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Modal Logic

thus

�A ∧ �(A→ B) → �B
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Justification Logic

thus

r :A ∧ s : (A→ B) → s · r :B
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Syntax of Justification Logic

Logic

JT4CS is a justification counterpart of S4.

Justification terms

t ::= x | c | (t · t) | (t+ t) | !t

Formulas

A ::= p | ¬A | (A→ A) | t :A
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Axioms for JT4CS

all propositional tautologies

t : (A→ C)→ (s :A→ t · s : C) (application)

t :A→ t+ s :A, s :A→ t+ s :A (sum)

t :A→ A (reflection)

t :A→!t : t :A (introspection)
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Deductive System

Constant specification

A constant specification CS is any subset

CS ⊆ {c :A| c is a constant and A is an axiom}.

The deductive system JT4CS consists of the above axioms and the
rules of modus ponens and axiom necessitation.

A A→ B

B

c :A ∈ CS

c :A
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Semantics

Definition (Admissible Evidence Relation)

Let CS be a constant specification. An admissible evidence relation
E is a subset of Tm× Fm such that:

1 if c :A ∈ CS, then (c, A) ∈ E
2 if (s,A) ∈ E or (t, A) ∈ E , then (s+ t, A) ∈ E
3 if (s,A→ B) ∈ E and (t, A) ∈ E , then (s · t, B) ∈ E
4 if (t, A) ∈ E , then (!t, t :A) ∈ E

Definition (Model)

Let CS be a constant specification. A model is a pair M = (E , ν)
where

E is an admissible evidence relation,

ν ⊆ Prop is a valuation.
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Soundness and Completeness

Definition (Satisfaction relation)

Let M = (E , ν) be a model.

1 M 
 F is defined as usual for propositions and boolean
connectives

2 M 
 t :A if and only if
1 (t, A) ∈ E and
2 M 
 A

Theorem

Let CS be a constant specification. A formula A is derivable in
JT4CS if and only if A is valid.
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Decidability

Lemma

Let a finitely axiomatizable logic L be sound and complete with
respect to a class of models C, such that

1 the class C is recursively enumerable, and

2 the binary relation M 
 F between formulae and models
from C is decidable.

Then L is decidable.
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Finitely Generated Models

Definition

1 An evidence base B is a subset of Tm× Fm.

2 EB is the least admissible evidence relation containing B.

Definition (Finitely generated model)

Let CS be a finite constant specification. Let B be a finite
evidence base and ν be a finite valuation. Then we call
MB = (EB, ν) a finitely generated model.

Theorem

1 The satisfaction relation for finitely generated models is
decidable.

2 The class of finitely generated models is recursively
enumerable.
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Φ-Generated Submodel

Definition

Let M = (E , ν) be a model and Φ some set of formulae closed
under subformulae. The Φ-generated submodel M �Φ of M is
defined by (E �Φ, ν �Φ) where

1 E �Φ is the evidence relation generated from the base BΦ
given by (t, F ) ∈ BΦ iff t : F ∈ Φ and (t, F ) ∈ E ,

2 ν �Φ is given by pi ∈ ν �Φ iff pi ∈ Φ and pi ∈ ν.

Lemma

Let M = (E , ν) be a model and Φ be a set of formulae closed
under subformulae. Let M �Φ be the Φ-generated submodel of
M. Then for all formulae F ∈ Φ we have

M �Φ 
 F if and only if M 
 F.
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Decidability

Theorem

Let CS be a finite constant specification. JT4CS is complete with
respect to finitely generated models.

Corollary

JT4CS is decidable for finite constant specifications CS.
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Problem: Infinite Constant Specifications

Be careful
Kuznets: There is a decidable CS such that JT4CS is undecidable.

Theorem

JT4CS is decidable for schematic constant specifications CS.

Admissible evidence relation stores formula schemes.
Use unification in the case of application.
Then E is decidable.
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Problem: D-axiom

D-Axiom: ¬t :⊥ for all terms t

Semantically: (t,⊥) 6∈ E
Question: How to enumerate models?

Use F-models, which combine traditional Kripke-frames with
evidence relation.

There D-axiom corresponds to frame condition and not to a
condition on E
Use filtrations to get finitary F-models

Theorem

JD4CS is decidable for schematic and axiomatically appropriate
constant specifications CS.
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Problem: Negative Introspection

5-axiom: ¬t :A→ ?t : ¬t :A

Semantically: if (t, A) 6∈ E , then (?t,¬t :A) ∈ E
JT45CS only sound wrt. strong models: (t, A) ∈ E =⇒M 
 t :A

Need non-monotone inductive definition to generate models

Show that E and satisfaction relation are decidable

Show that it is decidable whether finitely generated model is strong

Thus finitely generated strong models are recursively enumerable

Show that submodel construction preserves strong models

Theorem

JT45CS is decidable for finite constant specifications CS.
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Thank you!
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