
A few selected topics

Non tutto il male vien per nuocere.1

Italian saying.

1Added in Proof. “Not all bad things come to hurt you”. Refers to an

embarrassing mistake I made in the preceding talk, concerning the example with

the tossing of a coin. In the present talk I took the opportunity to clarify the

notions of satisfiability/consistency in  Lukasiewicz logic which, as I realised also

thanks to my own mistakes in the preceding talk, I had not explained clearly

enough.



Clarifications on satisfiability and consistency in  L

Clarifications on satisfiability and consistency in  L

Notion Definition Description

α is satisfiable ∃w such that w(α) = 1 α is 1-satisfiabile

α is consistent ∃β such that α 6` L β α does not prove smthg.

α is unsatisfiable ∀w we have w(α) < 1 α is not 1-satisfiable

α is inconsistent ∀β we have α ` L β α proves everything

α is strongly unsat. ∀w we have w(α) = 0 α is always false

α is strongly incon. ∀β we have ` L α→ β α implies everything

Added in Proof. The terminology “Strongly unsatisfaible/inconsistent” is

not standard. I only used it for ease of exposition. I do not know of a

standard terminology for these concepts.
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Clarifications on satisfiability and consistency in  L

Deduction Theorem for CL

For any α,β ∈ Form,

α ` β if, and only if, ` α→ β .

The direction ⇒ fails in  L: α ` L α� α, but 6` L α→ α� α.

(Recall that α� β := ¬(α→ ¬β).)

Local Deduction Theorem for  L

For any α,β ∈ Form,

α ` L β if, and only if, ∃n > 1 such that ` L α
n → β .

(Recall that αn := α� · · · � α︸ ︷︷ ︸
n times

.)
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Example. Consider the formula α(X ) = X ∧ ¬X .

Is α satisfiable?

No. There is no evaluation that attributes

value 1 to α.

Is α consistent?

No. α ` L α
2, but ` L α

2 ↔ ⊥, so α ` L ⊥.

Is α unsatisfiable?

Yes. However you evaluate, the result is

< 1.

Is α inconsistent?

Yes. We saw above that it proves ⊥, so it

proves anything by Ex Falso Quodlibet.

Is α strongly unsatisfiable?

No. Evaluate at 1

2
.

Is α strongly inconsistent?

No. 6` L α→ α2.
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Functional completeness

We saw that each formula α(X ) ⊆ Form1 induces a function

α : [0, 1] → [0, 1] by evaluation.

Let us call any such function definable. By the continuity of the

truth functions interpreting connectives, each definable function is

continuous.

Which functions are definable?

In CL logic over n propositional variables all functions

{0, 1}n → {0, 1} are definable; they are called Boolean functions.

This property of CL is called functional completeness.

Is  Lukasiewicz logic over 1 variable functionally complete w.r.t.

functions [0, 1] → [0, 1]?
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Functional completeness

Obviously, it cannot be that all functions [0, 1] → [0, 1] are

definable, e.g. because there are non-continuous functions and we

saw that the  Lukasiewicz connectives are interpreted by continuous

operations.

Nor can it be that all continuous functions [0, 1] → [0, 1] are

definable (why?)

just by cardinality considerations.

To make an educated guess at what the answer is, we need to look

at more examples. (At the board.)

Notation Formal semantics

⊥ w(⊥) = 0

¬α w(¬α) = 1− w(α)

α∨ β w(α∨ β) = max {w(α),w(β)}

α∧ β w(α∧ β) = min {w(α),w(β)}

α⊕ β w(α⊕ β) = min {1,w(α) + w(β)}

Table: Formal semantics of connectives in  Lukasiewicz logic.
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Functional completeness

Definition

A function f : [0, 1] → [0, 1] is piecewise linear if it is continuous,

and there is a finite set {L1, . . . ,Lm } of affine linear functions

Li : R → R, Li (x ) = aix + bi for ai , bi ∈ R, such that, for each

x ∈ [0, 1], f agrees with some Li (depending on x ). If such a

function is such that each ai and bi can be chosen to be integers,

then it is called a Z-map.

A piecewise linear function [0, 1] → R.
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Functional completeness

McNaughton’s Theorem in 1 variable

A function f : [0, 1] → [0, 1] is definable by a formula in

 Lukasiewicz logic if, and only if, it is a Z-map.

By appropriate generalisation of the notion of Z-maps to functions

[0, 1]κ → [0, 1], the theorem extends to arbitrary sets of variables.
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Axiomatising maximal consistent theories

0

1
, 1
1

0

1
, 1
2

0

1
, 1
3

0

1
, 1
4

...

1

4
, 1
3

1

3
, 1
2

1

3
, 2
5

2

5
, 1
2

1

2
, 1
1

1

2
, 2
3

1

2
, 3
5

3

5
, 2
3

2

3
, 1
1

2

3
, 3
4

3

4
, 1
1

...

