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Infinite Games? (1)
fWhat are infinite games? T

We are concerned with two-player perfect information
games of infinitely many rounds.

Morris H. DeGroot, A conversation with David Blackwell, Statistical Science 1 (1986),
p.40-53

David H. Blackwell (born 1919)

. |
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Infinite Games? (1)

fWhat are infinite games?

We are concerned with two-player perfect information
games of infinitely many rounds.

Morris H. DeGroot, A conversation with David Blackwell, Statistical Science 1 (1986),
p.40-53

DeGroot. What kind of things are you working on these days?
Blackwell. | am trying to understand some things about infinite games.
DeGroot. What do you mean by an infinite game?

Blackwell. A game with an infinite number of moves. Here’s an example. | write down a O or
a 1, and you write down a 0 or a 1, and we keep going indefinitely. If the sequence we
produce has a limiting frequency, | win. If not, you win. That’s a trivial game because | can
force it to have a limiting frequency just by doing the opposite of whatever you do.

DeGroot. Fortunately, it's one in which I'll never have to pay off to you.

Blackwell. Well, we can play it in such a way that you would have to pay off.

DeGroot. How do we do that?
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Infinite Games? (1)

fWhat are infinite games?

We are concerned with two-player perfect information
games of infinitely many rounds.

Morris H. DeGroot, A conversation with David Blackwell, Statistical Science 1 (1986),
p.40-53

Blackwell. You can specify a strategy in this infinite game. For every finite sequence that you
might see up to a given time as past history, you specify the next move. So you can define
this function once and for all, and | can define a function, and then we can mathematically
assess those functions. | can prove that there is a specific function of mine that no matter
what function you specify, the set will have a limiting frequency.

DeGroot. So you could extract money from me in a finite amount of time.
Blackwell. Right.

. |
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Infinite Games? (2)

Ernst Zermelo (1871-1953)
Uber eine Anwendung der Mengenlehre
auf die Theorie des Schachspiels (1913)

N

1920s & 1930s: Steinhaus, Banach, Mazur.

Ulam’s Question (1930s). Characterize the sets A for which player | (player Il) has a
winning strategy in the infinite game with payoff A.

Kanamori 1994: “It was to take set theorists half a century to provide a fair answer to a
related question: For which A does either | or Il have a winning strategy in the game
with payoff A

David Gale and Frank Stewart (1953): Theory of infinite games.
Jan Mycielski, Hugo Steinhaus (1962): Axiom of Determinacy
David Blackwell (1967): game-based proof of uniformization for co-analytic sets

Yiannis Moschovakis (1967): Periodicity Phenomenon in foundations of mathematics

|
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Infinite Games (1).

fThe games we are playing are of the following form: We T
write w* for the set of all infinite sequences of natural

numbers. Fix a set A C w¥. Then two players, player | and Il
pick natural numbers in turn:

Player | x 9 Ty
Player I T T3

We write x for the sequence z(i) := x;. Then player | wins if
and only if z € A. We call this game G(A).

Ulam’s Question. Characterize the sets A such that player
| (player Il) wins G(A).

. |
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Playing an infinite game.

-

A strategy is a function ¢ : <% — w. Given a strategy o for
player | and a strategy 7 for player |l, they completely
determine the outcome of the game:

-

(c*xT)y = O
(0% T)opsr1 = (0%7T)2n o((0*7T)2p)
(0% T)onao = (0% T)opa1 7((0 * T)oni1)

We call a strategy o winning for player | in G(A) if for
every 7, o x 1 € A.
We call a strategy = winning for player Il in G(A) if for
every o, o x1 & A.

. |
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Strategic trees (1).
o -

strategy o defines a strategic tree for player I:

7' = {o)
seTy! = s"o(s) Ty,
seTyl, = s"zeTlyl,
ot = 77!

new

Similarly for a strategic tree for player II:
7,11 o
T, = {g}
s € TQT;IH & szc Tgﬁl}rl
7,11 ~ 711
L s€Ty, = s 71(s)€Ty J
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Strategic Trees (2).

fFor a tree T', we write |T'| for its set of infinite branches, i.e.,
re |l < Vn(zneT.
Then for any strategic trees 77!, 77! for player | and Il, we
have that [T% N [T™!] = {o * 7}.

