A few selected topics

Non tutto il male vien per nuocere.’

Italian saying.

L Added in Proof. “Not all bad things come to hurt you". Refers to an
embarrassing mistake | made in the preceding talk, concerning the example with
the tossing of a coin. In the present talk | took the opportunity to clarify the
notions of satisfiability/consistency in tukasiewicz logic which, as | realised also
thanks to my own mistakes in the preceding talk, | had not explained clearly
enough.
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Added in Proof. The terminology “Strongly unsatisfaible/inconsistent” is

not standard. | only used it for ease of exposition. | do not know of a

standard terminology for these concepts.
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L Clarifications on satisfiability and consistency in L

Clarifications on satisfiability and consistency in L

Notion

|

Definition

|

Description

« is satisfiable

Jw such that w(x) =1

o is 1-satisfiabile

« is consistent

B such that a I/, B

« does not prove smthg.

« is unsatisfiable

Vw we have w(a) < 1

o is not 1-satisfiable

« is inconsistent

V3 we have aH 3

« proves everything

o is strongly unsat.

Vw we have w() =0

« is always false

« is strongly incon.

V(3 we have Fy o — 3

o implies everything

Equivalent in classical logic by the Deduction Theorem.
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Deduction Theorem for CL

For any «, p € FORM,

kB if,andonlyif, Fa—f.
The direction = failsin £: by 6 ® o, but Fp o0 = o © «.
(Recall that x ® B == —(ax — —f).)

Local Deduction Theorem for £

For any «, 3 € FORM,

a by B if, and only if, In > 1 such that H «™ — .

(Recall that a™ :=ax ® -+ ® «.)
—_——

n times
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Example. Consider the formula «(X) =X N—X.

m Is o satisfiable? No. There is no evaluation that attributes
value 1 to «.

m Is o consistent? No. oy o2, but Fy o® « L, so oy L.

m Is « unsatisfiable? Yes. However you evaluate, the result is
< 1.

m Is « inconsistent? Yes. We saw above that it proves L, so it
proves anything by Ex Falso Quodlibet.

m Is « strongly unsatisfiable? No. Evaluate at %

m Is « strongly inconsistent? No. /4 o — 2.
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Functional completeness

We saw that each formula o(X) € FORM; induces a function

«: [0,1] — [0, 1] by evaluation.

Let us call any such function definable. By the continuity of the
truth functions interpreting connectives, each definable function is
continuous.

Which functions are definable?

In CL logic over n propositional variables all functions
{0,1}™ — {0, 1} are definable; they are called Boolean functions.

This property of CL is called functional completeness.
Is Lukasiewicz logic over 1 variable functionally complete w.r.t.
functions [0, 1] — [0, 1]7
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Obviously, it cannot be that all functions [0, 1] — [0, 1] are
definable, e.g. because there are non-continuous functions and we
saw that the tukasiewicz connectives are interpreted by continuous
operations.

Nor can it be that all continuous functions [0,1] — [0, 1] are
definable (why?) just by cardinality considerations.

To make an educated guess at what the answer is, we need to look
at more examples. (At the board.)

’ Notation ‘ Formal semantics ‘
1 w(l)=0
- w(i~a) =1—w(x)
aV B w(aV B) =max{w(x),w(p)}
x AR w(ax A B) = min{w(«), w(p)}
| «@p | w(a®p)=min{l,w(x)+w(p)} |

Table: Formal semantics of connectives in Ltukasiewicz logic.
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A function f: [0,1] — [0, 1] is piecewise linear if it is continuous,

and there is a finite set {L1, ..., Ly} of affine linear functions

L;: R > R, L;(z) = a;z + b; for a;, b; € R, such that, for each
€ [0,1], f agrees with some L; (depending on z). If such a

function is such that each a; and b; can be chosen to be integers,

then it is called a Z-map.
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Definition

A function f: [0,1] — [0, 1] is piecewise linear if it is continuous,

and there is a finite set {L1, ..., Ly} of affine linear functions

L;: R > R, L;(z) = a;z + b; for a;, b; € R, such that, for each
€ [0,1], f agrees with some L; (depending on z). If such a

function is such that each a; and b; can be chosen to be integers,

then it is called a Z-map.

A piecewise linear function [0,1] — R.
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A function f: [0,1] — [0, 1] is definable by a formula in
tukasiewicz logic if, and only if, it is a Z-map.

McNaughton's Theorem in 1 variable

By appropriate generalisation of the notion of Z-maps to functions
[0,1]% — [0, 1], the theorem extends to arbitrary sets of variables.
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Loy =—X1
Ryp =X
— ~
Ly = Lo1© Ro Lip = Loy
Ry =R Rio = Ro10 Lo
e AN e AN
Lyy =L11O Ry Lps =1L Loz =L1pORip Lng =Lip
Ry1 =R Ry =R110L13 Rz =Rip Ryy =R120L1o
/ AN / AN / \ / AN

L3, L3»  Las L3s  Lag L3¢ L3y L3s
R3; R3> Rz R34 Rag R3s Raz R3g

The Farey formulae (related to Schauder bases).

