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Infinite Games? (1)

What are infinite games?

We are concerned with two-player perfect information
games of infinitely many rounds.
Morris H.DeGroot, A conversation with David Blackwell, Statistical Science 1 (1986),

p.40-53

David H. Blackwell (born 1919)
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Infinite Games? (1)

What are infinite games?

We are concerned with two-player perfect information
games of infinitely many rounds.
Morris H.DeGroot, A conversation with David Blackwell, Statistical Science 1 (1986),

p.40-53

DeGroot. What kind of things are you working on these days?

Blackwell. I am trying to understand some things about infinite games.

DeGroot. What do you mean by an infinite game?

Blackwell. A game with an infinite number of moves. Here’s an example. I write down a 0 or

a 1, and you write down a 0 or a 1, and we keep going indefinitely. If the sequence we

produce has a limiting frequency, I win. If not, you win. That’s a trivial game because I can

force it to have a limiting frequency just by doing the opposite of whatever you do.

DeGroot. Fortunately, it’s one in which I’ll never have to pay off to you.

Blackwell. Well, we can play it in such a way that you would have to pay off.

DeGroot. How do we do that?
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Infinite Games? (1)

What are infinite games?

We are concerned with two-player perfect information
games of infinitely many rounds.
Morris H.DeGroot, A conversation with David Blackwell, Statistical Science 1 (1986),

p.40-53

Blackwell. You can specify a strategy in this infinite game. For every finite sequence that you

might see up to a given time as past history, you specify the next move. So you can define

this function once and for all, and I can define a function, and then we can mathematically

assess those functions. I can prove that there is a specific function of mine that no matter

what function you specify, the set will have a limiting frequency.

DeGroot. So you could extract money from me in a finite amount of time.

Blackwell. Right.
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Infinite Games? (2)

Ernst Zermelo (1871-1953)

Über eine Anwendung der Mengenlehre

auf die Theorie des Schachspiels (1913)

1920s & 1930s: Steinhaus, Banach, Mazur.

Ulam’s Question (1930s). Characterize the sets A for which player I (player II) has a

winning strategy in the infinite game with payoff A.

Kanamori 1994: “It was to take set theorists half a century to provide a fair answer to a

related question: For which A does either I or II have a winning strategy in the game

with payoff A.”

David Gale and Frank Stewart (1953): Theory of infinite games.

Jan Mycielski, Hugo Steinhaus (1962): Axiom of Determinacy

David Blackwell (1967): game-based proof of uniformization for co-analytic sets

Yiannis Moschovakis (1967): Periodicity Phenomenon in foundations of mathematics

Infinite Games – p. 4/17



Infinite Games (1).

The games we are playing are of the following form: We
write ωω for the set of all infinite sequences of natural
numbers. Fix a set A ⊆ ωω. Then two players, player I and II
pick natural numbers in turn:

Player I x0 x2 x4 ...

Player II x1 x3 ...

We write x for the sequence x(i) := xi. Then player I wins if

and only if x ∈ A. We call this game G(A).

Ulam’s Question. Characterize the sets A such that player
I (player II) wins G(A).
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Playing an infinite game.

A strategy is a function σ : ω<ω → ω. Given a strategy σ for
player I and a strategy τ for player II, they completely
determine the outcome of the game:

(σ ∗ τ)0 := ∅

(σ ∗ τ)2n+1 := (σ ∗ τ)2n
aσ((σ ∗ τ)2n)

(σ ∗ τ)2n+2 := (σ ∗ τ)2n+1
aτ((σ ∗ τ)2n+1)

We call a strategy σ winning for player I in G(A) if for
every τ , σ ∗ τ ∈ A.
We call a strategy τ winning for player II in G(A) if for
every σ, σ ∗ τ /∈ A.

Infinite Games – p. 7/17



Strategic trees (1).

A strategy σ defines a strategic tree for player I:

T
σ,I
0 := {∅}

s ∈ T
σ,I
2n ⇐⇒ s

a

σ(s) ∈ T
σ,I
2n+1

s ∈ T
σ,I
2n+1 ⇐⇒ s

a

x ∈ T
σ,I
2n+2

T
σ,I :=

⋃

n∈ω

T
σ,I

Similarly for a strategic tree for player II:

T τ,II
0 := {∅}

s ∈ T τ,II
2n ⇐⇒ sax ∈ T τ,II

2n+1

s ∈ T τ,II
2n+1 ⇐⇒ saτ(s) ∈ T τ,II

2n+2
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Strategic Trees (2).