Observation. A strategy o is winning for player | in G(A) iff
[T°1] C A; itis winning for player Il in G(A) iff [T N A = @.

Ulam’s Question. Characterize the sets A such that player
| wins G(A).

Lemma. If player | has a winning strategy in G(A), then the
cardinality of A must be that of the set of all real numbers.

. |
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Ulam’s Question.

Ulam’s Question. Characterize the sets A such that player | wins G(A).

Lemma. If player | has a winning strategy in G(A), then the cardinality of A must be that of
the set of all real numbers.

Consider A := {z; In(x(2n) # z(2n + 1)}.

The cardinality of A is that of the set of real numbers, as
every sequence starting with 01 is in A. But player Il has a
winning strategy, the copycat strategy.

So, the lemma does not provide such a characterization,
and cardinality is not a good candidate for a
characterization theorem.

Kanamori 1994 “It was to take set theorists half a century to provide a fair answer to a

related question: For which A does either | or |l have a winning strategy in the game with
payoff A

. |
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Determinacy.

-

fWe call a set A determined if either player | or player Il has
a winning strategy in the game G(A).

Is the class of determined sets trivial (= the class of all
sets)? We come back to this question later.

| doesn'twin Vo dr ox7¢ A
Il wins dr VYo ox7¢ A

Gale & Stewart (1953): The right approach to prove
determinacy is to consider topological properties of sets.

. |
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Topology of Baire space (1).
-

fIf x and y are different infinite sequences, there must be
some n such that z(n) # y(n). Let n; , be the least such n.

We define

27"y jf x #£ y, and
0 if z =v.

dist(x,y) := {
Fix x and . Then
Be(z) :={y; dist(z,y) < e} ={y; vor1...0, C y}

where 2-(nt+l) o < 9—n,

If s is a finite sequence of natural numbers, we write
L[s] .= {y; s C y} and call this a basic open set. J
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Topology of Baire space (2).
f[S] ={y; s Cy} T

The basic open sets form a topology base. We call a set
open if it is a union of basic open sets.

® Membership in open sets is “finitary”: if P :=J,_;[s;] IS
open and z € P, then there is some n such that
membership of x in P is determined by z[n.

# For each z in an open set P, you can find a nonempty
basic open set containing x and contained in P.

# Note that again all nonempty open sets must have the
cardinality of the set of all real numbers. In particular,
for any z, the set {x} cannot be open.

. |
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Topology of Baire space (3).

. N

Observation 1. A set A is closed if and only if any
sequence in A converges to a point in A.

he complement of an open set is called closed.

Observation 2. A set A is closed if and only if there is a
tree T such that A = [T7].

# All basic open sets are both open and closed (“clopen”).

# All singleton sets {z} are closed, but not open.
Consequently, the sets w“\{z} are open but not closed.

. |
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Topology of Baire space (4).
-

fThe open sets are closed under unions and under finite intersections, but
not under countable intersections in general.
Let z,, be the sequence of n zeros. Then the set A,, := [z,] is open, but
the intersection (" . = A, = {z} where z is the constant zero function.

new

Even worse:

Let Z,, be the set of all finite sequences that contain n zeros, and let
Py :=U,ez Is]- Then P:=(), _ P, is the set of all sequences that
contain infinitely many zeros.

This set is not open: arbitrarily close to each element of P there is a
sequence with only finitely many zeros.

This set is not closed: If w,, is the sequence that starts with n ones and
then continues with zeros, then w,, € P. But the sequence (w,,)
Lconverges to the constant sequences with value one. J
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fC

omplement and countable union generate a hierarchy of

Topology of Baire space (5).
-

sets: The Borel Hierarchy.

