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atomic formulz, that are to stand for propositions. Say, if we
content ourselves with countably many:

X1, Xoy ooy Xnyeen

(We can use p, g, etc. as a lighter short-hand notation.) To these
we adjoin two symbols T and _L, say, that are to stand for a
proposition that is always true (the verum), and one that is always
false (the falsum), respectively.

To construct compound formulae we use the logical connectives:

m V/, for disjunction (“inclusive or”, Latin vel, unlike Latin aut);
m /\, for conjunction (“and”, Latin et);
m —, for implication (“if...then...", conditional assertions);

m —, for negation (“not”, negative assertions).
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The usual recursive definition of general formulee now reads as
follows.

m T and L are formule.
m All propositional variables are formulze.

m If o and B are formula, so are («V B), (x AB), (¢ — B),
and —«.

m Nothing else is a formula.

Let us write FORM for the set of all formulae constructed over the
countable language Xi,...,X,,..., and FORM,, for the set of
formula constructed over the first n propositional variables
X1,...,Xp, at the most.
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We now construct a formal semantics in order to interpret formula.
Namely, we consider assignments of truth-values, or evaluations, or
interpretations.

These are functions

w: ForM — {0, 1}

subject to the usual conditions ( “truth tables”):
mw(T)=1Lw(l)=0;
m w(a/\R)=1if and only if both w(x) =1 and w(p) =1;

B w(xV P)=1if and only if either w(a) =1 or w(B) =1 (or
both);

mw(ox— B)=0ifand only if w(x) =1 and w(p) =0;

m w(—a) =1if and only if w(x)=0.
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A first easy observation about these definitions is that a valuation
w is subject to no restrictions concerning the values it assigns to
propositional variables.

Moreover, it is also apparent that any valuation w is uniquely
determined by such values w(X1),...,w(Xn),....

This is the principle of truth-functionality, or compositionality
(after G. Frege) for classical propositional logic.

Following a well-established tradition going back at least to G. W.
Leibniz, it is useful to think of an evaluation w: FOrRM — {0, 1} as
a possible world in which each proposition « either holds — i.e.,
w(o) =1 — or fails to hold — i.e., w(x) = 0.

Because of truth-functionality, then, a classical logician’s world is
something very ethereal indeed: it is uniquely determined by the
collection of true atomic propositions that can be uttered.
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Analytic truths, or tautologies after L. Wittgenstein, are now
defined as those formulze o« € FORM that are true in every possible
world, i.e. such that w(«) =1 for any assignment w.

Bl o (Ex falso quodlibet)
BV (Tertium non datur)
B (o A\ —x) (Principle of non-contradiction)
B o (Law of double negation)
B (ta—a) = (Consequentia mirabilis)
B (ax—B)— (—p — ) (Contraposition)
B (x> BV - (Pre-linearity)

Define: TAUT C FORM is the set of all tautologies. Similarly for
TAUT,, C FORM,,.
Write: F o to mean o € TAUT.
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Tautologies are a (formal) semantical notion. Logic is concerned
with the relationship between syntax (the language) and semantics
(the world).

The syntactic counterpart of a tautology is a provable formula,
also called theorem of the logic.

To define provability, we select (with a lot of hindsight) a set of
tautologies, and declare that they are axioms: they count as
provable fomrulae by definition.

Next we select a set of deduction rules that tell us that if we

already established that formulee o4, ..., &, are provable, and
these have a certain shape, then a specific formula 3 is also a
provable formula.
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Most important deduction rule (only one we use): modus ponens.

(04 x— P

P

(MP)

Now we declare that a formula & € FORM is provable if there
exists a proof of «, that is, a finite sequence of formule «1,...,
a such that:

B X — X.
m Each «;, @ < [ is either an axiom, or is obtainable from o
and oy, 7,k < 1, via an application of modus ponens.

Write: - o if o is provable. Write: THM C FORM for the set of
provable formulae. Similarly for THM,, C FORM,,.

We still need to define the axioms.
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‘Axiom system for classical Iogic.‘

(A0) L Ex falso quodlibet.
(A1) o B — ) A fortiori.
(A2) (¢ = PB) = ((B—=7v) — (x—7y)) Implication is transitive.
(A3) ((a = B)—=B) = (B — &) = ) ?
(Ad) (x = B) = (7B — ) Contraposition.
(A5) (Fax— ) = « Consequentia Mirabilis.

Upon defining
aVP =(a—=p)— P
(AO-A5) read as shown next.
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‘Axiom system for classical Iogic.‘

Ex falso quodlibet.