For a tree T , we write [T ] for its set of infinite branches, i.e.,
x ∈ [T ] ⇐⇒ ∀n(x↾n ∈ T .

Then for any strategic trees T σ,I, T τ,II for player I and II, we

have that [T σ,I] ∩ [T τ,II] = {σ ∗ τ}.

Observation. A strategy σ is winning for player I in G(A) iff

[T σ,I] ⊆ A; it is winning for player II in G(A) iff [T σ,II] ∩ A = ∅.

Ulam’s Question. Characterize the sets A such that player
I wins G(A).

Lemma. If player I has a winning strategy in G(A), then the

cardinality of A must be that of the set of all real numbers.
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Ulam’s Question.

Ulam’s Question. Characterize the sets A such that player I wins G(A).

Lemma. If player I has a winning strategy in G(A), then the cardinality of A must be that of

the set of all real numbers.

Consider A := {x ; ∃n(x(2n) 6= x(2n + 1)}.

The cardinality of A is that of the set of real numbers, as
every sequence starting with 01 is in A. But player II has a
winning strategy, the copycat strategy.

So, the lemma does not provide such a characterization,
and cardinality is not a good candidate for a
characterization theorem.

Kanamori 1994: “It was to take set theorists half a century to provide a fair answer to a

related question: For which A does either I or II have a winning strategy in the game with

payoff A.”
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Determinacy.

We call a set A determined if either player I or player II has
a winning strategy in the game G(A).

Is the class of determined sets trivial (= the class of all
sets)? We come back to this question later.

I doesn’t win ∀σ ∃τ σ ∗ τ /∈ A

II wins ∃τ ∀σ σ ∗ τ /∈ A

Gale & Stewart (1953): The right approach to prove
determinacy is to consider topological properties of sets.
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Topology of Baire space (1).

If x and y are different infinite sequences, there must be
some n such that x(n) 6= y(n). Let nx,y be the least such n.

We define

dist(x, y) :=

{

2−nx,y if x 6= y, and

0 if x = y.

Fix x and ε. Then

Bε(x) := {y ; dist(x, y) < ε} = {y ; x0x1...xn ⊆ y}

where 2−(n+1) < ε ≤ 2−n.

If s is a finite sequence of natural numbers, we write
[s] := {y ; s ⊆ y} and call this a basic open set.
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Topology of Baire space (2).

[s] := {y ; s ⊆ y}

The basic open sets form a topology base. We call a set
open if it is a union of basic open sets.

Membership in open sets is “finitary”: if P :=
⋃

i∈I [si] is

open and x ∈ P , then there is some n such that
membership of x in P is determined by x↾n.

For each x in an open set P , you can find a nonempty
basic open set containing x and contained in P .

Note that again all nonempty open sets must have the
cardinality of the set of all real numbers. In particular,
for any x, the set {x} cannot be open.
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Topology of Baire space (3).

The complement of an open set is called closed.

Observation 1. A set A is closed if and only if any
sequence in A converges to a point in A.

Observation 2. A set A is closed if and only if there is a
tree T such that A = [T ].

All basic open sets are both open and closed (“clopen”).

All singleton sets {x} are closed, but not open.

Consequently, the sets ωω\{x} are open but not closed.
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Topology of Baire space (4).

The open sets are closed under unions and under finite intersections, but

not under countable intersections in general.

Let zn be the sequence of n zeros. Then the set An := [zn] is open, but

the intersection
⋂

n∈ω An = {z} where z is the constant zero function.

Even worse:

Let Zn be the set of all finite sequences that contain n zeros, and let

Pn :=
⋃

s∈Zn

[s]. Then P :=
⋂

n∈ω Pn is the set of all sequences that

contain infinitely many zeros.

This set is not open: arbitrarily close to each element of P there is a

sequence with only finitely many zeros.

This set is not closed: If wn is the sequence that starts with n ones and

then continues with zeros, then wn ∈ P . But the sequence (wn)

converges to the constant sequences with value one.
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Topology of Baire space (5).

Complement and countable union generate a hierarchy of
sets: The Borel Hierarchy.