>

e o o o

>

>y
IT;
5
I1,
3
II;

.= the open sets

:= the closed sets

:= countable unions of closed sets (F,)

:= countable intersections of open sets (Gy)
:= countable unions of G; sets (Gs,)

.= countable intersections of F, sets (F,)

This hierarchy corresponds to the formula hierarchy: A set

is IT3 if and only if it is definable by a Y3v-formula in
arithmetic with a real parameter.

.

|
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Results.

fT

determined.
Proof next time.

heorem (Gale-Stewart). If A is an open set, then G(A) is T

The Gale-Stewart theorem is the first instance of a
sequence of determinacy theorems:

Wolfe

Davis

Paris

Martin

Martin-Steel / Neeman

Gy

Gso

i

all Borel sets

... even more ... (?!?)

|

Infinite Games — p. 17/17



fT

Overview

utorial 1. History and Basics.

Tutorial 2. Proving Determinacy.

>
>
>
>

Existence of a non-determined set
Determinacy for open and closed games
More Determinacy

Graph games and their complexity

Tutorial 3. Using Determinacy.

® The limits of determinacy; Projective Determinacy

® The Continuum Problem

>

.

Uniformization

|

Infinite Games — p. 2/24



Is every set determined?

-

fIs the class of determined sets trivial? It could be that every
set is determined...

Theorem (Banach-Mazur; Gale-Stewart). If there is a
wellordering of the set of real numbers, then there is a
non-determined set.

In particular, AC implies that there is a non-determined set.
The “Axiom of Determinacy” proposed by Mycielski and
Steinhaus in 1962 is therefore an alternative to the Axiom
of Choice.

The connection between non-determinacy and the axiom of
choice remains intricate: we’ll discuss this further when we
look at the limits of determinacy (Lecture 3).

. |
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Proof (1).
-

sting the well-ordering of the set of real numbers, we give
a well-ordered list of all strategic trees (7}, ; a < 2%).

Remember that “player | has a winning strategy in G(A)”

means that for some o, the tree 77! must be contained in
A; for “player Il has a winning strategy”, some tree 77!
must be contained in the complement of A.

We shall make sure that neither of these can be the case.
Using transfinite recursion, we define two sets A and B:

. |
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Prooft (2).
| o -

Ag: =By =9
Ay = U An By = U B.
a< a<

In each successor step, both A and B will gain exactly one element,
thus making sure that Card(A4,) = Card(B,) = Card(«).

For each «, [T,] has cardinality 2% > Card(a/), and therefore
To\(Ax U B,) has uncountably many elements. Pick two of them;

call them a, and b,,.
Thenlet Ay 1 := Ay U{an} and By := Bo U {by}.
Finally

A= | Asand B:= | | Ba.

a<2Xo a<2R0
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Proof (3).

Ag:=Bg: =9 A, = U Ao By = U B.
a<< a<A

Aa+1 = A, U {aa} and Ba_|_1 = B, U {ba}

A= U A, and B := U B,,.

a<2R0 a<2®0

Note that AN B = @.

We claim that A is not determined. Suppose it was, then
either there is some 77! C A or some T™!! C w¥\ A.

In Case 1, find a such that 7! = T,,. Then b, € [T,,| N B,
and so b, ¢ A. Contradiction.

In Case 2, find a such that 77! = T,,. Then a,, € [T,] N A,
Land so [T, ] is not disjoint from A. Contradiction. q.e.d.J
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Backward induction in finite games.

B , N
O
SN\

/\ /\ /\ /\



Backward induction in finite games.

- , -
O
/\ AN
/\ /\ /\ /\



Backward induction in finite games.

- , -
O
SN N
/\ /\ /\ /\



Backward induction in finite games.

- , -
,/\
SN SN
/\ /\ /\ /\



Backward induction in finite games.

- , -
,/\
SN SN
/\ /\ /\ /\



Backward induction in finite games.

B ) o
S
SN SN
/\ /\ /\ /\



Backward induction in finite games.
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Gale-Stewart 1 (1).
-

fTheorem (Gale-Stewart 1953). If A is a clopen payoff set,
then G(A) is determined.

Proof. If A is clopen, then both A and the complement of A are unions of
basic open sets. So, there are sets X and Y of finite sequences such that
A={z;dse X(sCx)}and w\A ={x; s €Y (s Cx)}.

