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A review of classical propositional logic

We start with a (finite or infinite) set of propositional variables, or

atomic formulæ, that are to stand for propositions. Say, if we

content ourselves with countably many:

X1,X2, . . . ,Xn , . . . .

(We can use p, q , etc. as a lighter short-hand notation.)

To these

we adjoin two symbols > and ⊥, say, that are to stand for a

proposition that is always true (the verum), and one that is always

false (the falsum), respectively.

To construct compound formulæ we use the logical connectives:

∨, for disjunction (“inclusive or”, Latin vel, unlike Latin aut);

∧, for conjunction (“and”, Latin et);→, for implication (“if. . . then. . . ”, conditional assertions);

¬, for negation (“not”, negative assertions).
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The usual recursive definition of general formulæ now reads as

follows.

> and ⊥ are formulæ.

All propositional variables are formulæ.

If α and β are formulæ, so are (α∨ β), (α∧ β), (α→ β),

and ¬α.

Nothing else is a formula.

Let us write Form for the set of all formulæ constructed over the

countable language X1, . . . ,Xn , . . ., and Formn for the set of

formulæ constructed over the first n propositional variables

X1, . . . ,Xn , at the most.
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A review of classical propositional logic

We now construct a formal semantics in order to interpret formulæ.

Namely, we consider assignments of truth-values, or evaluations, or

interpretations.

These are functions

w : Form→ {0, 1}

subject to the usual conditions (“truth tables”):

w(>) = 1,w(⊥) = 0;

w(α∧ β) = 1 if and only if both w(α) = 1 and w(β) = 1;

w(α∨ β) = 1 if and only if either w(α) = 1 or w(β) = 1 (or

both);

w(α→ β) = 0 if and only if w(α) = 1 and w(β) = 0;

w(¬α) = 1 if and only if w(α) = 0.
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A review of classical propositional logic

A first easy observation about these definitions is that a valuation

w is subject to no restrictions concerning the values it assigns to

propositional variables.

Moreover, it is also apparent that any valuation w is uniquely

determined by such values w(X1), . . . ,w(Xn), . . ..

This is the principle of truth-functionality, or compositionality

(after G. Frege) for classical propositional logic.

Following a well-established tradition going back at least to G. W.

Leibniz, it is useful to think of an evaluation w : Form→ {0, 1} as

a possible world in which each proposition α either holds — i.e.,

w(α) = 1 — or fails to hold – i.e., w(α) = 0.

Because of truth-functionality, then, a classical logician’s world is

something very ethereal indeed: it is uniquely determined by the

collection of true atomic propositions that can be uttered.
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A review of classical propositional logic

Analytic truths, or tautologies after L. Wittgenstein, are now

defined as those formulæ α ∈ Form that are true in every possible

world, i.e. such that w(α) = 1 for any assignment w .

⊥→ α (Ex falso quodlibet)

α∨ ¬α (Tertium non datur)

¬(α∧ ¬α) (Principle of non-contradiction)

¬¬α→ α (Law of double negation)

(¬α→ α)→ α (Consequentia mirabilis)

(α→ β)→ (¬β→ ¬α) (Contraposition)

(α→ β)∨ (β→ α) (Pre-linearity)

Define: Taut ⊆ Form is the set of all tautologies. Similarly for

Tautn ⊆ Formn .

Write: � α to mean α ∈ Taut.
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A review of classical propositional logic

Tautologies are a (formal) semantical notion. Logic is concerned

with the relationship between syntax (the language) and semantics

(the world).

The syntactic counterpart of a tautology is a provable formula,

also called theorem of the logic.

To define provability, we select (with a lot of hindsight) a set of

tautologies, and declare that they are axioms: they count as

provable fomrulæ by definition.

Next we select a set of deduction rules that tell us that if we

already established that formulæ α1, . . . , αn are provable, and

these have a certain shape, then a specific formula β is also a

provable formula.
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Most important deduction rule (only one we use): modus ponens.

α α→ β

β
(mp)

Now we declare that a formula α ∈ Form is provable if there

exists a proof of α, that is, a finite sequence of formulæ α1, . . . , αl

a such that:

αl = α.

Each αi , i < l is either an axiom, or is obtainable from αj

and αk , j , k < i , via an application of modus ponens.

Write: ` α if α is provable. Write: Thm ⊆ Form for the set of

provable formulæ. Similarly for Thmn ⊆ Formn .

We still need to define the axioms.
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Axiom system for classical logic.

(A0) ⊥→ α Ex falso quodlibet.

(A1) α→ (β→ α) A fortiori.

(A2) (α→ β) → ((β→ γ)→ (α→ γ)) Implication is transitive.

(A3) ((α→ β)→ β) → ((β→ α)→ α) ?

