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Maximal consistent Theories

Motivation: What can logic teach us about the world?



Maximal consistent Theories

Logic is exclusively concerned with the form of an argument, not

with its content.

Suppose

p := “The coin lands heads” ,

q := “The coin lands tails” .

Then it is intuitively obvious that “Either p or q” must be true.

So can we prove ` p ∨ q ?

Of course not: 6` p ∨ q (by soundness). Our formal system does

not know of our intended interpretation of p and q : they are just

two atomic propositional formulæ.

Now set S = {p ↔ ¬q}. Now obviously ` p ∨ q , under the

additional set of assumptions S .

Notation. S ` α , S ` L α.
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Maximal consistent Theories

Question. What is it that such a set S of assumptions encodes?

(Draw possible worlds at the board: only two possible worlds are left —

w(p) = 0 and w(q) = 1, or conversely — out of the original 4 for p and

q .)

Answer. Your knowledge about the world. (In this case, that either

the coin lands heads, or it lands tails, and tertium non datur.)

Question. Does S encode complete knowledge about the world?1

Answer. No, because the knowledge encoded by S can be

properly increased without precipitating inconsistency. (For

example, you may know that p is necessarily the case, perhaps because

the coin is fake and bears two heads, or because we are talking about a

toss that actually happened yesterday, or because you foresee the future.)

Maximal consistent extension of S :

S ∪ {p} , S ∪ {q} .

1For our present purposes, all that the world actually cares about is whether

the coin lands heads or tails.
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Maximal consistent Theories

Now a more systematic development of these ideas.

A theory in CL (or any logic) is any set of formulæ that is closed

under provability, i.e. is deductively closed.

For any S ⊆ Form, the smallest theory that extends S exists: it is

the deductive closure S` of S , defined by α ∈ S` if, and only if,

S ` α.

In particular, then, ∅` = Thm.

A theory Θ is consistent if Θ 6= Form, and inconsistent otherwise.

The theory Θ is maximally consistent, or maximal consistent, or

even just maximal, if it is consistent, and whenever α ∈ Form is

such that α 6∈ Θ, then (Θ ∪ {α})` = Form.
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Maximal consistent Theories

It is customary to extend this terminology to arbitrary sets of

formulæ.

Thus, S ⊆ Form is consistent if S` 6= Form, and inconsistent

otherwise.

Further, S is maximal consistent if it is consistent, and whenever

α ∈ Form is not in S`, then S ∪ {α} is inconsistent.

Easy Facts.

(In classical logic.) For any S ⊆ Form, TFAE:

1 S is consistent.

2 S 6` ⊥.

Also, TFAE:

1 S is maximal consistent.

2 For any α ∈ Form, either S ` α or S ` ¬α, but not both.
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Maximal consistent Theories

The following item of historical interest was proved by Lindenbaum.

Lindenbaum’s Lemma.

(In classical logic.) For any consistent set S ⊂ Form, there exists

a maximal consistent theory Θ such that Θ ⊇ S .

This lemma is non-constructive; its proof uses the Axiom of

Choice.2

2Added in Proof. The original version of these slides contained an example

which I said would illustrate the fact that non-constructive principles can entail

ontological assumptions, such as “There exists at least one possible world”.

The example was wrong: its correction needs a subtle adjustment which I prefer

not to discuss here, given that the whole discussion is an aside. I thank Tadeusz

Litak for helping me clarify the issues involved, after my talk.



Maximal consistent Theories

The following item of historical interest was proved by Lindenbaum.

Lindenbaum’s Lemma.

(In classical logic.) For any consistent set S ⊂ Form, there exists

a maximal consistent theory Θ such that Θ ⊇ S .

This lemma is non-constructive; its proof uses the Axiom of

Choice.2

2Added in Proof. The original version of these slides contained an example

which I said would illustrate the fact that non-constructive principles can entail

ontological assumptions, such as “There exists at least one possible world”.

The example was wrong: its correction needs a subtle adjustment which I prefer

not to discuss here, given that the whole discussion is an aside. I thank Tadeusz

Litak for helping me clarify the issues involved, after my talk.



Maximal consistent Theories

The following item of historical interest was proved by Lindenbaum.

Lindenbaum’s Lemma.

(In classical logic.) For any consistent set S ⊂ Form, there exists

a maximal consistent theory Θ such that Θ ⊇ S .

This lemma is non-constructive; its proof uses the Axiom of

Choice.2

2Added in Proof. The original version of these slides contained an example

which I said would illustrate the fact that non-constructive principles can entail

ontological assumptions, such as “There exists at least one possible world”.

The example was wrong: its correction needs a subtle adjustment which I prefer

not to discuss here, given that the whole discussion is an aside. I thank Tadeusz

Litak for helping me clarify the issues involved, after my talk.