The set X UY has the following “barrier property”. If x € w* then there is
some s € X UY such that s C .
We label the elements of X (and all their extensions) by I and the

elements of Y (and all their extensions) by II and start our backward
induction:

® |If sis a move for player | (player Il) and there is at least one successor labelled | (I1),
then we label s also with | (I1).

® |If sis a move for player | (player 1) and all successors are labelled Il (1), then we label s

\— also with Il (1). J
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Not quite so easy.

- N

onsider the following game: Player | plays a natural
number n, after that players | and Il alternate, and player |l
wins if and only if he plays a 0 in his nth move. Obviously,
player |l has a winning strategy, but let’s do the recursion for
the labelling:

. .
SRR

So, x won't get labelled in a finite amount of time as we
need that all successors are labelled.

. |
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Gale-Stewart 1 (2).
-

fSo, we need to extend this process into the transfinite. We
start with our initial labelling ¢y and define a recursion as
follows:

K €>\ = Ua<>\£a

® /,.1(s):=1(0)if sis a move for player | (Il) and at least one
successor t of s has the property 7, (s) = I (II).

® /,.1(s):=1(I)if sis a move for player Il (1) and all ¢ of s have the
property 4. (s) =1 (II).

Note that the domains of the partial labellings are
Increasing, i.e., dom(/¢,) C dom(¢,+1). AS a consequence,
there must be a countable ordinal ¢ that is a fixed point of
this procedure, i.e., (¢ = (¢4 1.

|
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Gale-Stewart 1 (3).

Barrier Property: If z € w* then there is some s € X UY such that s C x.

La+1(s) :=1(II) if s is a move for player | (II) and at least one successor ¢ of s has the
property £, (s) = I (I1).

La+1(s) :=1(I1) if s is a move for player Il (I) and all ¢ of s have the property ¢.,(s) = I (II).
Claim 1. If s ¢ dom(/,), then there is a successor t of s such

that t ¢ dom(¢;).

Claim 2. /, is a total function.

[Suppose not, then £, (s) is not defined. By Claim 1, there must be an infinite sequence x
such that 2, (x[n) is not defined for all n > 1h(s). But by the barrier property, there must be
some n such that x[n € X UY. Contradiction!]

Claim 3. If /(@) =1 (II), then there is a strategy for player |

(II) that guarantees that all positions of the run of the game
are labelled I (II).

. |
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Gale-Stewart 1 (4).
- -

laim 4. Any infinite sequence whose positions are all
labelled I (II) is a win for player | (Il).

[Again, this is an application of the barrier property: There is some n such that x|n € X UY.]

We have established in a constructive way that G(A) is
determined. By Claim 2, /(<) is defined and thus is either I
or II. By Claim 3, the player who owns the label has a
strategy to stay on his labels; and by Claim 4, this is a
winning strategy. g.e.d.

. |
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Gale-Stewart 11 (1).
-

fTheorem (Gale-Stewart). If A is open, then G(A) is
determined.

Proof. Now, A = |, y|s], but the complement may not be

open. We just do the same procedure with the limited
information we have at hand. We let /y(t) = 1 if there is an
s € X and t O s, and then run the Gale-Stewart procedure:

..g)\Z:U 14

a<\ o

® /,.1(s):=1if sis a move for player | and at least one
successor t of s has the property /,(s) = L.

® /,.1(s):=1if sis a move for player Il and all ¢ of s have the
property 4, (s) = 1.

. |
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Gale-Stewart 11 (2).

la+1(s) := 1if sis a move for player | and at least one successor ¢ of s has the property
lo(s) =L
La+1(s) :=1if sis a move for player Il and all ¢ of s have the property ¢, (s) = L.

Again, the procedure reaches a fixed point /., and again, we have Claim
1.

Claim 1. If s ¢ dom(4,), then there is a successor ¢ of s such that
t ¢ dom({¢).

Even stronger now: If player | has to move at s, and s ¢ dom(¢;), then no
successors of s are in dom(4;).

