuation (of propositional vari-
ables V). We may assume without loss of generality
that T preserves set-theoretic inclusions and inter-
sections [1, 2] (including empty intersections).



Definition 1. The language induced by T is given
by the grammar

Ly(T)s> ¢ u=p|orp[dvi|-¢| v

where p € V and ® ¢ TP(X) for some finite
set & € Ly(T) and a set V of propositional vari-
ables. If C = (C,~,n) is a T-model and ¢ € C,
then C,c = v® <= T(t) o y(c) = ® where
t =15 : C — P(supp(®)) is the local theory map
defined by t(c¢) = {¢ € supp(®) | C,c £ ¢} and
supp(®) = N{¥ ¢ Ly(T') | & € TV} is the support
of ®.

Applied to Kripke frames and monotone neighbour-
hood frames, we obtain equi-expressive languages
witnessed by the following translations:

Example 2. If T' = P, then T-models are Kripke
models. If £(0O) is the standard modal language, we
have the equivalence on the left below

0¢ = vovv{{¢}}

which states that the theory-set of all successors ei-
ther has to be empty or just contain ¢ itself. Sim-
ilarly over monotone neighbourhood frames (coal-
gebras for 1" = M) and again with the standard, but
now different reading of O we have the equivalence
on the right above, where ag = {{¢}}, a1 = {T}
and 1 denotes upward closure.

The resulting language is invariant under (coalge-
braic) behavioural equivalence and characterises the
latter in case of finitely branching systems.

Proposition 3. IfC = (C,v,7) and D = (D, d,0)
are T'-models then any two behaviourally equivalent
points c € C and d € D have the same logical theory.
If T is finitary then the converse holds as well.

Similarly to the situation with modal languages in
terms of Moss’ cover modality [13], one can es-
tablish that — if 7" maps finite sets to finite sets
— conjunction can be eliminated and negation can
be pushed to atomic propositions. For example
- v ® can be replaced by the disjunction of wW¥
where W ranges over the complement of ¢ under
T. This allows us to view formulae as finite non-
deterministic automata, where disjunctions repre-
sent non-determinism and w-formulas constrain the
behaviour of a system, ultimately leading to a char-
acterisation of £y,(T") in terms of non-deterministic
finite automata.

Proposition 4. Suppose that T’ maps finite sets to fi-
nite sets. Then every formula of L (T) is equivalent
to a formula without conjunctions where negations
only occur in front of atomic propositions.

0¢=w 1t {ao}ve 1 {ag, a1}

For completeness, the situation is particularly pleas-
ant, and is most conveniently described in terms of
a tableau calculus that only consists of invertible
rules. The key here to first remove negations and
conjunctions to obtain a disjunctive formula, which
is satisfiable if and only if each of the local theories
it depends on is satisfiable.

Proposition 5. If'T preserves finite sets, then satisfi-
ability of a formula in L1, (T) can be characterised
by a tableau calculus consisting of invertible rules
only.

We currently investigate to what extent £1,(7') also
admits bisimulation quantifiers, following [11], and
hope to make the relationship to finite automata pre-
cise.
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