Recall: « © 3 =—(oc — B); truncated subtraction.
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Cauchy’s Thm. Every rational number in (0,1) occurs, automatically in

reduced form, as the mediant of the numbers in some node of the Farey

bra)

tree exactly once. (Added in proof. The mediant of ¢ and £ is
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Ly, =—-Xi
Ry1 =X
— ~
L1y =Lo1© Roa Li» =Ly
Ry =R R = Ro10 Lo
e AN e AN
Lyy =L110OS Ry Loz =1L Los =L1p©Rip Loy = Lo
Ry1 =R Ry =R110L13 HRaz =Rip Rys = Ri120 L1
/ AN / AN / \ / AN
L3, L3a  Las L3s  Lag L3 Ly L
Rs3: R3> Rsp3 R3s  Rzp R3g Ry R3g

Thm. Given any maximal consistent theory © in L (over 1 variable X)
that is not just {X 1} or {=X]}", there is exactly one node in the tree
such that there is an integer n > 1 with ® = {n(L /\ R)}"*. Moreover,

this n is unique and equals the denominator of the mediant of the node.
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Epilogue: Betting on vague propositions, again

Pierre Fermat (1601 — 1665) Blaise Pascal (1623 — 1662)

Historiographic cliché: Probability theory begins in 1654, with the correspondence
between Fermat and Pascal on the problem of points, proposed to them by the

Chevalier de Méré (born Antoine Gombaud).
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(FEUVRES DE FERMAT. — CORRESPONDANCE.

12
7
7z

ANNEE 1654

LXIX.
FERMAT A PASCAL (').
165",
(OFucres de Paseal, 1379, 1V, p. 4{1-4f2.)

Moxsievn,

Si j'entreprends de faire un point avee un seul dé en huit coups; si

nous convenons, apres que Fargent est dans le jen, que je ne jouerai
pas le premier coup, il faut, par mon principe, que je tire du jeu | du
total pour étre désintéressé, i vaison dudit premier coup.

Que si encore nous convenons apres cela que je ne jouerai pas le

seeond coup, je dois, pour mon indemnité, tiver le 6®¢ du restant, qui

The Fermat-Pascal correspondence. (Euvres de Fermat (ed. Tannery and Henry, Vol. I, p. 288-314, Paris 1894)
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awtre méthode bien plus courte et plus nette, que je voudrois vous
pouvairdire iei en peu de mots : car je youdrois désormais vous ouvrir
mon cour, s'il se ponvoit, tant j'ai de joie e voir notre rencontre. Je

vois bien que b véritd est la méme & Toulonse et i Paris.
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Part of Pascal’s reply:

2. Volre méthode est trés-sire et est eclle qui m'est la premiére
venue i la pensée dans eette vecherches; mais, parce que la peine des
combinaisons est exerssive, j'en ai trouvé un abrégé et proprement une
awtre méthode bien plus courte et plus nette, que je voudrois vous
pouvairdire iei en peu de mots : car je youdrois désormais vous ouvrir
mon cour, s'il se ponvoit, tant j'ai de joie e voir notre rencontre. Je

vois bien que b véritd est la méme & Toulonse et i Paris.

“l see the truth is the same in Toulouse as in Paris.”

Neither Pascal nor Fermat explicitly bring logic to bear on probability.
What does logic have to do with the theory of probability?
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One key primitive notion in probability theory is that of event.

An important tradition in the subject regards probability theory as
an attempt to model the possible outcomes of idealised
experiments.

Thus, in the letter from Fermat to Pascal quoted above, the
experiment is a sequence of eight throws of a die (with faces
numbered from 1 to 6).

The possible outcomes of the experiment are all possible sequences
of points in the eight throws; one such, e.g., is

1,1,3,6,2,4,6,4 .

The set S of all possible outcomes is called the sample space.
Certain subsets of S (not necessarily all) are then selected as
having special interest for the problem at hand; they form the
collection & of events.
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There is, however, a second approach to the notion of event that
also has a substantial tradition.

It consists in taking propositions as the primitive notion, and in
defining events as a derived notion.

An event is then whatever may be described by a proposition.

Thus, returning to Fermat's example, the set consisting of the two
sequence of points

1,1,1,1,1,1,1,1 and 6,6,6,6,6,6,6,6

corresponds to an event, because it may be described by a
proposition. Say,
“Either one observes, as the outcome of the experiment,
the smallest possible point at each throw, or else one
observes the largest possible point at each throw.”
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Boole on events vs. propositions:

6. Betore we proceed to estimate to what extent known me-
thods may be applied to the solution of problems such as the
above, it will be advantageous to notice, that there is another
form under which all questions in the theory of probabilities may
be viewed ; and this form consists in substituting for events the
propositions which assert that those events have occurred, or
will oceur ; and viewing the element of numerical probability as
having reference to the ¢ruth of those prepesitions, not to the oc-

248 OF THE THEORY OF PROBABILITIES, [CHAP. XVI.

currence of the events concerning which they make assertion.