Maximal consistent Theories

There is a semantic counterpart to S ` α and S` .

If S ⊆ Form is any set, a set α is a semantic consequence of S if

any assignment w : Form → {0, 1} such that w(S) = {1} is such

that w(α) = 1.

We write S� for the closure of S under semantic consequence.
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Maximal consistent Theories

Strong Completeness Theorem for CL

For any α ∈ Form, and any set S ⊆ Form,

S � α if, and only if, S ` α .

That is,

S� = S` .

(Similarly for n variables.)



Maximal consistent Theories

Three key points about the rôle of logic.

1. Logic can teach us nothing (factual).

2. Logic can model the factual (synthetic, extra-logical) knowledge

that an agent already has about the world by encoding it into a

consistent theory.

3. Maximal consistent theories then precisely encode complete

knowledge of an agent about the world, and they determine the

(unique) world wherein the agent is.
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Maximal consistent Theories

The notions related to theories that we have introduced are

immediately adapted to  Lukasiewicz logic. So we can talk about:

Theories.

Consistent and inconsistent theories.

Syntactic and syntactic consequences of arbitrary sets of

formulæ.

Notation:

S � L α , S� L .

S ` L α , S` L .
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Maximal consistent Theories

 Lukasiewicz logic fails strong completeness.

Let S ⊆ Form1 be the set of formulæ:

ϕn(p) := ((n + 1)(pn ∧ ¬p))⊕ pn+1 ,

for each integer n > 1, where

pk := p � · · · � p︸ ︷︷ ︸
k times

,

kp := p ⊕ · · · ⊕ p︸ ︷︷ ︸
k times

.

Then S 6` L p, but S � L p.
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Maximal consistent Theories

To prove this we need to think of ϕ ∈ Form1 as a function

ϕ : [0, 1] → [0, 1].

Given x ∈ [0, 1], consider the (unique, by compositionality) p.w.

wx : Form1 → [0, 1] such that wx (p) = x , and set

ϕ(x ) = wx (ϕ) .

Notation Formal semantics

¬α w(¬α) = 1− w(α)

α∧ β w(α∧ β) = min {w(α),w(β)}

α⊕ β w(α⊕ β) = min {1,w(α) + w(β)}

α� β w(α� β) = max {0,w(α) + w(β) − 1}

Table: Formal semantics of connectives in  Lukasiewicz logic.
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Maximal consistent Theories

Not all hope is lost.

Theories are sets of formulæ, though not arbitrary ones; it turns

out that they can have arbitrarily bad recursion-theoretic

properties, in general.

E.g. a theory can be decidable, recursively enumerable but not

decidable (=semidecidable), undecidable, etc.

Those theories that can be “described by a finite amount of

information” are especially important.

A theory Θ is axiomatised by a set S ⊆ Form of formulæ if it so

happens that Θ = S`; and Θ is finitely axiomatisable if S can be

chosen finite.

Exactly the same definitions apply to  Lukasiewicz logic.
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Completeness Theorem for f.a. theories in  L

For any α ∈ Form, and any finite set F ⊆ Form,

F � L α if, and only if, F ` L α .

That is,

F� L = F` L .

(Similarly for n variables.)
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Completeness Theorem for maximal theories in  L

For any α ∈ Form, and any maximal consistent set M ⊆ Form,

M � L α if, and only if, M ` L α .

That is,
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(Similarly for n variables.)



Maximal consistent Theories

Taking stock:

Semantic intuition about maximal consistent theories

If Θ is a m.c. theory in CL, then Θ ` Xi or Θ ` ¬Xi (but not

both), so Θ uniquely determines a possible world.

Conversely: If Θw = {α ∈ Form | w(α) = 1}, then Θ is a m.c.

theory in CL.

In classical logic, maximal consistent theories are the syntactic

counterpart to possible worlds.
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Artificial precision, revisited

Back to the philosopher’s coat.

Consider the vague proposition

X := X1 : “Phil’s coat is red.”

Let us regard X as an atomic proposition in  Lukasiewicz logic. Its

intended semantics, or intended model, is the sentence in quotes –

it is not a number, as you can plainly see.

To focus on the core of the matter, let us restrict attention to

 Lukasiewicz logic over the one variable X .

Just as in the previous case of tossing a coin, if all we know about

X is that it is a propositional variable, the story is over.

For the only formulæ α(X ) that will be provable are analytic

truths (relative to  Lukasiewicz logic), which by their very nature

are absolutely uninformative about the colour of Phil’s coat.
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Artificial precision, revisited

At the other extreme, let us assume that we have complete

knowledge of the contingent facts α(X ) concerning X that hold in

the intended model.