But we cannot deduce that /. is total, as this relied on the barrier property.
Define

0+ (s) := lc(s) ifs € dom(l:), and

\— II  ifs¢ dom(f;). J
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Gale-Stewart 11 (3).

Claim 1*. If s ¢ dom(¥4; ), then there is a successor ¢ of s such that t ¢ dom(¢.). If player |
has to move at s, then no successors of s are in dom (4. ).

0 (s) = le(s) ifs e dom(4:),and
TTY 1 ifs ¢ dom(ee).

With this, we again have

Claim 3. If /*(@) =1 (II), then there is a strategy for player |

(II) that guarantees that all positions of the run of the game
are labelled I (II).

Are all such strategies winning? Yes for player Il: If a
strategy stays on label II producing z, in particular it never
hits an element of X, and thus = ¢ A, so player Il wins.

. |
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Again, not quite so easy.

fConsider the game A = {x; In(x(2n) #0)}. The set A is T
open. All nodes s1 of odd length are labelled I in the initial
labelling ¢/y. Then all nodes s of even length get labelled I in
/1, and thus all nodes of odd length get labelled I in /5
which is the fixed point of the procedure.

Therefore, the strategy “play 0” for player | has the property
that it stays on label 1. But obviously, it is a losing strategy.

. |
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Gale-Stewart 11 (4).

Claim 3. If (&) = I (II), then there is a strategy for player | (ll) that guarantees that all
positions of the run of the game are labelled I (II).

La+1(s) :=1if sis a move for player | and at least one successor t of s has the property
la+1(s) := 1if sis a move for player Il and all ¢ of s have the property ¢, (s) = L.

We have to introduce the index of a position: this is the least o such that
¢, (s) is defined (if there is such an «).

We observe that if if £*(s) = I and player | has to play, then there is a
successor of lower index with label I (unless the index of s is 0), and if
player Il has to play, then all successors are of lower index (unless the
index of s is 0).

So, if £*(@) =1, then player | has a strategy that forces the labels to be 1
and that forces the sequence of indices to be a decreasing sequence of
ordinals (i.e., either ind(z[n + 1) < ind(x|n) or

\_ind(:ﬁ 'n+ 1) =ind(z[n) = 0). J
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Gale-Stewart 11 (5).

So, if £* (&) = 1, then player | has a strategy that forces the labels to be I and that forces the
sequence of indices to be a decreasing sequence of ordinals (i.e., either
ind(z[n + 1) < ind(z[n) orind(z[n + 1) = ind(x[n) = 0.

Now let = be a play according to that strategy. Since there
IS no infinite decreasing sequence of ordinals, we know that
there must be some n such that the index of z[n is 0, but
then /y(x[n) = 1. But that means that x[n € X, and that

xr € A. So the strategy is a winning strategy. g.e.d.

. |
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Graph games (1).

. N

ake a directed graph, specify a vertex as the initial node
and play a game in which players | and Il push a token
along the edges.

Such a game can easily be transferred into a game on
Baire space by just labelling the vertices of the graph with
natural numbers (the “tree unravelling” of a graph).
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Graph games (2).
| -

L

Typical winning conditions:

#® “the player who makes the last (legal) move wins”.

# Player | wins if vertex v is visited.

# Player | wins if vertex v is visited n times.

# Player | wins if vertex v is visited infinitely many times.

If you unravel the trees of these games, the first three
Lconditions give open payoffs. J
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Graph games (3).
| -

L

“Player | wins if vertex v is visited infinitely many times.”

Remember our example: P := |, ., P is the set of all
sequences that contain infinitely many zeros. This was a
set which was neither open nor closed.

Similarly, the unravelled game for our graph game will
produce a IT) set which is neither closed nor open.

Thus: The Gale-Stewart theorem is not enough to deal with
Lthese games.
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Extensions of Gale-Stewart.

- N

Philip Wolfe (1955). Every X9 set is determined.
Morton Davis (1963). Every X} set is determined.

Jeff Paris (1972). Every X set is determined.
Tony Martin (1975). Every Borel set is determined.