(A4) (α→ β) → (¬β→ ¬α) Contraposition.

(A5) (¬α→ α) → α Consequentia Mirabilis.

Upon defining

α∨ β ≡ (α→ β) → β

(A0–A5) read as shown next.
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Axiom system for classical logic.

(A0) ⊥→ α Ex falso quodlibet.

(A1) α→ (β→ α) A fortiori.

(A2) (α→ β) → ((β→ γ)→ (α→ γ)) Implication is transitive.

(A3) (α∨ β) → (β∨ α) Disjunction is commutative.

(A4) (α→ β) → (¬β→ ¬α) Contraposition.

(A5) α∨ ¬α Tertium non datur.

α∨ β ≡ (α→ β) → β

Deduction rule for classical logic.

(R1) α α→β
β Modus ponens.



A review of classical propositional logic

This axiomatisation only uses ⊥, →, and ¬ as primitive

connectives. The remaining ones are definable as:

α∨ β ≡ (α→ β) → β

α∧ β ≡ ¬(¬α∨ ¬β) (De Morgan’s law)

More defined connectives:

α↔ β ≡ (α→ β)∧ (β→ α) (Biconditional)

α	 β ≡ ¬(α→ β) (Difference, or Co-implication)

Exercise. Show that ` ¬¬α→ α. Then pause to appreciate why

proof-theorists develop Gentzen-style calculi to replace Hilbert-style

calculi such as the one above.
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Thm ⊆ Taut .
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Immediate consequence:

Corollary (Decidability of CL)

There is a an algorithm (for definiteness, a Turing machine) that,

on input α ∈ Form, outputs Yes if α ∈ Thm, and No otherwise.

In light of completeness, one such algorithm is: check all possible

{0, 1}-valued assignments to the n variables occurring in α. Since

there is 2n of them, computationally this is a pretty silly algorithm.

An yet, it is hard to do structurally better:

Theorem (S. Cook, 1971; L. Levin, 1973)

The problem of deciding classical logic is co-np-complete.
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Axiom system for  Lukasiewicz logic.

(A0) ⊥→ α Ex falso quodlibet.

(A1) α→ (β→ α) A fortiori.

(A2) (α→ β) → ((β→ γ)→ (α→ γ)) Implication is transitive.

(A3) (α∨ β) → (β∨ α) Disjunction is commutative.

(A4) (α→ β) → (¬β→ ¬α) Contraposition.

(A5) α∨ ¬α Tertium non datur / Consequentia Mirabilis.

Deduction rule for  Lukasiewicz logic.

(R1) α α→β
β Modus ponens.



 Lukasiewicz infinite-valued propositional logic

Axiom system for  Lukasiewicz logic.

(A0) ⊥→ α Ex falso quodlibet.

(A1) α→ (β→ α) A fortiori.

(A2) (α→ β) → ((β→ γ)→ (α→ γ)) Implication is transitive.

(A3) (α∨ β) → (β∨ α) Disjunction is commutative.

(A4) (α→ β) → (¬β→ ¬α) Contraposition.

(A5) α∨ ¬α Tertium non datur / Consequentia Mirabilis.

Deduction rule for  Lukasiewicz logic.

(R1) α α→β
β Modus ponens.



 Lukasiewicz infinite-valued propositional logic

 Lukasiewicz logic can be succinctly described as classical

logic without the Aristotelian law of Tertium non datur,

but with the Ex falso quodlibet law.

Such “succint descriptions” can be polysemous to a surprising

extent indeed.
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 Lukasiewicz logic Intuitionistic logic can be succinctly

described as classical logic without the Aristotelian law of

Tertium non datur, but with the Ex falso quodlibet law.1

Such “succint descriptions” can be polysemous to a surprising

extent indeed.

Moral: The import of removing an axiom from an axiom system

depends on the axiom system itself. In particular, Hilbert-style

systems are of little use to analyse the structural properties of

logics in terms of a specific axiomatisation.

1Almost verbatim from J. Moschovakis, Intuitionistic Logic, The Stanford

Encyclopedia of Philosophy, 2010, Edward N. Zalta (ed.).
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 Lukasiewicz infinite-valued propositional logic

As for CL, we are using {⊥,¬,→} as primitive connectives. We

define ∨,∧,↔,	 as before. It is customary to define more.

Notation Definition Name Idempotent

⊥ – Falsum –

> ¬⊥ Verum –

¬α – Negation –

α→ β – Implication –

α∨ β (α→ β)→ β (Lattice) Disjunction Yes

α∧ β ¬(¬α∨ ¬β) (Lattice) Conjunction Yes

α↔ β (α→ β)∧ (β→ α) Biconditional –

α⊕ β ¬α→ β Strong disjunction No

α� β ¬(α→ ¬β) Strong conjunction No

α	 β ¬(α→ β) Co-implication –

Table: Connectives in  Lukasiewicz logic.
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 Lukasiewicz infinite-valued propositional logic

We now turn to semantics.  Lukasiewicz logic has a many-valued

semantics: specifically, pace Frege, we take [0, 1] ⊆ R as a set of

“truth values”.

