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Motivation: What can logic teach us about the world?
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Logic is exclusively concerned with the form of an argument, not
with its content.

Suppose

p := “The coin lands heads” ,

g := “The coin lands tails” .

Then it is intuitively obvious that “Either p or ¢" must be true.
So can we prove - pV g7

Of course not: I p V' ¢ (by soundness). Our formal system does
not know of our intended interpretation of p and g: they are just
two atomic propositional formulz.

Now set S ={p <> —q}. Now obviously - p \V g, under the
additional set of assumptions S.

Notation. SFoa , Sk «.
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Question. What is it that such a set S of assumptions encodes?

(Draw possible worlds at the board: only two possible worlds are left —
w(p) =0 and w(g) = 1, or conversely — out of the original 4 for p and
q.)

Answer. Your knowledge about the world. (In this case, that either
the coin lands heads, or it lands tails, and tertium non datur.)

Question. Does S encode complete knowledge about the world?*
Answer. No, because the knowledge encoded by S can be
properly increased without precipitating inconsistency. (For

example, you may know that p is necessarily the case, perhaps because
the coin is fake and bears two heads, or because we are talking about a

toss that actually happened yesterday, or because you foresee the future.)

Maximal consistent extension of S

Su{p} , SU{g.
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Now a more systematic development of these ideas.

A theory in CL (or any logic) is any set of formulae that is closed
under provability, i.e. is deductively closed.

For any S C FORM, the smallest theory that extends S exists: it is
the deductive closure 8™ of S, defined by o € S" if, and only if,
Sk«

In particular, then, §© = THM.

A theory © is consistent if @ # FORM, and inconsistent otherwise.
The theory © is maximally consistent, or maximal consistent, or

even just maximal, if it is consistent, and whenever « € FORM is
such that o & ©, then (@ U {«})" = FORM.
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It is customary to extend this terminology to arbitrary sets of
formulze.

Thus, S C FORM is consistent if S© # ForM, and inconsistent
otherwise.

Further, S is maximal consistent if it is consistent, and whenever
o € FORM is not in S©, then S U{aJ} is inconsistent.

Easy Facts.

(In classical logic.) For any S C ForM, TFAE:
S is consistent.
S L.

Also, TFAE:
S is maximal consistent.

For any « € FORM, either S « or S = —«, but not both.
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The following item of historical interest was proved by Lindenbaum.

Lindenbaum’s Lemma.

(In classical logic.) For any consistent set S C FORM, there exists
a maximal consistent theory © such that ® O S.

This lemma is non-constructive; its proof uses the Axiom of
Choice.?

2 Added in Proof. The original version of these slides contained an example
which | said would illustrate the fact that non-constructive principles can entail
ontological assumptions, such as “There exists at least one possible world" .
The example was wrong: its correction needs a subtle adjustment which | prefer
not to discuss here, given that the whole discussion is an aside. | thank Tadeusz
Litak for helping me clarify the issues involved, after my talk.
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There is a semantic counterpart to S F « and S" .

If S C FORM is any set, a set « is a semantic consequence of S if
any assignment w: FORM — {0, 1} such that w(S) = {1} is such
that w(a) = 1.

We write S© for the closure of S under semantic consequence.
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Strong Completeness Theorem for CL

For any « € FORM, and any set S C FORM,
SE o« if andonlyif, Sk .
That is,
SF=5".

(Similarly for n variables.)
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Three key points about the rdle of logic.

1. Logic can teach us nothing (factual).

2. Logic can model the factual (synthetic, extra-logical) knowledge
that an agent already has about the world by encoding it into a

consistent theory.

3. Maximal consistent theories then precisely encode complete
knowledge of an agent about the world, and they determine the
(unique) world wherein the agent is.
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The notions related to theories that we have introduced are
immediately adapted to tukasiewicz logic. So we can talk about:
m Theories.
m Consistent and inconsistent theories.
m Syntactic and syntactic consequences of arbitrary sets of

formulae.

Notation:
Sk a , ST,

Sk , ST,
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tukasiewicz logic fails strong completeness.

Let S C FORM; be the set of formulz:

¢n(p) == ((n+1)(p" A—p)) ® p™"!,

for each integer n > 1, where

pk:p@Qp)
—

k times
kp=p®---Pp.
—_—

k times

Then Sty p, but S Fy p.
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To prove this we need to think of @ € FORM; as a function
@:[0,1] — [0,1].

Given z € [0, 1], consider the (unique, by compositionality) p.w.
wz: FORM; — [0, 1] such that w,(p) = z, and set

9(z) = ws (o)
] Notation \ Formal semantics ‘
- w(—a) =1—w(x)
x /AP w(a A B) = min{w(a), w(p)}
xd B w(a® ) =min{l, w(x) + w(p)}
x®PB w(a® B) =max{0,w(x) +w(p) — 1}

Table: Formal semantics of connectives in Ltukasiewicz logic.
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S p, but S E p.
(Proof-by-drawing, at the board.)

¢n(p) == ((n+1)(p" A—p)) ® p™'.

Taking stock. - is compact, but F; is not.

Note. S = S Fp « always.

] Notation \ Formal semantics ‘
- w(i~a) =1—w(x)
oa/\ B w(oe A B) =min{w(a), w(p)}
x®p w(a® ) =min{l,w(x) +w(p)}
x®pB w(a® ) =max{0, w(x) +w(p) — 1}

Table: Formal semantics of connectives in Ltukasiewicz logic.
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Not all hope is lost.