That means that we are given a maximally consistent theory Θ

over  Lukasiewicz logic.

If  Lukasiewicz logic indeed is a logic of vagueness, then the

maximally consistent theory Θ is to be thought of as a complete

precisification of our intended (vague) model, namely, of the

English sentence “Phil’s coat is red.”

But where could such a maximal consistent theory Θ come from?



Artificial precision, revisited

At the other extreme, let us assume that we have complete

knowledge of the contingent facts α(X ) concerning X that hold in

the intended model.

That means that we are given a maximally consistent theory Θ

over  Lukasiewicz logic.

If  Lukasiewicz logic indeed is a logic of vagueness, then the

maximally consistent theory Θ is to be thought of as a complete

precisification of our intended (vague) model, namely, of the

English sentence “Phil’s coat is red.”

But where could such a maximal consistent theory Θ come from?



Artificial precision, revisited

At the other extreme, let us assume that we have complete

knowledge of the contingent facts α(X ) concerning X that hold in

the intended model.

That means that we are given a maximally consistent theory Θ

over  Lukasiewicz logic.

If  Lukasiewicz logic indeed is a logic of vagueness, then the

maximally consistent theory Θ is to be thought of as a complete

precisification of our intended (vague) model, namely, of the

English sentence “Phil’s coat is red.”

But where could such a maximal consistent theory Θ come from?



Artificial precision, revisited

At the other extreme, let us assume that we have complete

knowledge of the contingent facts α(X ) concerning X that hold in

the intended model.

That means that we are given a maximally consistent theory Θ

over  Lukasiewicz logic.

If  Lukasiewicz logic indeed is a logic of vagueness, then the

maximally consistent theory Θ is to be thought of as a complete

precisification of our intended (vague) model, namely, of the

English sentence “Phil’s coat is red.”

But where could such a maximal consistent theory Θ come from?



Artificial precision, revisited

It comes from the extra-logical assumption

“ ‘Phil’s coat coat is red’ is true to degree r ∈ [0, 1] ”

Specifically, this is a semantic assumption: it tells us that certain

states of affairs, while perhaps logically consistent, are known (or

assumed) not to be the case.

It is reasonable to expect that the assumption is maximally strong,

falling short only of the strongest, inconsistent assumption

according to which everything is the case. For observe that the

stronger an assumption is, the fewer models it has, i.e. the fewer

are the possible worlds that are consistent with it. Now the

assumption “ ‘ My coat is red’ is true to degree r ” leaves us with

just one possible world consistent with it, namely, the one world in

which my coat is red to degree exactly r .
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All this is mathematically summarised as follows:

Θr = {α(X ) ∈ Form1 | wr (α(X )) = 1} ,

where wr : Form1 → [0, 1] is the only possible world such that

wr (X ) = r .

The formulæ in Θr that are not analytic truths are precisely those

synthetic, factual truths about the colour of Phil’s coat that the

semantic assumption w(X1) = r entails, and that  Lukasiewicz

logic is able to express syntactically.

In other words, the theory Θr attempts to encode our semantic

assumption about Phil’s coat at the syntactic level, with the formal

linguistic resources of  Lukasiewicz logic.

Fact: Θr is a maximal consistent theory.
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Key Question. Is the semantic assumption “ ‘Phil’s coat coat is

red’ is true to degree r” precisely equivalent to the set of syntactic

assumption Θr?

Theorem (Proof reducible to Hölder’s Theorem, 1901)

The correspondence

r 7−→ Θr

yields a bijection between maximal consistent theories in

 Lukasiewicz logic over one variable, and real numbers r ∈ [0, 1].

The innocent-looking  Lukasiewicz axioms characterise the real

numbers.
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The correspondence

r 7−→ Θr

yields a bijection between maximal consistent theories in

 Lukasiewicz logic over one variable, and real numbers r ∈ [0, 1].

The innocent-looking  Lukasiewicz axioms characterise the real

numbers.



Artificial precision, revisited

Θ(1) = {X }`. (“Phil’s coat is red” is true to degree 1 if and

only if Phil’s coat is red.)

Θ(0) = { ¬X }`. (“Phil’s coat is red” is true to degree 0 if

and only if Phil’s coat is not red.)

Θ(1
2
) = { 2(X ∧ ¬X ) }`.

(. . . )

Θ(2
3
) = { 3( (X ∧ ¬X )∧ ¬(X → (X ∧ ¬X ) ) ) }`.

(. . . )

Θ(r) is finitely axiomatisable if and only if r is a rational

number.

Solving the problem of artificial precision completely means

filling in the ellipses in natural language.
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Thank you for your attention.
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