A fortiori.

Implication is transitive.
Disjunction is commutative.
Contraposition.

Tertium non datur.

rule for classical logic. ‘

Modus ponens.

(A0) L — «
(Al) = (B — «)
(A2) (« = B) = ((B—=v) = (=)
(A3) («VB) = (BV )
(Ad) (= B) = (=B — —a)
(A5) oV —«
aVB =(x—pB)— P
‘Deduction
(Rl) o B(X*}B
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This axiomatisation only uses 1, —, and — as primitive
connectives. The remaining ones are definable as:

BV = (a—p)— P

BN\ = —(—aV—PB) (De Morgan's law)
More defined connectives:

BaopB = (= BN — o (Biconditional)

BEaopf = —(ax—B) (Difference, or Co-implication)
Exercise. Show that - ==« — «. Then pause to appreciate why

proof-theorists develop Gentzen-style calculi to replace Hilbert-style
calculi such as the one above.
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Easy to show:

Theorem (Validity or Soundness Theorem for CL)

For any « € FORM,
F o implies F «.

That is,
THM C TAUT.

(Similarly, THM,, C TAUT,,).
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For any « € FORM,
FE o implies + «.

That is,
TauT C THM.

(Similarly, TAUT,, C THM,,).



LA review of classical propositional logic

In summary:



LA review of classical propositional logic

In summary:

Theorem (Soundness and Completeness Theorem for CL)

For any « € FORM,
E o if, and only if, F «.

That is,
TAUT = THM.

(Similarly, TAUT,, = THM,,).



LA review of classical propositional logic

Immediate consequence:



LA review of classical propositional logic

Immediate consequence:

Corollary (Decidability of CL)

There is a an algorithm (for definiteness, a Turing machine) that,
on input « € FORM, outputs YES if x € THM, and NO otherwise.



LA review of classical propositional logic

Immediate consequence:

Corollary (Decidability of CL)

There is a an algorithm (for definiteness, a Turing machine) that,
on input « € FORM, outputs YES if x € THM, and NO otherwise.

In light of completeness, one such algorithm is: check all possible
{0, 1}-valued assignments to the n variables occurring in «. Since
there is 2™ of them, computationally this is a pretty silly algorithm.



LA review of classical propositional logic

Immediate consequence:

Corollary (Decidability of CL)

There is a an algorithm (for definiteness, a Turing machine) that,
on input « € FORM, outputs YES if x € THM, and NO otherwise.

In light of completeness, one such algorithm is: check all possible
{0, 1}-valued assignments to the n variables occurring in «. Since
there is 2™ of them, computationally this is a pretty silly algorithm.

An yet, it is hard to do structurally better:

Theorem (S. Cook, 1971; L. Levin, 1973)

The problem of deciding classical logic is co-NP-complete.
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tukasiewicz infinite-valued propositional logic

Jan tukasiewicz, 1878—1956.

The formulae of tukasiewicz logic are the same as the ones in CL:
ForM and FORM,, are as before.



Lt ukasiewicz infinite-valued propositional logic

‘Axiom system for tukasiewicz Iogic.‘

(A0) L — « Ex falso quodlibet.
(Al) ¢ — (B — «) A fortiori.
(A2) (« = B) = (B —7v) = (x—7y)) Implication is transitive.
(A3) (aVB) = (BV«) Disjunction is commutative.
(Ad) (x = PB) = (7B — ) Contraposition.

A5) Tt -  Mirabilie



Lt ukasiewicz infinite-valued propositional logic

‘Axiom system for tukasiewicz Iogic.‘

(A0) L — « Ex falso quodlibet.
(Al) ¢ — (B — «) A fortiori.
(A2) (« = B) = (B —7v) = (x—7y)) Implication is transitive.
(A3) (aVB) = (BV«) Disjunction is commutative.
(Ad) (x = PB) = (7B — ) Contraposition.

(AS) Tt -  Mirabilie

‘ Deduction rule for Lukasiewicz logic. ‘

(R1) & =8 Modus ponens.
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+tukastewiczHogiec Intuitionistic logic can be succinctly

described as classical logic without the Aristotelian law of
Tertium non datur, but with the Ex falso quodlibet law.*

Such “succint descriptions” can be polysemous to a surprising
extent indeed.

Moral: The import of removing an axiom from an axiom system
depends on the axiom system itself. In particular, Hilbert-style
systems are of little use to analyse the structural properties of
logics in terms of a specific axiomatisation.

