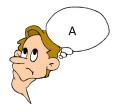
Decidability for Justification Logics Revisited

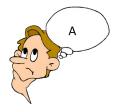
Thomas Studer

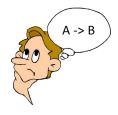
Institute of Computer Science and Applied Mathematics University of Bern Bern, Switzerland

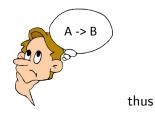
> joint work with Samuel Bucheli, Roman Kuznets

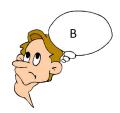
> > September 2011

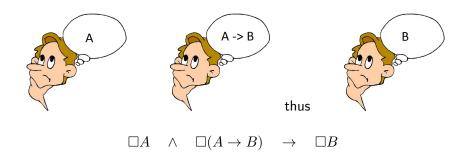


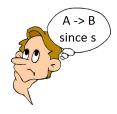


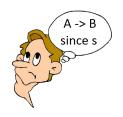




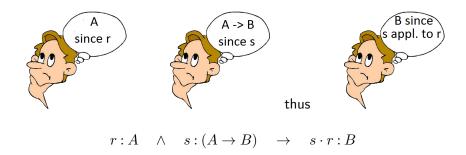








thus



Syntax of Justification Logic

Logic

JT4_{CS} is a justification counterpart of S4.

Justification terms

$$t ::= x \mid c \mid (t \cdot t) \mid (t+t) \mid !t$$

Formulas

$$A ::= p \mid \neg A \mid (A \to A) \mid t : A$$

Axioms for JT4_{CS}

• all propositional tautologies

•
$$t: (A \to C) \to (s: A \to t \cdot s: C)$$
 (application)

$$\bullet \ t:A \to t+s:A, \quad s:A \to t+s:A \tag{sum}$$

•
$$t: A \to A$$
 (reflection)

•
$$t: A \rightarrow !t: t: A$$
 (introspection)

Deductive System

Constant specification

A constant specification CS is any subset

 $\mathsf{CS} \subseteq \{c : A | c \text{ is a constant and } A \text{ is an axiom}\}.$

The deductive system JT4_{CS} consists of the above axioms and the rules of modus ponens and axiom necessitation.

$$\frac{A \quad A \to B}{B}$$

$$c: A \in \mathsf{CS}$$

Semantics

Definition (Admissible Evidence Relation)

Let CS be a constant specification. An admissible evidence relation $\mathcal E$ is a subset of Tm \times Fm such that:

- $\bullet \text{ if } c: A \in CS \text{, then } (c,A) \in \mathcal{E}$
- ② if $(s,A) \in \mathcal{E}$ or $(t,A) \in \mathcal{E}$, then $(s+t,A) \in \mathcal{E}$
- \bullet if $(s, A \to B) \in \mathcal{E}$ and $(t, A) \in \mathcal{E}$, then $(s \cdot t, B) \in \mathcal{E}$
- \bullet if $(t,A) \in \mathcal{E}$, then $(!t,t:A) \in \mathcal{E}$

Definition (Model)

Let CS be a constant specification. A *model* is a pair $\mathcal{M}=(\mathcal{E},\nu)$ where

- \bullet \mathcal{E} is an admissible evidence relation,
- $\nu \subset \mathsf{Prop}$ is a valuation.

Soundness and Completeness

Definition (Satisfaction relation)

Let $\mathcal{M} = (\mathcal{E}, \nu)$ be a model.

- $oldsymbol{0} \mathcal{M} \Vdash F$ is defined as usual for propositions and boolean connectives
- \bigcirc $\mathcal{M} \Vdash t : A$ if and only if
 - $oldsymbol{0}$ $(t,A)\in\mathcal{E}$ and
 - $\mathbf{Q} \quad \mathcal{M} \Vdash A$

Theorem

Let CS be a constant specification. A formula A is derivable in $\mathsf{JT4}_\mathsf{CS}$ if and only if A is valid.

Decidability

Lemma

Let a finitely axiomatizable logic L be sound and complete with respect to a class of models C, such that

- $oldsymbol{0}$ the class $\mathcal C$ is recursively enumerable, and
- **2** the binary relation $\mathcal{M} \Vdash F$ between formulae and models from \mathcal{C} is decidable.

Then L is decidable.