The Farey tree.
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L0,1 = ¬X1

R0,1 = X1

L1,1 = L0,1 	R0,1

R1,1 = R0,1

L2,1 = L1,1 	R1,1

R2,1 = R1,1

L3,1

R3,1

...

L3,2

R3,2

L2,2 = L1,1

R2,2 = R1,1 	 L1,1

L3,3

R3,3

L3,4

R3,4
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R1,2 = R0,1 	 L0,1

L2,3 = L1,2 	R1,2
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...

The Farey formulæ (related to Schauder bases).

Recall: α	 β = ¬(α→ β); truncated subtraction.
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Cauchy’s Thm. Every rational number in (0, 1) occurs, automatically in

reduced form, as the mediant of the numbers in some node of the Farey

tree exactly once. (Added in proof. The mediant of a

b
and c

d
is a+c

b+d
.)
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Thm. Given any maximal consistent theory Θ in  L (over 1 variable X )

that is not just {X }` L or {¬X }` L , there is exactly one node in the tree

such that there is an integer n > 1 with Θ = {n(L∧R)}` L . Moreover,

this n is unique and equals the denominator of the mediant of the node.
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Where to learn more

A basic but comprehensive introduction to  Lukasiewicz logic and its algebraic

counterpart, MV-algebras:

R. Cignoli, I. D’Ottaviano, and D. Mundici. Algebraic Foundations of

Many-Valued Reasoning, Kluwer Academic Publishers, 2000.

A much more advanced treatment of the mathematics of MV-algebras:

D. Mundici, Advanced MV-algebras and  Lukasiewicz logic, Springer, 2011.

 Lukasiewicz logic is part of the considerably larger hierarchy of Petr Hájek’s

mathematical fuzzy logics:

P. Hájek, Metamathematics of fuzzy logic, Kluwer Academic Publishers,

1998.

And Hájek’s framework is part of the much more extensive familiy of

substructural logics, whose algebraic semantics is given by residuated lattices:

N. Galatos, P. Jipsen, T. Kowalski and H. Ono, Residuated lattices: an

algebraic glimpse at substructural logics, Elsevier, 2007.
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Epilogue: Betting on vague propositions, again

¡

Pierre Fermat (1601 – 1665) Blaise Pascal (1623 – 1662)

Historiographic cliché: Probability theory begins in 1654, with the correspondence

between Fermat and Pascal on the problem of points, proposed to them by the

Chevalier de Méré (born Antoine Gombaud).
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The Fermat-Pascal correspondence. Œuvres de Fermat (ed. Tannery and Henry, Vol. II, p. 288–314, Paris 1894)
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One key primitive notion in probability theory is that of event.

An important tradition in the subject regards probability theory as

an attempt to model the possible outcomes of idealised

experiments.

Thus, in the letter from Fermat to Pascal quoted above, the

experiment is a sequence of eight throws of a die (with faces

numbered from 1 to 6).

The possible outcomes of the experiment are all possible sequences

of points in the eight throws; one such, e.g., is

1, 1, 3, 6, 2, 4, 6, 4 .

The set S of all possible outcomes is called the sample space.

Certain subsets of S (not necessarily all) are then selected as

having special interest for the problem at hand; they form the

collection E of events.
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There is, however, a second approach to the notion of event that

also has a substantial tradition.

It consists in taking propositions as the primitive notion, and in

defining events as a derived notion.

An event is then whatever may be described by a proposition.

Thus, returning to Fermat’s example, the set consisting of the two

sequence of points

1, 1, 1, 1, 1, 1, 1, 1 and 6, 6, 6, 6, 6, 6, 6, 6

corresponds to an event, because it may be described by a

proposition. Say,

“Either one observes, as the outcome of the experiment,

the smallest possible point at each throw, or else one

observes the largest possible point at each throw.”
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Boole on events vs. propositions:

George Boole, An Investigation of The Laws of Thought, pp. 247–248, Dublin 1854
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Keynes on events vs. propositions:

John Maynard Keynes, A Treatise on Probability, p. 5, Cambridge 1920
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This shift of perspective is more than a verbal improvement in that

(i) It fixes a precise language by which events can be described,

(ii)

it allows us to formalise certain knowledge by working modulo a

theory in the logic, and (iii) it makes our intuition about yes/no

events (possibly) more precise, by replacing it with our

logico-linguistic intuition of what a proposition is.

To summarise:

The rôle of logic in the theory of probability is to provide

a formal model for the notion of event.
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Let us now turn to probabilities.

Fix a theory Θ. A probability assignment (relative to Θ) is a

function

P : Form → [0, 1]

that satisfies Kolmogorov’s axioms (in the following equivalent

form):

(K0) P(α) = P(β) whenever Θ ` α↔ β.

(K1) P(⊥) = 0 and P(>) = 1.

(K2) P(α∨ β) = P(α) + P(β) whenever Θ ` (α∧ β) ↔ ⊥.