Σ
0
1 := the open sets

Π
0
1 := the closed sets

Σ
0
2 := countable unions of closed sets (Fσ)

Π
0
2 := countable intersections of open sets (Gδ)

Σ
0
3 := countable unions of Gδ sets (Gδσ)

Π
0
3 := countable intersections of Fσ sets (Fσδ)

This hierarchy corresponds to the formula hierarchy: A set

is Π
0
3 if and only if it is definable by a ∀∃∀-formula in

arithmetic with a real parameter.
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Results.

Theorem (Gale-Stewart). If A is an open set, then G(A) is
determined.

Proof next time.

The Gale-Stewart theorem is the first instance of a
sequence of determinacy theorems:

Wolfe Gδ

Davis Gδσ

Paris Σ
0
4

Martin all Borel sets

Martin-Steel / Neeman ... even more ... (?!?)
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Is every set determined?

Is the class of determined sets trivial? It could be that every
set is determined...

Theorem (Banach-Mazur; Gale-Stewart). If there is a
wellordering of the set of real numbers, then there is a
non-determined set.

In particular, AC implies that there is a non-determined set.
The “Axiom of Determinacy” proposed by Mycielski and
Steinhaus in 1962 is therefore an alternative to the Axiom
of Choice.
The connection between non-determinacy and the axiom of
choice remains intricate: we’ll discuss this further when we
look at the limits of determinacy (Lecture 3).
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Proof (1).

Using the well-ordering of the set of real numbers, we give

a well-ordered list of all strategic trees 〈Tα ; α < 2ℵ0〉.

Remember that “player I has a winning strategy in G(A)”

means that for some σ, the tree T σ,I must be contained in

A; for “player II has a winning strategy”, some tree T τ,II

must be contained in the complement of A.

We shall make sure that neither of these can be the case.
Using transfinite recursion, we define two sets A and B:

A0 := B0 := ∅

Aλ :=
⋃

α<λ

Aα Bλ :=
⋃

α<λ

Bα
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Proof (2).

A0 := B0 := ∅

Aλ :=
[

α<λ

Aα Bλ :=
[

α<λ

Bα

In each successor step, both A and B will gain exactly one element,

thus making sure that Card(Aα) = Card(Bα) = Card(α).

For each α, [Tα] has cardinality 2ℵ0 > Card(α), and therefore

[Tα]\(Aα ∪ Bα) has uncountably many elements. Pick two of them;

call them aα and bα.

Then let Aα+1 := Aα ∪ {aα} and Bα+1 := Bα ∪ {bα}.

Finally

A :=
⋃

α<2ℵ0

Aα and B :=
⋃

α<2ℵ0

Bα.
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Proof (3).

A0 := B0 := ∅ Aλ :=
[

α<λ

Aα Bλ :=
[

α<λ

Bα

Aα+1 := Aα ∪ {aα} and Bα+1 := Bα ∪ {bα}

A :=
[

α<2ℵ0

Aα and B :=
[

α<2ℵ0

Bα.

Note that A ∩ B = ∅.

We claim that A is not determined. Suppose it was, then

either there is some T σ,I ⊆ A or some T τ,II ⊆ ωω\A.

In Case 1, find α such that T σ,I = Tα. Then bα ∈ [Tα] ∩ B,

and so bα /∈ A. Contradiction.

In Case 2, find α such that T τ,II = Tα. Then aα ∈ [Tα] ∩ A,

and so [Tα] is not disjoint from A. Contradiction. q.e.d.
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Backward induction in finite games.
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Backward induction in finite games.
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Backward induction in finite games.
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Backward induction in finite games.
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Backward induction in finite games.
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Gale-Stewart I (1).

Theorem (Gale-Stewart 1953). If A is a clopen payoff set,
then G(A) is determined.

Proof. If A is clopen, then both A and the complement of A are unions of

basic open sets. So, there are sets X and Y of finite sequences such that

A = {x ; ∃s ∈ X(s ⊆ x)} and ωω\A = {x ; ∃s ∈ Y (s ⊆ x)}.

The set X ∪ Y has the following “barrier property”: If x ∈ ωω then there is

some s ∈ X ∪ Y such that s ⊆ x.

We label the elements of X (and all their extensions) by I and the
elements of Y (and all their extensions) by II and start our backward
induction:

If s is a move for player I (player II) and there is at least one successor labelled I (II),

then we label s also with I (II).

