Formal Syntax and Semantics Meets Experimental Results

Some Remarks on the Comprehension of Definite NPs

7th International Symposium on Language, Logic, and Computation Tbilisi, 5th Oct., 2007

Peter Bosch

Institute of Cognitive Science University of Osnabrück

Thanks and acknowledgements

All experiments reported were conducted at the labs of the Institute of Cognitive Science, University of Osnabrück, in collaboration with

Ulrich Ansorge Anke Karabanov
Birgit Bärnreuter Graham Katz
Christina Bergmann Jessica Kempa
Dominique Goltz Maike Kleemaier
Boris Gutbrod Peter König
Nadine Hartmann Florian Krause

The agenda

Intro: Linguistic knowlege & language processing

1 Some experimental findings about processing

- Referential expressions
- Def. determiners (eve-tracking)
- Def. determiners (synt. priming)
- 2 Apparent theoretical problems may sometimes have processing solutions
 - an experiment still to be done
- 3 Conclusions

Relations of cause and effect

Neurolinguistic and psycholinguistic accounts of human language are accounts of <u>language processing</u> and are built on <u>cause-effect relations</u> between physical events:

- temporally preceding events cause subsequent events
- there is no principled distinction between "linguistic" and other events involved in language processing it's all activation of synaptic connections
- events can be monitored electrophysiologically at a granularity of milliseconds

There is no account of "gobal constraints" on these processes that say anything about central theoretical questions of wellformedness, interpretability, or productivity (i.e., <u>linguistic knowledge</u>)

Constituents and structural relations

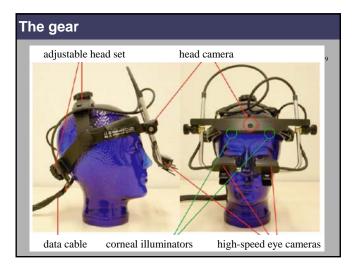
Modern linguistics attempts to account for <u>linguistic</u> <u>knowledge</u> (wellformedness, interpretability, productivity) in terms of <u>structural relations</u> in constituent structure.

- It distinguishes strictly between linguistic knowledge and any other knowledge
- It does not describe language processing nor any other cognitive processes
- Structural derivations are not temporal processes and reflect nothing of the temporal order or complexity of cognitive processes

Some general findings from experimental work

Incrementality & Immediacy & Crossmodality

- successive use of all information in the sequence in which it becomes available, to determine current processor action
- <u>immediate use</u> of all information that can be used,
- inclusion of information from all sources available


Some examples

Eye-Tracking experiments

Syntactic priming & lexical properties

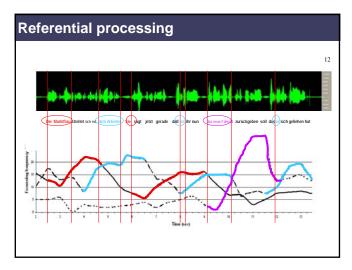
Eye-Tracking

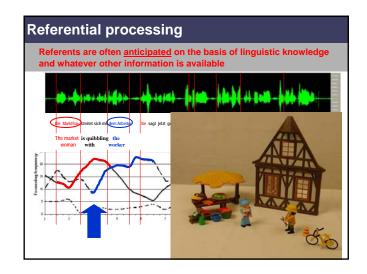
- Participants wear a device on their heads that makes a videotape showing exactly what they're looking at.
- They listen to spoken instructions and carry out various tasks.
- The eye-tracking provides evidence of the cognitive activity of participants that can be correlated with the linguistic input.
- No chance for reflection or intuition to interference

The Paradigm: Visual World and lexical access

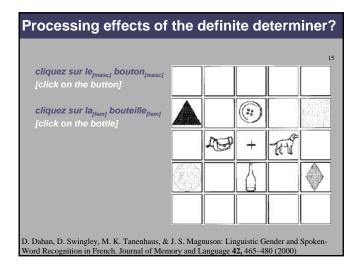
Participants view a panel with typically four drawings of simple objects and they listen to instructions like

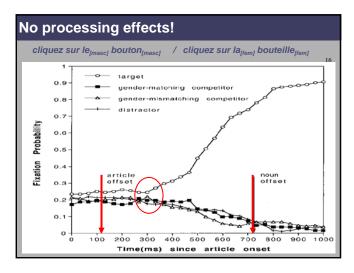
Pick up the {pencil, glass, cup, coin,...}