Theories are sets of formulae, though not arbitrary ones; it turns
out that they can have arbitrarily bad recursion-theoretic
properties, in general.

E.g. a theory can be decidable, recursively enumerable but not
decidable (=semidecidable), undecidable, etc.

Those theories that can be “described by a finite amount of
information” are especially important.

A theory © is axiomatised by a set S C FORM of formula if it so
happens that ©® = S"; and © is finitely axiomatisable if § can be
chosen finite.

Exactly the same definitions apply to tukasiewicz logic.
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Completeness Theorem for maximal theories in L

For any « € FORM, and any maximal consistent set M C FORM,
ME « if, and only if, Mk «.

That is,
Mt =M.

(Similarly for n variables.)
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Taking stock:
Semantic intuition about maximal consistent theories

If © is a m.c. theory in CL, then ® - X, or © - =X, (but not
both), so © uniquely determines a possible world.

Conversely: If @, ={x € FORM | w(«) = 1}, then © is a m.c.
theory in CL.

In classical logic, maximal consistent theories are the syntactic
counterpart to possible worlds.
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Back to the philosopher’s coat. Consider the vague proposition

X := Xy : “Phil's coat is red.”

Let us regard X as an atomic proposition in tukasiewicz logic. Its
intended semantics, or intended model, is the sentence in quotes —

it is not a number, as you can plainly see.

To focus on the core of the matter, let us restrict attention to
tukasiewicz logic over the one variable X.

Just as in the previous case of tossing a coin, if all we know about
X is that it is a propositional variable, the story is over.

For the only formulae «(X) that will be provable are analytic
truths (relative to tukasiewicz logic), which by their very nature
are absolutely uninformative about the colour of Phil’s coat.



LArtificial precision, revisited

At the other extreme, let us assume that we have complete
knowledge of the contingent facts «(X) concerning X that hold in
the intended model.




LArtificial precision, revisited

At the other extreme, let us assume that we have complete
knowledge of the contingent facts «(X) concerning X that hold in
the intended model.

That means that we are given a maximally consistent theory ©
over tukasiewicz logic.



LArtificial precision, revisited

At the other extreme, let us assume that we have complete
knowledge of the contingent facts «(X) concerning X that hold in
the intended model.

That means that we are given a maximally consistent theory ©
over tukasiewicz logic.

If Lukasiewicz logic indeed is a logic of vagueness, then the
maximally consistent theory © is to be thought of as a complete
precisification of our intended (vague) model, namely, of the
English sentence “Phil's coat is red.”



LArtificial precision, revisited

At the other extreme, let us assume that we have complete
knowledge of the contingent facts «(X) concerning X that hold in
the intended model.

That means that we are given a maximally consistent theory ©
over tukasiewicz logic.

If Lukasiewicz logic indeed is a logic of vagueness, then the
maximally consistent theory © is to be thought of as a complete
precisification of our intended (vague) model, namely, of the
English sentence “Phil's coat is red.”

But where could such a maximal consistent theory ® come from?
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It comes from the extra-logical assumption

“‘Phil's coat coat is red’ is true to degree r € [0, 1]

Specifically, this is a semantic assumption: it tells us that certain
states of affairs, while perhaps logically consistent, are known (or
assumed) not to be the case.

It is reasonable to expect that the assumption is maximally strong,
falling short only of the strongest, inconsistent assumption
according to which everything is the case. For observe that the
stronger an assumption is, the fewer models it has, i.e. the fewer

are the possible worlds that are consistent with it. Now the
assumption “‘My coat is red’ is true to degree r" leaves us with
just one possible world consistent with it, namely, the one world in
which my coat is red to degree exactly r.
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O, :{CX(X) € Formy | ’wT(CX(X)) = 1})

where w,: FORM; — [0, 1] is the only possible world such that
we(X)=r7.

The formulae in @, that are not analytic truths are precisely those
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All this is mathematically summarised as follows:
O, :{CX(X) € Formy | ’wT(CX(X)) = 1})

where w,: FORM; — [0, 1] is the only possible world such that
we(X)=r7.

The formulae in @, that are not analytic truths are precisely those
synthetic, factual truths about the colour of Phil's coat that the
semantic assumption w(X;) = r entails, and that tukasiewicz
logic is able to express syntactically.

In other words, the theory ®, attempts to encode our semantic
assumption about Phil’s coat at the syntactic level, with the formal
linguistic resources of tukasiewicz logic.

Fact: ©, is a maximal consistent theory.
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Key Question. Is the semantic assumption “‘Phil’s coat coat is
red’ is true to degree r" precisely equivalent to the set of syntactic
assumption ©,.7

Theorem (Proof reducible to Holder's Theorem, 1901)

The correspondence
r— O,

yields a bijection between maximal consistent theories in
tukasiewicz logic over one variable, and real numbers r € [0, 1].

The innocent-looking tukasiewicz axioms characterise the real
numbers.
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m O(1) ={X ). (“Phil's coat is red"” is true to degree 1 if and
only if Phil’s coat is red.)

m ©(0) ={—X ). (“Phil's coat is red” is true to degree 0 if
and only if Phil’s coat is not red.)

mO3) ={20XxA=-X)}. (...)

= 0(2) ={ 3( (X A-X)A~(X = (X A=X))) I (...)

m O(7) is finitely axiomatisable if and only if 7 is a rational

number.

Solving the problem of artificial precision completely means
filling in the ellipses in natural language.
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Thank you for your attention.
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