If s is a move for player I (player II) and all successors are labelled II (I), then we label s

also with II (I).
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Not quite so easy.

Consider the following game: Player I plays a natural
number n, after that players I and II alternate, and player II
wins if and only if he plays a 0 in his nth move. Obviously,
player II has a winning strategy, but let’s do the recursion for
the labelling:

⋆

0ooooooo

wwooooooo 1
��

�

����
� 2

��

n
QQQQQQQ

((QQQQQQQ

•

��

•

��

•

��

. . . •

��

. . .

...
...

...
. . . ...

. . .

So, ⋆ won’t get labelled in a finite amount of time as we
need that all successors are labelled.
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Gale-Stewart I (2).

So, we need to extend this process into the transfinite. We
start with our initial labelling ℓ0 and define a recursion as
follows:

ℓλ :=
⋃

α<λ ℓα

ℓα+1(s) := I (II) if s is a move for player I (II) and at least one

successor t of s has the property ℓα(s) = I (II).

ℓα+1(s) := I (II) if s is a move for player II (I) and all t of s have the

property ℓα(s) = I (II).

Note that the domains of the partial labellings are
increasing, i.e., dom(ℓα) ⊆ dom(ℓα+1). As a consequence,

there must be a countable ordinal ζ that is a fixed point of
this procedure, i.e., ℓζ = ℓζ+1.
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Gale-Stewart I (3).

Barrier Property: If x ∈ ωω then there is some s ∈ X ∪ Y such that s ⊆ x.

ℓα+1(s) := I (II) if s is a move for player I (II) and at least one successor t of s has the

property ℓα(s) = I (II).

ℓα+1(s) := I (II) if s is a move for player II (I) and all t of s have the property ℓα(s) = I (II).

Claim 1. If s /∈ dom(ℓζ), then there is a successor t of s such

that t /∈ dom(ℓζ).

Claim 2. ℓζ is a total function.
[Suppose not, then ℓζ(s) is not defined. By Claim 1, there must be an infinite sequence x

such that ℓζ(x↾n) is not defined for all n ≥ lh(s). But by the barrier property, there must be

some n such that x↾n ∈ X ∪ Y . Contradiction!]

Claim 3. If ℓζ(∅) = I (II), then there is a strategy for player I

(II) that guarantees that all positions of the run of the game
are labelled I (II).
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Gale-Stewart I (4).

Claim 4. Any infinite sequence whose positions are all
labelled I (II) is a win for player I (II).

[Again, this is an application of the barrier property: There is some n such that x↾n ∈ X ∪Y .]

We have established in a constructive way that G(A) is
determined. By Claim 2, ℓζ(∅) is defined and thus is either I

or II. By Claim 3, the player who owns the label has a
strategy to stay on his labels; and by Claim 4, this is a
winning strategy. q.e.d.
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Gale-Stewart II (1).

Theorem (Gale-Stewart). If A is open, then G(A) is
determined.

Proof. Now, A =
⋃

s∈X [s], but the complement may not be

open. We just do the same procedure with the limited
information we have at hand. We let ℓ0(t) = I if there is an

s ∈ X and t ⊇ s, and then run the Gale-Stewart procedure:

ℓλ :=
⋃

α<λ ℓα

ℓα+1(s) := I if s is a move for player I and at least one

successor t of s has the property ℓα(s) = I.

ℓα+1(s) := I if s is a move for player II and all t of s have the

property ℓα(s) = I.
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Gale-Stewart II (2).

ℓα+1(s) := I if s is a move for player I and at least one successor t of s has the property

ℓα(s) = I.

ℓα+1(s) := I if s is a move for player II and all t of s have the property ℓα(s) = I.

Again, the procedure reaches a fixed point ℓζ , and again, we have Claim

1.

Claim 1. If s /∈ dom(ℓζ), then there is a successor t of s such that

t /∈ dom(ℓζ).

Even stronger now: If player I has to move at s, and s /∈ dom(ℓζ), then no

successors of s are in dom(ℓζ).

But we cannot deduce that ℓζ is total, as this relied on the barrier property.

Define

ℓ
∗(s) :=







ℓζ(s) if s ∈ dom(ℓζ), and

II if s /∈ dom(ℓζ).
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Gale-Stewart II (3).