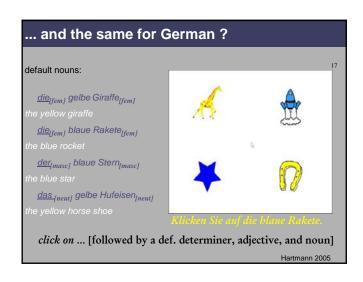

Participants' gaze regularly settles on a referent <u>before</u> the target word is completed,

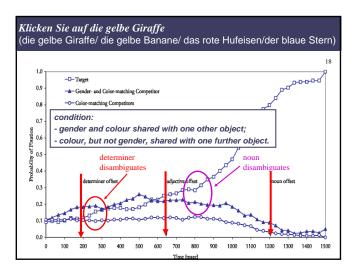

unless the initial syllable of the word was consistent with more than one object in the display. E.g., when both a <u>pencil</u> and a <u>penny</u> were present, participants' gaze rested on the pencil <u>more slowly</u>

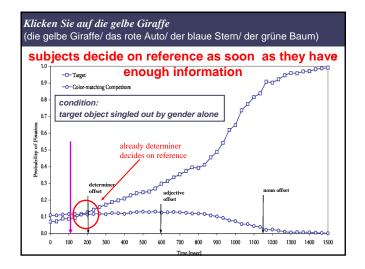
"Action" is taken


as soon as there is enough information








Referential processing What we expect if we take linguistic theory literally: - lexical access, expression by expression, - parsing of string of expressions, - once parsing is complete, for referential constituents: - lexical meaning determines a referent or - reference is resolved anaphorically, etc What we find: - syntactic position, phonology, and frequency information is used to predict/constrain next lexical item - syntactic & semantic properties of lexical item, plus frequency information, predict next argument

What do we learn from this?

Russell says that the definite determiner has no meaning in isolation, but only in the context of a proposition - which literally gives us no meaning for the determiner.

Frege models the denotation of the determiner as a partial function, relative to a domain:

 $\lambda f \in D_{\langle e,t \rangle} \& \exists ! x f(x) = 1. \iota y [f(y) = 1]$

Suppose this is actully part of an entry in the mental lexicon:

Then, as long as f is not known, the determiner still could not have any processing effect.

But does our experiment not demonstrate the contrary?

Ingredients for an explanation

The display limits the <u>choice to four objects</u>, for which <u>linguistic experience</u> provides default nouns, only one of ²¹ which happens to be "gender-congruent" with the determiner. – So the processing effect of the determiner could be explained by assuming

- an entry in the mental lexicon that makes the noun *Stern* [...gen:masc] the default description for [star] instances,
- an identification of exactly one display object as an instance of [star],
- the subsumption of all other display objects under concepts with non-gender-congruent default nouns
- and a lexical entry for *der* including gender information $\lambda f \in D_{<e,t>} \& \exists ! x f(x) \& g(x,masc)=1.\imath y [f(y)=1]$

Ingredients for an explanation

But how much of this is linguistic knowledge?

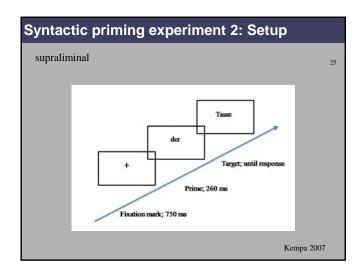
22

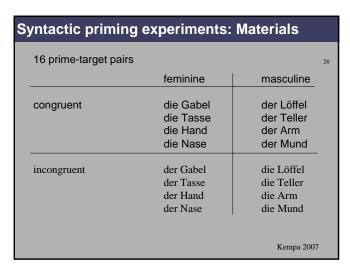
- Linguistic knowledge alone would <u>not</u> explain the observed processing effect.
- an entry in the mental lexicon that makes the noun *Stern* [...gen:masc] the default description for [star] instances,
- an identification of exactly one display object as an instance of [star],
- the subsumption of all other display objects under concepts with non-gender-congruent default nouns
- and a lexical entry for *der* including gender information $\mathcal{M} \in D_{<e,t>} \&\exists ! xf(x)\&g(x,masc)=1.\imath y[f(y)=1]$

The mechanism

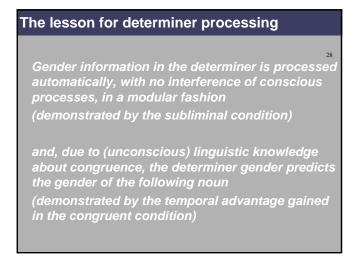
Given this linguistic and non-linguistic information – How is it processed?