A possible world is an assignment

w : Form→ [0, 1]

subject to the following truth-functional conditions for any formulæ

α and β.

w(⊥) = 0.

w(¬α) = 1− w(α).

w(α→ β) =

{
1 if w(α) 6 w(β)

1− (w(α) − w(β)) otherwise.
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Truth-function of  Lukasiewicz implication.

w(α→ β) =

{
1 if w(α) 6 w(β)

1− (w(α) − w(β)) otherwise.
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Truth-function of  Lukasiewicz implication.

w(α→ β) = min {1, 1− (w(α) − w(β))}



 Lukasiewicz infinite-valued propositional logic

Notation Formal semantics

⊥ w(⊥) = 0

> w(>) = 1

¬α w(¬α) = 1− w(α)

α→ β w(α→ β) = min {1, 1− (w(α) − w(β))}

α∨ β w(α∨ β) = max {w(α),w(β)}

α∧ β w(α∧ β) = min {w(α),w(β)}

α↔ β w(α↔ β) = 1− |w(α) − w(β)|

α⊕ β w(α⊕ β) = min {1,w(α) + w(β)}

α� β w(α� β) = max {0,w(α) + w(β) − 1}

α	 β w(α	 β) = max {0,w(α) − w(β)}

Table: Formal semantics of connectives in  Lukasiewicz logic.
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Truth-function of  Lukasiewicz “strong conjunction” �.

(Note: Non-idempotent operation.)

w(α� β) = max {0,w(α) + w(β) − 1}
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As in classical logic, a tautology is a formula α that receives value 1

in every possible world, i.e. for every assignment w : Form→ [0, 1]

it so happens that w(α) = 1. So 1 is the only designated value.

SImilarly, α is provable if it can be derived (in the previous sense)

from the axioms of  Lukasiewicz logic using modus ponens.

Notation.

` L α α is provable.

� L α α is a tautology.

Thm L Set of provable formulæ.

Taut L Set of tautologies.

Similarly for Thm L
n and Taut L

n .
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Easy to show:

Validity or Soundness Theorem for  L

For any α ∈ Form,

` L α implies � L α .

That is,

Thm L ⊆ Taut L .

(Similarly, Thm L
n ⊆ Taut L

n).
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How do  Lukasiewicz theorems and tautologies relate to the

classical ones?

Clearly: Thm L ⊆ Thm, and similarly Thm L
n ⊆ Thmn .

Clearly: Taut L ⊆ Taut, and similarly Taut L
n ⊆ Thmn .

The latter (semantic) inclusion is proper: there is a classical

tautology that is not a  Lukasiewicz tautology, namely, the law of

excluded middle.

6� L p ∨ ¬p

(Proof. Take w(p) = 1

2
.) In fact, we have seen “by construction”

that

 L + (α∨ ¬α) = CL .

The (syntactic) inclusion Thm L ⊆ Thm also is proper. The full

relationship between tautologies and theorems follows from the

next result, a substantial piece of mathematics.



 Lukasiewicz infinite-valued propositional logic

How do  Lukasiewicz theorems and tautologies relate to the

classical ones?

Clearly: Thm L ⊆ Thm, and similarly Thm L
n ⊆ Thmn .

Clearly: Taut L ⊆ Taut, and similarly Taut L
n ⊆ Thmn .

The latter (semantic) inclusion is proper: there is a classical

tautology that is not a  Lukasiewicz tautology, namely, the law of

excluded middle.

6� L p ∨ ¬p

(Proof. Take w(p) = 1

2
.) In fact, we have seen “by construction”

that

 L + (α∨ ¬α) = CL .

The (syntactic) inclusion Thm L ⊆ Thm also is proper. The full

relationship between tautologies and theorems follows from the

next result, a substantial piece of mathematics.



 Lukasiewicz infinite-valued propositional logic

How do  Lukasiewicz theorems and tautologies relate to the

classical ones?

Clearly: Thm L ⊆ Thm, and similarly Thm L
n ⊆ Thmn .

Clearly: Taut L ⊆ Taut, and similarly Taut L
n ⊆ Thmn .

The latter (semantic) inclusion is proper: there is a classical

tautology that is not a  Lukasiewicz tautology, namely, the law of

excluded middle.

6� L p ∨ ¬p

(Proof. Take w(p) = 1

2
.) In fact, we have seen “by construction”

that

 L + (α∨ ¬α) = CL .