! Almost verbatim from J. Moschovakis, Intuitionistic Logic, The Stanford
Encyclopedia of Philosophy, 2010, Edward N. Zalta (ed.).
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As for CL, we are using {_L,—, —} as primitive connectives. We
define V, /\, &3, & as before. It is customary to define more.

’ Notation \ Definition \ Name \ Idempotent ‘
1 - Falsum -
T -1 Verum -
- - Negation -

x— B - Implication -
aV B (x—=PB)— B (Lattice) Disjunction Yes
a/\ P —(—aV —B) (Lattice) Conjunction Yes
x e B (x = BIN(P — ) Biconditional -
x®fB —ax—f Strong disjunction No
x®fp —(ax — —B) Strong conjunction No
xS f —(a — B) Co-implication -

Table: Connectives in Lukasiewicz logic.
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We now turn to semantics. tukasiewicz logic has a many-valued
semantics: specifically, pace Frege, we take [0,1] C R as a set of
“truth values”.

A possible world is an assignment

w: ForMm — [0, 1]
subject to the following truth-functional conditions for any formulae
« and f3.
m w(l)=0.
B w(—a)=1—w(a).

(1 if w(o) < w(p)
] w(oc — ﬁ) = { 1— (w(oc) — w(ﬁ)) otherwise.
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Notation Formal semantics
1 w(L)=0
T w(T)=1
- w(—a) =1—w(x
ox— B w(ax — B) =min{l,1 — (w(x) — w(p))}
oV P w(aV B) =max{w(x), w(p)}
a /AP w(o A B) =min{w(a), w(p)}
x B wlae o B)=1—|w(x) —w(B)]
xd w(oe® P) =min{l, w(x) + w(p)}
a® B w(a® B) = max{0, w(a) + w(p) — 1}
xS p w(x © B) = max{0, w(x) — w(p)}

Table: Formal semantics of connectives in tukasiewicz logic.
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-idempotent operation.)

(Note: Non

max {0, w(o) + w(p) — 1}

w(o® )
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As in classical logic, a tautology is a formula o that receives value 1
in every possible world, i.e. for every assignment w: FORM — [0, 1]
it so happens that w(«) = 1. So 1 is the only designated value.

SImilarly, o is provable if it can be derived (in the previous sense)
from the axioms of tukasiewicz logic using modus ponens.

Notation.
B « is provable.
B R « is a tautology.
s Tumt Set of provable formulza.
s Tautt Set of tautologies.

13

n-

= Similarly for Tumt and TauT
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Easy to show:

t

Validity or Soundness Theorem for

For any « € FORM,
Fy o« implies Fp «.

That is,
Tumt C TauTt.

(Similarly, TumE € Tauth).
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How do tukasiewicz theorems and tautologies relate to the
classical ones?

Clearly: Tamt C THM, and similarly THM% C THM,,.
Clearly: TauTt C TAUT, and similarly TAUT*;L C THM,.

The latter (semantic) inclusion is proper: there is a classical
tautology that is not a tukasiewicz tautology, namely, the law of
excluded middle.

oV D

(Proof. Take w(p) = 5.) In fact, we have seen “by construction”
that
L+ (a¢V—a) = CL.

The (syntactic) inclusion TuMt C THM also is proper. The full
relationship between tautologies and theorems follows from the
next result, a substantial piece of mathematics.
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Completeness Theorem for £ (A. Rose and J. B. Rosser, 1958)

For any « € FORM,
Fi o implies +Fy o.

That is,
TavuTtt - THM: .

(Similarly, Tautt C Tumt).
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In summary:

12

Soundness and Completeness Theorem for

For any o € FORM,
Fy « if, and only if, F} «x.
That is,

TAUTE = Tumt.

(Similarly, TauTt = Tumt).
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A consequence, though far from immediate:

Corollary (D. Mundici, 1987)

There is a an algorithm (for definiteness, a Turing machine) that,
on input « € FORM, outputs YES if x € TaMY, and No
otherwise.

But even with completeness, a brute-force check of all [0, 1]-valued
assignments to the n variables in « is impossible. Something
cleverer is needed (we will perhaps hint at a proof later).?

And yet, structurally, the situation is no worse than in the classical
case:

Theorem (D. Mundici, 1987)

The problem of deciding tukasiewicz logic is co-NP-complete.

2 Added in proof. We did not have time to sketch the proof of this result.
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Thank you for your attention.
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