Claim 1*. If s /∈ dom(ℓζ), then there is a successor t of s such that t /∈ dom(ℓζ). If player I

has to move at s, then no successors of s are in dom(ℓζ).

ℓ∗(s) :=

8

<

:

ℓζ(s) if s ∈ dom(ℓζ), and

II if s /∈ dom(ℓζ).

With this, we again have

Claim 3. If ℓ∗(∅) = I (II), then there is a strategy for player I

(II) that guarantees that all positions of the run of the game
are labelled I (II).

Are all such strategies winning? Yes for player II: If a
strategy stays on label II producing x, in particular it never
hits an element of X, and thus x /∈ A, so player II wins.
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Again, not quite so easy.

Consider the game A = {x ; ∃n(x(2n) 6= 0)}. The set A is

open. All nodes s1 of odd length are labelled I in the initial
labelling ℓ0. Then all nodes s of even length get labelled I in
ℓ1, and thus all nodes of odd length get labelled I in ℓ2

which is the fixed point of the procedure.

Therefore, the strategy “play 0” for player I has the property
that it stays on label I. But obviously, it is a losing strategy.
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Gale-Stewart II (4).

Claim 3. If ℓ∗(∅) = I (II), then there is a strategy for player I (II) that guarantees that all

positions of the run of the game are labelled I (II).

ℓα+1(s) := I if s is a move for player I and at least one successor t of s has the property

ℓα(s) = I.

ℓα+1(s) := I if s is a move for player II and all t of s have the property ℓα(s) = I.

We have to introduce the index of a position: this is the least α such that

ℓα(s) is defined (if there is such an α).

We observe that if if ℓ∗(s) = I and player I has to play, then there is a

successor of lower index with label I (unless the index of s is 0), and if

player II has to play, then all successors are of lower index (unless the

index of s is 0).

So, if ℓ∗(∅) = I, then player I has a strategy that forces the labels to be I

and that forces the sequence of indices to be a decreasing sequence of

ordinals (i.e., either ind(x↾n + 1) < ind(x↾n) or

ind(x↾n + 1) = ind(x↾n) = 0).
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Gale-Stewart II (5).

So, if ℓ∗(∅) = I, then player I has a strategy that forces the labels to be I and that forces the

sequence of indices to be a decreasing sequence of ordinals (i.e., either

ind(x↾n + 1) < ind(x↾n) or ind(x↾n + 1) = ind(x↾n) = 0.

Now let x be a play according to that strategy. Since there
is no infinite decreasing sequence of ordinals, we know that
there must be some n such that the index of x↾n is 0, but
then ℓ0(x↾n) = I. But that means that x↾n ∈ X, and that

x ∈ A. So the strategy is a winning strategy. q.e.d.
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Graph games (1).

Take a directed graph, specify a vertex as the initial node
and play a game in which players I and II push a token
along the edges.

Such a game can easily be transferred into a game on
Baire space by just labelling the vertices of the graph with
natural numbers (the “tree unravelling” of a graph).
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Graph games (2).

Typical winning conditions:

“the player who makes the last (legal) move wins”.

Player I wins if vertex v is visited.

Player I wins if vertex v is visited n times.

Player I wins if vertex v is visited infinitely many times.

If you unravel the trees of these games, the first three
conditions give open payoffs.
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Graph games (3).

“Player I wins if vertex v is visited infinitely many times.”

Remember our example: P :=
⋃

n∈ω Pn is the set of all

sequences that contain infinitely many zeros. This was a
set which was neither open nor closed.

Similarly, the unravelled game for our graph game will

produce a Π
0
2 set which is neither closed nor open.

Thus: The Gale-Stewart theorem is not enough to deal with
these games.
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Extensions of Gale-Stewart.

Philip Wolfe (1955). Every Σ
0
2 set is determined.

Morton Davis (1963). Every Σ
0
3 set is determined.

Jeff Paris (1972). Every Σ
0
4 set is determined.

Tony Martin (1975). Every Borel set is determined.

Where are the limits of determinacy?
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Overview

Tutorial 1. History and Basics.
Tutorial 2. Proving Determinacy.
Tutorial 3. Using Determinacy.

The limits of determinacy; Projective Determinacy

The Continuum Problem

Uniformization
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The Axiom of Determinacy.

The Mycielski-Steinhaus Axiom of Determinacy.

Jan Mycielski

AD: “All games G(A) are determined.”