© o o o @

Where are the limits of determinacy?

. |
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The Axiom of Determinacy.

-

fThe Mycielski-Steinhaus Axiom of Determinacy.

Jan Mycielski &~

AD: “All games G(A) are determined.”

We have already proved that AC implies -AD, so AD is
necessarily an “alternative” to AC.

. |
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Extensions of the Borel hierarchy (1).

Closure properties of the Borel sets: closed under continuous preimages,
closed under countable unions and intersections, closed under
complementation.

Lebesgue famously claimed that the Borel sets are also closed under
continuous images. But this is false, as was shown by Suslin (1917).

The closure of the Borel sets under continuous images is called “analytic
sets” or “A-sets”. You can check that this class is not closed under
complements, so a new hierarchy develops on top of the Borel sets: the
projective hierarchy:

® ¥ :=the A-sets
® TII; := the complements of A-sets, the CA-sets

® X := continuous images of CA-sets (ACA-sets)
L ® II, := complements of ACA-sets (CACA-sets) J
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Extensions of the Borel hierarchy (2).

fA class of sets of real numbers is called a pointclass. A pointclass T
is called boldface if it is closed under continuous preimages. If T is
a pointclass, we write dI' for the class of sets of the type
dy((z,y) € A) where A € T, and VT for the class of sets of the type

Vy((z,y) € A).

Theorem (Suslin). The Borel sets are precisely those that
are both analytic and co-analytic.

Fact. The smallest boldface pointclasses strictly containing
the class of all Borel sets are the classes ; and II;.

So: Is every II] set determined?

. |
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Applications of determinacy.

fIf I" is any boldface pointclass. Suppose that all sets in T T
are determined. Then:

#® All sets in T are Lebesgue measurable.
(Mycielski-Swierczkowski)

# All sets in I" have the Baire property. (Banach-Mazur)

# All sets in I' have the perfect set property. (Morton
Davis)

. |
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Cantor’s Continuum Problem (1).

First problem in Hilbert’s list (1900).

The Continuum Hypothesis (CH). Every set of real numbers is either finite or countable or
has the cardinality of the set of all real numbers.

Lemma. If the Axiom of Choice holds, then CH is equivalent to “there is a bijection between
X; and the set of real numbers (in short: 280 = Xy).

Proof. < is obvious.

“=". By the Axiom of Choice, there is a bijection = between some ordinal o and R. We only
have to show that Card(a) = N;.

If Card(a) < Ny, then the set of reals would be countable, contradicting Cantor’s theorem.

If Card(a) > Ny, then oo C RNy, and we look at X := w[a] C R. Clearly,
Card(X) = N; < Card(R). Contradiction. g.e.d.

. |
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Cantor’s Continuum Problem (2).

-

fOne approach to solving Cantor’s Continuum Problem was
the perfect set property.

A tree is called perfect if any node has two incompatible
extensions.

A set of real numbers has the perfect set property if it is
either finite or countable or contains the branches through a
perfect tree.

. |
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Cantor’s Continuum Problem (3).

-

fObservation. If a set of reals has the perfect set property, it
cannot be a counterexample to the Continuum Hypothesis.

Corollary. If all sets have the perfect set property, then CH
IS true.

Theorem (Bernstein). The Axiom of Choice implies that
there is a set without the perfect set property.

. |
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The pertect set theorem (1).
-

fTheorem. If all sets in T" are determined, then all sets in T’
have the perfect set property.

Weaker Theorem. If all sets are determined, then all sets
have the perfect set property.

(The difference between the “Theorem™ and the “Weaker Theorem” is just
an analysis of the complexity of the game.)

Proof. We construct a game that encapsules the perfect set property of a
set A. For technical reasons, we play on the binary branching tree (Cantor
space).

Playerl S0 S1 S9

Playerll 0 1 To ...
where s; are finite sequences of bits and x; are binary bits. We construct

La: = SoTpS1T182%2 ..., and say that | wins if x € A. J
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The pertect set theorem (2).
-

Playerl S0 S1 S9

PlayerlIl o T o -
where s; are finite sequences of bits and x; are binary bits. We construct
T := SoxrgS1x1S2x2 ..., and say that | wins if x € A.