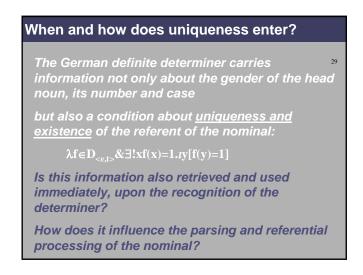
the (Neo-) Gricean way?

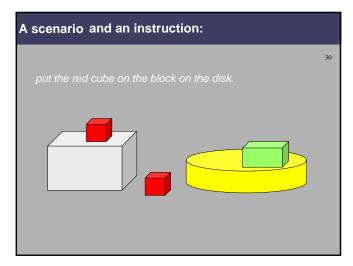

if the speaker believes... then he would...

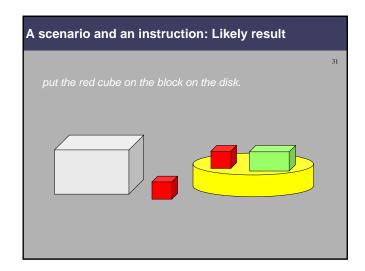

This is unlikely. Given the speed of the effect (100-200 ms), there is no time for reasoning.

23

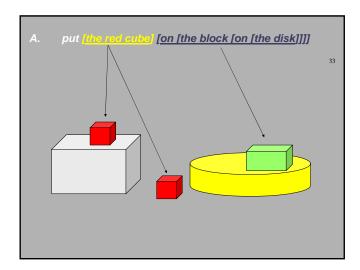

More likely, the process is modular: fast, unconscious, mandatory

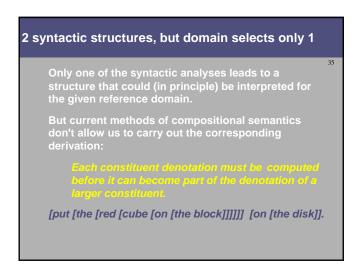

Syntactic priming experiment 1: Setup subliminal Tasse XXX Backward mask; 30 ms Forward mask; 200 ms Fixation mark; 750 ms Kempa 2007

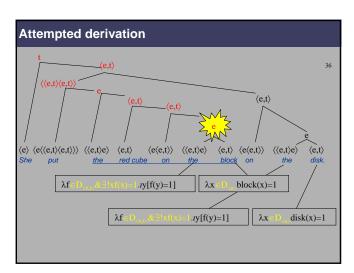


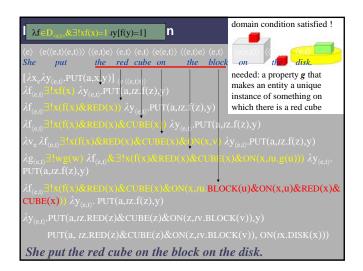


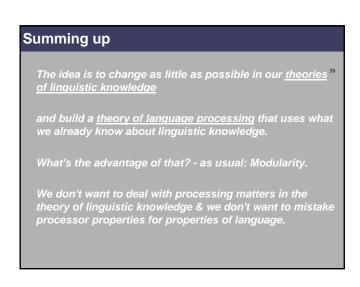
Syntactic priming experiments: Results Average reaction times (from noun onset to button press). congruent incongruent delta subliminal 727 ms 747 ms 20 ms supraliminal 738 ms 787 ms 49 ms Error rates no significant difference between conditions There is a difference between feminine (faster) and masculine (slower) nouns that is probably explained by the syncretism of the definite determiner (Kempa 2007, rough first reporting)

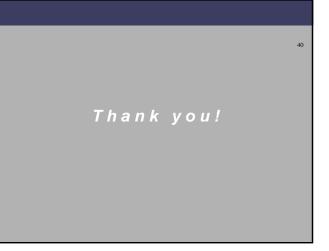












What have we done differently? - no change in lexical entries - no change in other constraints on wellformedness - no change in constituent structure The only deviation from common accounts is in adding to the domain condition of the determiner denotation a description of states of the processor, which records - constraints on reference (to things and concepts) - constraints on the type of information still required for the completion of constituents and in comparing these constraints in each step with the