We have already proved that AC implies ¬AD, so AD is
necessarily an “alternative” to AC.
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Extensions of the Borel hierarchy (1).

Closure properties of the Borel sets: closed under continuous preimages,

closed under countable unions and intersections, closed under

complementation.

Lebesgue famously claimed that the Borel sets are also closed under

continuous images. But this is false, as was shown by Suslin (1917).

The closure of the Borel sets under continuous images is called “analytic

sets” or “A-sets”. You can check that this class is not closed under

complements, so a new hierarchy develops on top of the Borel sets: the

projective hierarchy:

Σ
1
1 := the A-sets

Π
1
1 := the complements of A-sets, the CA-sets

Σ
1
2 := continuous images of CA-sets (ACA-sets)

Π
1
2 := complements of ACA-sets (CACA-sets)
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Extensions of the Borel hierarchy (2).

A class of sets of real numbers is called a pointclass. A pointclass

is called boldface if it is closed under continuous preimages. If Γ is

a pointclass, we write ∃Γ for the class of sets of the type

∃y(〈x, y〉 ∈ A) where A ∈ Γ, and ∀Γ for the class of sets of the type

∀y(〈x, y〉 ∈ A).

Theorem (Suslin). The Borel sets are precisely those that
are both analytic and co-analytic.

Fact. The smallest boldface pointclasses strictly containing

the class of all Borel sets are the classes Σ1
1 and Π1

1.

So: Is every Π1
1 set determined?
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Applications of determinacy.

If Γ is any boldface pointclass. Suppose that all sets in Γ
are determined. Then:

All sets in Γ are Lebesgue measurable.
(Mycielski-Swierczkowski)

All sets in Γ have the Baire property. (Banach-Mazur)

All sets in Γ have the perfect set property. (Morton
Davis)
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Cantor’s Continuum Problem (1).

First problem in Hilbert’s list (1900).

The Continuum Hypothesis (CH). Every set of real numbers is either finite or countable or

has the cardinality of the set of all real numbers.

Lemma. If the Axiom of Choice holds, then CH is equivalent to “there is a bijection between

ℵ1 and the set of real numbers (in short: 2ℵ0 = ℵ1).

Proof. ⇐ is obvious.

“⇒”: By the Axiom of Choice, there is a bijection π between some ordinal α and R. We only

have to show that Card(α) = ℵ1.

If Card(α) < ℵ1, then the set of reals would be countable, contradicting Cantor’s theorem.

If Card(α) > ℵ1, then α ⊆ ℵ1, and we look at X := π[α] ⊆ R. Clearly,

Card(X) = ℵ1 < Card(R). Contradiction. q.e.d.
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Cantor’s Continuum Problem (2).

One approach to solving Cantor’s Continuum Problem was
the perfect set property.

A tree is called perfect if any node has two incompatible
extensions.

A set of real numbers has the perfect set property if it is
either finite or countable or contains the branches through a
perfect tree.
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Cantor’s Continuum Problem (3).

Observation. If a set of reals has the perfect set property, it
cannot be a counterexample to the Continuum Hypothesis.

Corollary. If all sets have the perfect set property, then CH
is true.

Theorem (Bernstein). The Axiom of Choice implies that
there is a set without the perfect set property.
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The perfect set theorem (1).

Theorem. If all sets in Γ are determined, then all sets in Γ
have the perfect set property.

Weaker Theorem. If all sets are determined, then all sets
have the perfect set property.

(The difference between the “Theorem” and the “Weaker Theorem” is just

an analysis of the complexity of the game.)

Proof. We construct a game that encapsules the perfect set property of a

set A. For technical reasons, we play on the binary branching tree (Cantor

space).

PlayerI s0 s1 s2 . . .

PlayerII x0 x1 x2 . . .

where si are finite sequences of bits and xi are binary bits. We construct

x := s0x0s1x1s2x2 . . . , and say that I wins if x ∈ A.
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The perfect set theorem (2).

PlayerI s0 s1 s2 . . .

PlayerII x0 x1 x2 . . .

where si are finite sequences of bits and xi are binary bits. We construct

x := s0x0s1x1s2x2 . . . , and say that I wins if x ∈ A.

This game is called G∗(A), the asymmetric game, due to Morton

Davis.

If all games of the type G(A) are determined, then all games of the

type G∗(A) are determined.