® This game is called G*(A), the asymmetric game, due to Morton

Davis.

® |[f all games of the type G(A) are determined, then all games of the
type G*(A) are determined.

® Rephrasing the notion of a strategic tree, we still get: If player | was a
winning strategy in G*(A), then A must contain a perfect set.

® |If Ais countable, then player Il has a winning strategy.

We need to prove the converse of the last statement.

. |
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The pertect set theorem (3).

fFix a winning strategy for player Il, call it 7. If T

p = (S0, %0, S1, L1, ---, Sp, Tn) 1S @ position for player Il, we write
pit for sorgsizy...sprnt. If x € 2¢, we say p Kills z if for all ¢,
we have that p,.t7(p.t) Z =.

Observation 1. Each p kills at most one sequence =z.
Observation 2. Every = € A is killed by a sequence p.

But there are only countably many sequences, so A is a
countable set. g.e.d.

. |
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Non-Extensions of Determinacy.

-

fThere iIs a minimal model of set theory: Gbédel’'s L, the
constructible universe. In L, there is a wellordering of the

continuum definable in a Al way.

Theorem (Gddel). L |= “There is a IT; set without the
perfect set property.’

Corollary. In L, there must be a non-determined II; set.

Proof. By the perfect set theorem, if every IT; set was

determined, then every II} set would have the perfect set
property, but that contradicts Godel’s theorem. g.e.d.

Corollary. The determinacy of all coanalytic sets cannot be
proved in ZFC.

. |
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Foundations of Mathematics (1).

- N

odel Incompleteness phenomenon: ZFC is not complete,
l.e., there are statements independent of ZFC. Even worse,
there are interesting questions independent of ZFC: the
Continuum Hypothesis.

Go6del’'s Programme: Find further axioms for set theory that
are accepted by all mathematicians than resolve all
iInteresting questions.

Go6del’'s main candidate for these axioms were “Axioms of
Strong Infinity”, also called Large Cardinal Axioms. The
most famous of these is the notion of a measurable
cardinal: a cardinal «x that carries a two-valued measure
measuring all subsets of «.

. |
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Foundations of Mathematics (2).

-

A measurable cardinal « is a cardinal that carries a two-valued measure measuring all
subsets of .

Let us denote the statement “there is a measurable
cardinal” by MC.

#® 7FC (unless inconsistent) doesn’t prove that there is a
measurable cardinal.

o /ZFC+MC proves Cons(ZFC).

o ZFC+MC proves that all co-analytic sets are determined
(Martin, 1970).

. |
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Large Cardinals and Determinacy (1).

. -

here is a level by level analysis of determinacy axioms and
large cardinals:

# TII! determinacy is roughly at the level of one
measurable cardinal (Martin, Harrington)

» TI, ., determinacy is roughly at the level of n Woodin
cardinals (Martin-Steel, Woodin)

Donald A. Martin, John R. Steel, A
proof of projective determinacy, Journal
of the American Mathematical Society 2
(1989), p. 71-125

. |
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Large Cardinals and Determinacy (1).

. -

here is a level by level analysis of determinacy axioms and
large cardinals:

® TII| determinacy is roughly at the level of one
measurable cardinal (Martin, Harrington)

® TI, ., determinacy is roughly at the level of n Woodin
cardinals (Martin-Steel, Woodin)

# There is a subtle connection between the Axiom of
Choice and this project, as the lower bounds are related
to whether the large cardinals involved refute the
existence of definable well-orderings of the reals (“Steel
games”).

John R. Steel, Determinacy in the Mitchell models, Annals of Mathematical Logic 22

L (1982), p. 109-125 J
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Large Cardinals and Determinacy (2).

- N

# All of the statements “roughly at the level” above can be
made exact.

Itay Neeman, Optimal Proofs of Determi-
nacy, Bulletin of Symbolic Logic 1997

Itay HI-II-I'I-I-I'i

. |
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Large Cardinals and Determinacy (2).