George Boole, An Investigation of The Laws of Thought, pp. 247-248, Dublin 1854
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Keynes on events vs. propositions:

CH. I FUNDAMENTAL IDEAS 5

4. With the term “ event,” which has taken hitherto so im-
portant a place in the phraseology of the subject, I shall dis-
pense altogether.? Writers on Probability have generally dealt
with what they term the * happening” of ““events.” In the
problems which they first studied this did not involve much
departure from common usage. But these expressions are now
used in a way which is vague and ambignous; and it will be
more than a verbal improvement to discuss the truth and the
probability of propositions instead of the occurrence and the
probability of events.?

John Maynard Keynes, A Treatise on Probability, p. 5, Cambridge 1920
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This shift of perspective is more than a verbal improvement in that
(i) It fixes a precise language by which events can be described, (ii)
it allows us to formalise certain knowledge by working modulo a
theory in the logic, and (iii) it makes our intuition about yes/no
events (possibly) more precise, by replacing it with our
logico-linguistic intuition of what a proposition is.

To summarise:
The réle of logic in the theory of probability is to provide
a formal model for the notion of event.
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Let us now turn to probabilities.

Fix a theory ©. A probability assignment (relative to ©) is a

function
P: ForM — [0,1]

that satisfies Kolmogorov's axioms (in the following equivalent
form):

(K0) P(x) = P(p) whenever © - o « f3.

(K1) P(L)=0and P(T)=1.

(K2) P(aVB)=P(x)+ P(P) whenever ® - (ax A B) > L.

How do we know that these axioms capture our intuitions about
probability (if any)?
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The Ramsey-de Finetti Dutch book argument (1926, 1937), along
with its later utility-based version by L. Savage (1954), provides
one possible answer.

Frank P. Ramsey (1903 —1930) Bruno de Finetti (1906 - 1985)
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Consider a finite family of events & ={FE1,..., E,}, and a function
f: & — [0,1]. When is f to be considered an assignment of
probabilities?

Two players — Ada (the bookmaker) and Blaise (the bettor) —
wager money on the possible occurrence of the events in &.

Ada sets a betting quotient B(E;) € [0, 1] for each E; € &.

Then Blaise chooses a stake o; € R.

In case 0; > 0, Blaise hands 0;3(E;) euros to Ada, with the
agreement that o;w(F;) euros shall be paid back by Ada to Blaise
after the occurrence (or lack thereof) of of each event is
ascertained.
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True to her palindromic name, though, Ada also accepts reverse
bets. That is, she also accepts Blaise's negative stakes 0; < 0, to
the effect that she must hand |o;|3(E;) euros to Blaise, with the
agreement that |o;|w(E;) euros shall be paid back by Blaise to
Ada in the possible world w.
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bets. That is, she also accepts Blaise's negative stakes 0; < 0, to
the effect that she must hand |o;|3(E;) euros to Blaise, with the
agreement that |o;|w(E;) euros shall be paid back by Blaise to
Ada in the possible world w.

Hence, the final balance of Ada's book 3: & — [0, 1] is given by

n

Y (0iB(B:) — oyw(Ey))

1=1

where it is understood that money transfers are oriented so that
‘positive’ means ‘Blaise-to-Ada’.
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Now we use the Boole-Keynes idea, and we regard the events in &
simply as a family of formula in classical logic. We can assume
without loss of generality that & is closed under deduction, i.e. is a
theory. Now it makes sense to ask whether an assignment of
numbers in [0, 1] to & satisfies Kolmogorov's axioms in the form
reviewed above.

De Finetti No-Dutch-Book Theorem

Coherent assignments to & are the same thing as assignments that

satisfy Kolmogorov's axioms.

The theorem provides a fundamental operational explanation of
Kolmogorov's axioms for finitely additive probabilities.
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Can we do something similar for tukasiewicz logic?

Fix a theory © in £. A probability assignment or state (relative to
©) is a function
P: ForM — [0,1]
that satisfies:
(KO) P() = P(B) whenever O - « < {.
(K1) P(L)=0and P(T)=1.
(K2) P(o@® B) = P(ot) + P(B) whenever © F (x © B) ¢« L.
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wager money on the possible occurrence of many-valued events in
&.

Ada sets a betting quotient B(E;) € [0, 1] for each E; € &.

Then Blaise chooses a stake o; € R.

In case 0; > 0, Blaise hands o;3(E;) euros to Ada, with the
agreement that o;w(E;) euros shall be paid back by Ada to Blaise
after the truth value of each many-valued event is ascertained.
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We next regard the events in & simply as a family of formulae in
tukasiewicz logic. We can assume without loss of generality that
& is closed under deduction, i.e. is a theory. Now it makes sense to
ask whether an assignment of numbers in [0, 1] to & satisfies the
axioms for states.

De Finetti No-Dutch-Book Theorem for £

Coherent assignments to & are the same thing as assignments that
satisfy the axioms for states.

The theorem provides a fundamental operational explanation of
the axiom for states. It is the beginning of the (nascent) theory of
probability of events described by formulae in a non-classical logic.
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Thank you for your attention.
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