The (syntactic) inclusion Thm L ⊆ Thm also is proper. The full

relationship between tautologies and theorems follows from the

next result, a substantial piece of mathematics.



 Lukasiewicz infinite-valued propositional logic

How do  Lukasiewicz theorems and tautologies relate to the

classical ones?

Clearly: Thm L ⊆ Thm, and similarly Thm L
n ⊆ Thmn .

Clearly: Taut L ⊆ Taut, and similarly Taut L
n ⊆ Thmn .

The latter (semantic) inclusion is proper: there is a classical

tautology that is not a  Lukasiewicz tautology, namely, the law of

excluded middle.

6� L p ∨ ¬p

(Proof. Take w(p) = 1

2
.) In fact, we have seen “by construction”

that

 L + (α∨ ¬α) = CL .

The (syntactic) inclusion Thm L ⊆ Thm also is proper. The full

relationship between tautologies and theorems follows from the

next result, a substantial piece of mathematics.



 Lukasiewicz infinite-valued propositional logic

How do  Lukasiewicz theorems and tautologies relate to the

classical ones?

Clearly: Thm L ⊆ Thm, and similarly Thm L
n ⊆ Thmn .

Clearly: Taut L ⊆ Taut, and similarly Taut L
n ⊆ Thmn .

The latter (semantic) inclusion is proper: there is a classical

tautology that is not a  Lukasiewicz tautology, namely, the law of

excluded middle.

6� L p ∨ ¬p

(Proof. Take w(p) = 1

2
.)

In fact, we have seen “by construction”

that

 L + (α∨ ¬α) = CL .

The (syntactic) inclusion Thm L ⊆ Thm also is proper. The full

relationship between tautologies and theorems follows from the

next result, a substantial piece of mathematics.



 Lukasiewicz infinite-valued propositional logic

How do  Lukasiewicz theorems and tautologies relate to the

classical ones?

Clearly: Thm L ⊆ Thm, and similarly Thm L
n ⊆ Thmn .

Clearly: Taut L ⊆ Taut, and similarly Taut L
n ⊆ Thmn .

The latter (semantic) inclusion is proper: there is a classical

tautology that is not a  Lukasiewicz tautology, namely, the law of

excluded middle.

6� L p ∨ ¬p

(Proof. Take w(p) = 1

2
.) In fact, we have seen “by construction”

that

 L + (α∨ ¬α) = CL .

The (syntactic) inclusion Thm L ⊆ Thm also is proper. The full

relationship between tautologies and theorems follows from the

next result, a substantial piece of mathematics.



 Lukasiewicz infinite-valued propositional logic

How do  Lukasiewicz theorems and tautologies relate to the

classical ones?

Clearly: Thm L ⊆ Thm, and similarly Thm L
n ⊆ Thmn .

Clearly: Taut L ⊆ Taut, and similarly Taut L
n ⊆ Thmn .

The latter (semantic) inclusion is proper: there is a classical

tautology that is not a  Lukasiewicz tautology, namely, the law of

excluded middle.

6� L p ∨ ¬p

(Proof. Take w(p) = 1

2
.) In fact, we have seen “by construction”

that

 L + (α∨ ¬α) = CL .

The (syntactic) inclusion Thm L ⊆ Thm also is proper. The full

relationship between tautologies and theorems follows from the

next result, a substantial piece of mathematics.



 Lukasiewicz infinite-valued propositional logic

Completeness Theorem for  L (A. Rose and J. B. Rosser, 1958)

For any α ∈ Form,

� L α implies ` L α .

That is,

Taut L ⊆ Thm L .

(Similarly, Taut L
n ⊆ Thm L

n).
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In summary:

Soundness and Completeness Theorem for  L

For any α ∈ Form,

� L α if, and only if, ` L α .

That is,

Taut L = Thm L .

(Similarly, Taut L
n = Thm L

n).



 Lukasiewicz infinite-valued propositional logic

In summary:

Soundness and Completeness Theorem for  L

For any α ∈ Form,

� L α if, and only if, ` L α .

That is,

Taut L = Thm L .

(Similarly, Taut L
n = Thm L

n).



 Lukasiewicz infinite-valued propositional logic

A consequence, though far from immediate:

Corollary (D. Mundici, 1987)

There is a an algorithm (for definiteness, a Turing machine) that,

on input α ∈ Form, outputs Yes if α ∈ Thm L, and No

otherwise.

But even with completeness, a brute-force check of all [0, 1]-valued

assignments to the n variables in α is impossible. Something

cleverer is needed (we will perhaps hint at a proof later).2

And yet, structurally, the situation is no worse than in the classical

case:

Theorem (D. Mundici, 1987)

The problem of deciding  Lukasiewicz logic is co-np-complete.

2Added in proof. We did not have time to sketch the proof of this result.
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Thank you for your attention.
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