Finitely Generated Models

Definition

- **1** An evidence base \mathcal{B} is a subset of $Tm \times Fm$.
- ${\mathfrak Q}$ ${\mathcal E}_{\mathcal B}$ is the least admissible evidence relation containing ${\mathcal B}$.

Definition (Finitely generated model)

Let CS be a finite constant specification. Let $\mathcal B$ be a finite evidence base and ν be a finite valuation. Then we call $\mathcal M_{\mathcal B}=(\mathcal E_{\mathcal B},\nu)$ a finitely generated model.

Theorem

- The satisfaction relation for finitely generated models is decidable.
- The class of finitely generated models is recursively enumerable.

Φ-Generated Submodel

Definition

Let $\mathcal{M}=(\mathcal{E},\nu)$ be a model and Φ some set of formulae closed under subformulae. The Φ -generated submodel $\mathcal{M} \upharpoonright \Phi$ of \mathcal{M} is defined by $(\mathcal{E} \upharpoonright \Phi, \nu \upharpoonright \Phi)$ where

- $\mathcal{E} \upharpoonright \Phi$ is the evidence relation generated from the base \mathcal{B}_{Φ} given by $(t,F) \in \mathcal{B}_{\Phi}$ iff $t: F \in \Phi$ and $(t,F) \in \mathcal{E}$,
- $\mathbf{Q} \quad \nu \upharpoonright \Phi \text{ is given by } p_i \in \nu \upharpoonright \Phi \text{ iff } p_i \in \Phi \text{ and } p_i \in \nu.$

Lemma

Let $\mathcal{M}=(\mathcal{E},\nu)$ be a model and Φ be a set of formulae closed under subformulae. Let $\mathcal{M} \upharpoonright \Phi$ be the Φ -generated submodel of \mathcal{M} . Then for all formulae $F \in \Phi$ we have

 $\mathcal{M} \upharpoonright \Phi \Vdash F$ if and only if $\mathcal{M} \Vdash F$.

Decidability

Theorem

Let CS be a finite constant specification. JT4_{CS} is complete with respect to finitely generated models.

Corollary

JT4_{CS} is decidable for finite constant specifications CS.

Problem: Infinite Constant Specifications

Be careful

Kuznets: There is a decidable CS such that JT4_{CS} is undecidable.

Problem: Infinite Constant Specifications

Be careful

Kuznets: There is a decidable CS such that JT4_{CS} is undecidable.

Theorem

JT4_{CS} is decidable for schematic constant specifications CS.

Admissible evidence relation stores formula schemes.

Use unification in the case of application.

Then \mathcal{E} is decidable.

Problem: D-axiom

D-Axiom: $\neg t : \bot$ for all terms t

Semantically: $(t, \perp) \not\in \mathcal{E}$

Question: How to enumerate models?

Problem: D-axiom

D-Axiom: $\neg t : \bot$ for all terms t

Semantically: $(t, \perp) \notin \mathcal{E}$

Question: How to enumerate models?

Use F-models, which combine traditional Kripke-frames with evidence relation.

There D-axiom corresponds to frame condition and not to a condition on ${\mathcal E}$

Use filtrations to get finitary F-models

Theorem

JD4_{CS} is decidable for schematic and axiomatically appropriate constant specifications CS.

Problem: Negative Introspection

```
5-axiom: \neg t : A \rightarrow ?t : \neg t : A
```

Semantically: if $(t, A) \not\in \mathcal{E}$, then $(?t, \neg t : A) \in \mathcal{E}$

JT45_{CS} only sound wrt. strong models: $(t,A) \in \mathcal{E} \Longrightarrow \mathcal{M} \Vdash t : A$

Problem: Negative Introspection

5-axiom: $\neg t : A \rightarrow ?t : \neg t : A$

Semantically: if $(t, A) \not\in \mathcal{E}$, then $(?t, \neg t : A) \in \mathcal{E}$

 $\mathsf{JT45}_{\mathsf{CS}} \text{ only sound wrt. strong models: } (t,A) \in \mathcal{E} \Longrightarrow \mathcal{M} \Vdash t : A$

Need non-monotone inductive definition to generate models Show that $\mathcal E$ and satisfaction relation are decidable Show that it is decidable whether finitely generated model is strong Thus finitely generated strong models are recursively enumerable Show that submodel construction preserves strong models

Theorem

JT45_{CS} is decidable for finite constant specifications CS.

Thank you!