How do we know that these axioms capture our intuitions about

probability (if any)?
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Consider a finite family of events E = {E1, . . . ,En }, and a function

f : E → [0, 1]. When is f to be considered an assignment of

probabilities?

Two players — Ada (the bookmaker) and Blaise (the bettor) —

wager money on the possible occurrence of the events in E .

Ada sets a betting quotient β(Ei ) ∈ [0, 1] for each Ei ∈ E .

Then Blaise chooses a stake σi ∈ R.

In case σi > 0, Blaise hands σiβ(Ei ) euros to Ada, with the

agreement that σiw(Ei ) euros shall be paid back by Ada to Blaise

after the occurrence (or lack thereof) of of each event is

ascertained.
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True to her palindromic name, though, Ada also accepts reverse

bets. That is, she also accepts Blaise’s negative stakes σi < 0, to

the effect that she must hand |σi |β(Ei ) euros to Blaise, with the

agreement that |σi |w(Ei ) euros shall be paid back by Blaise to

Ada in the possible world w .

Hence, the final balance of Ada’s book β : E → [0, 1] is given by

n∑
i=1

(σiβ(Ei ) − σiw(Ei )) ,

where it is understood that money transfers are oriented so that

‘positive’ means ‘Blaise-to-Ada’.
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Now de Finetti’s Criterion states that Ada’s book should be

rejected (i.e. it is not a rational assignment) if and only if it is

incoherent or Dutch, meaning that Blaise can choose stakes so as

to make Ada suffer a sure loss.

In other words, the book is Dutch if Blaise can choose stakes so

that in any possible world (i.e. whatever the actual truth value of

the events in E is) Ada shall lose strictly more than zero euros in

the final balance.

An assignment of numbers from [0, 1] to the events in E is

coherent if it is not incoherent.
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Now we use the Boole-Keynes idea, and we regard the events in E

simply as a family of formulæ in classical logic. We can assume

without loss of generality that E is closed under deduction, i.e. is a

theory. Now it makes sense to ask whether an assignment of

numbers in [0, 1] to E satisfies Kolmogorov’s axioms in the form

reviewed above.

De Finetti No-Dutch-Book Theorem

Coherent assignments to E are the same thing as assignments that

satisfy Kolmogorov’s axioms.

The theorem provides a fundamental operational explanation of

Kolmogorov’s axioms for finitely additive probabilities.
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Can we do something similar for  Lukasiewicz logic?

Fix a theory Θ in  L. A probability assignment or state (relative to

Θ) is a function

P : Form → [0, 1]

that satisfies:

(K0) P(α) = P(β) whenever Θ ` α↔ β.

(K1) P(⊥) = 0 and P(>) = 1.

(K2) P(α⊕ β) = P(α) + P(β) whenever Θ ` (α� β) ↔ ⊥.
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Consider a finite family of many-valued events E = {E1, . . . ,En },

i.e. propositions in  L, and a function f : E → [0, 1]. Can we give an

operational characterisation of the circumstance that f is a state?

Two players — Ada (the bookmaker) and Blaise (the bettor) —

wager money on the possible occurrence of many-valued events in

E .

Ada sets a betting quotient β(Ei ) ∈ [0, 1] for each Ei ∈ E .

Then Blaise chooses a stake σi ∈ R.

In case σi > 0, Blaise hands σiβ(Ei ) euros to Ada, with the

agreement that σiw(Ei ) euros shall be paid back by Ada to Blaise

after the truth value of each many-valued event is ascertained.
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Ada is still palindromic, and Blaise can ask her to swap rôles by

placing a bet with negative stake.

Hence, the final balance of Ada’s book β : E → [0, 1] is given by

n∑
i=1

(σiβ(Ei ) − σiw(Ei )) ,

where it is understood that money transfers are oriented so that

‘positive’ means ‘Blaise-to-Ada’.
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Now de Finetti’s Criterion (for  L) states that Ada’s book should be

rejected (i.e. it is not a rational assignment) if and only if it is

incoherent or Dutch, meaning that Blaise can choose stakes so as

to make Ada suffer a sure loss.

In other words, the book is Dutch if Blaise can choose stakes so

that in any possible world (i.e. whatever the actual truth value of

the events in E is) Ada shall lose strictly more than zero euros in

the final balance.

An assignment of numbers from [0, 1] to the events in E is

coherent if it is not incoherent.
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We next regard the events in E simply as a family of formulæ in

 Lukasiewicz logic. We can assume without loss of generality that

E is closed under deduction, i.e. is a theory. Now it makes sense to

ask whether an assignment of numbers in [0, 1] to E satisfies the

axioms for states.

De Finetti No-Dutch-Book Theorem for  L

Coherent assignments to E are the same thing as assignments that

satisfy the axioms for states.

The theorem provides a fundamental operational explanation of

the axiom for states. It is the beginning of the (nascent) theory of

probability of events described by formulæ in a non-classical logic.
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Thank you for your attention.
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