Rephrasing the notion of a strategic tree, we still get: If player I was a

winning strategy in G∗(A), then A must contain a perfect set.

If A is countable, then player II has a winning strategy.

We need to prove the converse of the last statement.
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The perfect set theorem (3).

Fix a winning strategy for player II, call it τ . If
p = 〈s0, x0, s1, x1, ..., sn, xn〉 is a position for player II, we write

p∗t for s0x0s1x1...snxnt. If x ∈ 2ω, we say p kills x if for all t,
we have that p∗tτ(p∗t) 6⊆ x.

Observation 1. Each p kills at most one sequence x.

Observation 2. Every x ∈ A is killed by a sequence p.

But there are only countably many sequences, so A is a
countable set. q.e.d.
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Non-Extensions of Determinacy.

There is a minimal model of set theory: Gödel’s L, the
constructible universe. In L, there is a wellordering of the

continuum definable in a ∆1
2 way.

Theorem (Gödel). L |= “There is a Π1
1 set without the

perfect set property.”

Corollary. In L, there must be a non-determined Π1
1 set.

Proof. By the perfect set theorem, if every Π1
1 set was

determined, then every Π1
1 set would have the perfect set

property, but that contradicts Gödel’s theorem. q.e.d.

Corollary. The determinacy of all coanalytic sets cannot be
proved in ZFC.
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Foundations of Mathematics (1).

Gödel Incompleteness phenomenon: ZFC is not complete,
i.e., there are statements independent of ZFC. Even worse,
there are interesting questions independent of ZFC: the
Continuum Hypothesis.

Gödel’s Programme: Find further axioms for set theory that
are accepted by all mathematicians than resolve all
interesting questions.

Gödel’s main candidate for these axioms were “Axioms of
Strong Infinity”, also called Large Cardinal Axioms. The
most famous of these is the notion of a measurable
cardinal: a cardinal κ that carries a two-valued measure
measuring all subsets of κ.
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Foundations of Mathematics (2).

A measurable cardinal κ is a cardinal that carries a two-valued measure measuring all

subsets of κ.

Let us denote the statement “there is a measurable
cardinal” by MC.

ZFC (unless inconsistent) doesn’t prove that there is a
measurable cardinal.

ZFC+MC proves Cons(ZFC).

ZFC+MC proves that all co-analytic sets are determined
(Martin, 1970).
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Large Cardinals and Determinacy (1).

There is a level by level analysis of determinacy axioms and
large cardinals:

Π
1
1 determinacy is roughly at the level of one

measurable cardinal (Martin, Harrington)

Π
1
n+1 determinacy is roughly at the level of n Woodin

cardinals (Martin-Steel, Woodin)

Donald A. Martin, John R. Steel, A

proof of projective determinacy, Journal

of the American Mathematical Society 2

(1989), p. 71-125
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Large Cardinals and Determinacy (1).

There is a level by level analysis of determinacy axioms and
large cardinals:

Π
1
1 determinacy is roughly at the level of one

measurable cardinal (Martin, Harrington)

Π
1
n+1 determinacy is roughly at the level of n Woodin

cardinals (Martin-Steel, Woodin)

There is a subtle connection between the Axiom of
Choice and this project, as the lower bounds are related
to whether the large cardinals involved refute the
existence of definable well-orderings of the reals (“Steel
games”).
John R. Steel, Determinacy in the Mitchell models, Annals of Mathematical Logic 22

(1982), p. 109-125
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Large Cardinals and Determinacy (2).

All of the statements “roughly at the level” above can be
made exact.

Itay Neeman, Optimal Proofs of Determi-

nacy, Bulletin of Symbolic Logic 1997
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Large Cardinals and Determinacy (2).

All of the statements “roughly at the level” above can be
made exact.

The strength of the axiom of determinacy is exactly that
of ZFC+“there are infinitely many Woodin cardinals”.
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Uniformization.

Reminder: The connection between set theory and infinite
games started in 1968 with a paper by Blackwell.

David Blackwell, Infinite games and an-

alytic sets, Proceedings of the National

Academy of Sciences U.S.A. 58 (1967),

p. 1836-1837

Blackwell’s proof triggered the development of infinite game
theory in foundations of mathematics.
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The First Periodicity Theorem (1).