- N

# All of the statements “roughly at the level” above can be
made exact.

# The strength of the axiom of determinacy is exactly that
of ZFC+“there are infinitely many Woodin cardinals”.

. |
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Uniformization.

fReminder: The connection between set theory and infinite T
games started in 1968 with a paper by Blackwell.

|

David Blackwell, Infinite games and an-
alytic sets, Proceedings of the National
Academy of Sciences U.S.A. 58 (1967),
p. 1836-1837

Blackwell’s proof triggered the development of infinite game
theory in foundations of mathematics.

. |
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The First Periodicity Theorem (1).
-

fIf A is a set of real numbers, we consider relations < on A
that are prewellorderings, i.e., reflexive, symmetric,
transitive, linear and well-founded relations.
Prewellorderings give rise to functions from A into the
ordinals, traditionally called norms.

The construction of definable norms are the first step in
proving general uniformization theorems (~~ the second
periodicity theorem).

Theorem (Martin, Moschovakis). [SIMPLIFIED!] Suppose
AD (for simplicity’s sake). Suppose that A is a class closed
under complementation such that every setin A has a
prewellordering in A. Then every set in VA has a
prewellordering in VA N dVA.

. |
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The First Periodicity Theorem (2).

. N

et A € VA, i.e., thereisa B € A such that
r e A < Yu((z,u) € B).

By our assumption, there is a prewellordering < on B that is
In A.

For z and y, we define the game G, , as follows:

Player | (n uq U9
Player |l () U1 ()

Player | produces u, player Il produces v, and player |l wins
if (y,v) ¢ Bor ({(x,u) € Band (z,u) < (y,v)).
Define x < y if and only if player Il has a winning strategy inJ

L,Y-
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The First Periodicity Theorem (3).
-

Define z < y if and only if player Il has a winning strategy in G 4.

® < is reflexive.
#® =< s transitive and linear.

® < is well-founded.

Suppose not, then there is a sequence (x;; i € w) such
that ¢ = =1 = xo = .... This means that player Il doesn't
win G, .,.,, and therefore (by determinacy) that player |
wins G, ..., Let o; be a winning strategy in that game

for player I.

We use the strategies o; to fill up an infinite diagram.

. |
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The First Periodicity Theorem (4).

Elayer Il wins G o if (y,v) ¢ Bor((z,u) € Band (z,u) < (y,v)). —‘

Player | wins Gz, o, , - Let o; be a winning strategy in that game for player |.

Gug,z;  00(@) =u) ooudul) =1ud oo(uiuiului) =1u) oo(udujudutudul) =: ul

Gzy,29  01(9) =: u(l) o1 (u(l)u%) =: u% o1 (uéu%u%u%) = u%

/ /

Cones  02(9) =ud  oa(ubud) = ul

Gag,es  03(9) =t uj

So, we construct infinitely many sequences u* := u}ulubu} ... where u* is the result of
playing o; against «**!. Since o; was winning, we know

N (:1:@-+1,u7;+1> € B, and
® if (:cz,uz> € B, then (mi+1,ui+1> < <ZEz,uz>

Therefore, (x1,u1) > (z2,u2) > (xr3,u3) > ... is a strictly decreasing sequence in B.
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The First Periodicity Theorem (5).

fPIayer Il wins G o if (y,v) ¢ Bor((z,u) € Band (z,u) < (y,v)). —‘
Let’s calculate the complexity of <:

r =<y Iff IrVo(o * 7 is a win for player II)
iff Vodr(ox 7 is a win for player Il)

Being a win for player [l isin A, and so < is in VA N dVA.
g.e.d.

. |
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fWhat did we do?

9

>

Summary.

Infinite games play a role in set theory and the
foundations of mathematics.

Every Borel game is determined, but the proofs grow
iIncreasingly non-constructive as you go up the Borel
hierarchy.

There is a connection between the determinacy of
infinite games and the axiom of choice: AC implies that
there are non-determined games, and the definability of
wellorderings of the real line is closely linked to how
much determinacy is provable.

Infinite games have plenty of applications in the general
theory of the real line. J
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