If A is a set of real numbers, we consider relations ≤ on A
that are prewellorderings, i.e., reflexive, symmetric,
transitive, linear and well-founded relations.
Prewellorderings give rise to functions from A into the
ordinals, traditionally called norms.

The construction of definable norms are the first step in
proving general uniformization theorems ( the second
periodicity theorem).

Theorem (Martin, Moschovakis). [SIMPLIFIED!] Suppose
AD (for simplicity’s sake). Suppose that ∆ is a class closed
under complementation such that every set in ∆ has a
prewellordering in ∆. Then every set in ∀∆ has a
prewellordering in ∀∃∆ ∩ ∃∀∆.
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The First Periodicity Theorem (2).

Let A ∈ ∀∆, i.e., there is a B ∈∆ such that

x ∈ A ⇐⇒ ∀u(〈x, u〉 ∈ B).

By our assumption, there is a prewellordering ≤ on B that is
in ∆.

For x and y, we define the game Gx,y as follows:

Player I u0 u1 u2 . . .

Player II v0 v1 v2 . . .

Player I produces u, player II produces v, and player II wins
if 〈y, v〉 /∈ B or (〈x, u〉 ∈ B and 〈x, u〉 ≤ 〈y, v〉).

Define x � y if and only if player II has a winning strategy in
Gx,y.
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The First Periodicity Theorem (3).

Define x � y if and only if player II has a winning strategy in Gx,y .

� is reflexive.

� is transitive and linear.

� is well-founded.

Suppose not, then there is a sequence 〈xi ; i ∈ ω〉 such
that x0 ≻ x1 ≻ x2 ≻ .... This means that player II doesn’t
win Gxi,xi+1

, and therefore (by determinacy) that player I

wins Gxi,xi+1
. Let σi be a winning strategy in that game

for player I.

We use the strategies σi to fill up an infinite diagram.
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The First Periodicity Theorem (4).

Player II wins Gx,y if 〈y, v〉 /∈ B or (〈x, u〉 ∈ B and 〈x, u〉 ≤ 〈y, v〉).

Player I wins Gx
i
,x

i+1
. Let σi be a winning strategy in that game for player I.

Gx0,x1 σ0(∅) =: u0
0

σ0(u0
0
u1
0
) =: u0

1
σ0(u0

0
u1
0
u0
1
u1
1
) =: u0

2
σ0(u0

0
u1
0
u0
1
u1
1
u0
2
u1
2
) =: u0

3

Gx1,x2 σ1(∅) =: u1
0

55kkkkk
σ1(u1

0
u2
0
) =: u1

1

44iiiiii
σ1(u1

0
u2
0
u1
1
u2
1
) =: u1

2

33gggggggg
. . .

Gx2,x3 σ2(∅) =: u2
0

55kkkkk
σ2(u2

0
u3
0
) =: u2

1

44iiiiii
. . .

Gx3,x4 σ3(∅) =: u3
0

55kkkkk
. . .

.

.

.
.
.
.

So, we construct infinitely many sequences ui := ui

0
ui

1
ui

2
ui

3
. . . where ui is the result of

playing σi against ui+1. Since σi was winning, we know

〈xi+1, ui+1〉 ∈ B, and

if 〈xi, ui〉 ∈ B, then 〈xi+1, ui+1〉 < 〈xi, ui〉.

Therefore, 〈x1, u1〉 > 〈x2, u2〉 > 〈x3, u3〉 > ... is a strictly decreasing sequence in B.
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The First Periodicity Theorem (5).

Player II wins Gx,y if 〈y, v〉 /∈ B or (〈x, u〉 ∈ B and 〈x, u〉 ≤ 〈y, v〉).

Let’s calculate the complexity of �:

x � y iff ∃τ∀σ(σ ∗ τ is a win for player II)

iff ∀σ∃τ(σ ∗ τ is a win for player II)

Being a win for player II is in ∆, and so � is in ∀∃∆ ∩ ∃∀∆.
q.e.d.
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Summary.

What did we do?

Infinite games play a role in set theory and the
foundations of mathematics.

Every Borel game is determined, but the proofs grow
increasingly non-constructive as you go up the Borel
hierarchy.

There is a connection between the determinacy of
infinite games and the axiom of choice: AC implies that
there are non-determined games, and the definability of
wellorderings of the real line is closely linked to how
much determinacy is provable.

Infinite games have plenty of applications in the general
theory of the real line.
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