Cut: Rule for using lemmas in a proof.

Cut-Elimination:

Elimination of lemmas from proofs.

Transformation to elementary proofs.

Obtain proofs with sub-formula property.

Example:

proofs of theorems in number theory may use topological structures. Cut-elimination yields proofs without topology.

other applications:

extraction of bounds via Herbrand's theorem extraction of programs from proofs

Gentzens' "Hauptsatz":

For every (**LK**-) proof of a formula A there exists a proof of A without cuts (which can be constructed effectively).

The sequent calculus:

Sequent: $A \vdash B$, for finite multi-sets of formulas A, B.

$$A_1, \ldots, A_n \vdash B_1, \ldots, B_m$$
 represents

$$\bigwedge A_i \to \bigvee B_j$$
.

⊢: separation-symbol.

LK: calculus on sequents, based on *logical* and *structural* rules.

axioms: $A \vdash A$ for atoms A.

I. The logical rules:

∧-introduction:

$$\frac{A, \Gamma \vdash \Delta}{A \land B, \Gamma \vdash \Delta} \land : l1 \quad \frac{B, \Gamma \vdash \Delta}{A \land B, \Gamma \vdash \Delta} \land : l2$$

$$\frac{\Gamma \vdash \Delta, A \quad \Gamma \vdash \Delta, B}{\Gamma \vdash \Delta, A \land B} \land : r$$

V-introduction:

$$\frac{A, \Gamma \vdash \Delta}{A \lor B, \Gamma \vdash \Delta} \lor : l$$

$$\frac{\Gamma \vdash \Delta, A}{\Gamma \vdash \Delta, A \lor B} \lor : r1 \qquad \frac{\Gamma \vdash \Delta, B}{\Gamma \vdash \Delta, A \lor B} \lor : r2$$

→-introduction:

$$\frac{\Gamma_{1} \vdash \Delta_{1}, A \quad B, \Gamma_{2} \vdash \Delta_{2}}{A \to B, \Gamma_{1}, \Gamma_{2} \vdash \Delta_{1}, \Delta_{2}} \to : l$$

$$\frac{A, \Gamma \vdash \Delta, B}{\Gamma \vdash \Delta, A \to B} \to : r$$

¬-introduction:

$$\frac{\Gamma \vdash \Delta, A}{\neg A, \Gamma \vdash \Delta} \neg : l \qquad \frac{A, \Gamma \vdash \Delta}{\Gamma \vdash \Delta, \neg A} \neg : r$$

 \forall -introduction (eigenvariable cond. for $\forall : r$):

$$\frac{A(x/t), \Gamma \vdash \Delta}{(\forall x)A(x), \Gamma \vdash \Delta} \forall : l \quad \frac{\Gamma \vdash \Delta, A(x/y)}{\Gamma \vdash \Delta, (\forall x)A(x)} \forall : r$$

 \exists -introduction (the eigenvariable conditions for \exists : l are these for \forall : r):

$$\frac{A(x/y), \Gamma \vdash \Delta}{(\exists x)A(x), \Gamma \vdash \Delta} \exists : l \quad \frac{\Gamma \vdash \Delta, A(x/t)}{\Gamma \vdash \Delta, (\exists x)A(x)} \exists : r$$

II. The structural rules:

weakening:

$$\frac{\Gamma \vdash \Delta}{\Gamma \vdash \Delta, A} w : r \qquad \frac{\Gamma \vdash \Delta}{A, \Gamma \vdash \Delta} w : l$$

contraction:

$$\frac{A,A,\Gamma\vdash\Delta}{A,\Gamma\vdash\Delta}\,c:l\qquad \qquad \frac{\Gamma\vdash\Delta,A,A}{\Gamma\vdash\Delta,A}\,c:r$$

cut:

$$\frac{\Gamma \vdash \Delta, A \quad A, \Pi \vdash \Lambda}{\Gamma, \Pi \vdash \Delta, \Lambda} cut(A)$$

Let A be a formula s.t. A occurs in Δ and in Π . Then the mix is defined as:

$$\frac{\Gamma \vdash \Delta}{\Gamma, \Pi^* \vdash \Delta^*, \Lambda} \min(A)$$

where $\Pi^* = \Pi$ after elimination of A, similar for Δ .

LK-proof without cut:

$$\frac{P(y) \vdash P(y)}{P(y) \vdash P(b), P(y)} w : r$$

$$\frac{P(y) \vdash P(b), P(y)}{P(y), \neg P(y) \vdash P(b)} \neg : l \quad P(b) \vdash P(b)} w : l$$

$$\frac{P(y), \neg P(y) \lor P(b) \vdash P(b)}{P(y), (\forall x)(\neg P(x) \lor P(b)) \vdash P(b)} \forall : l$$

$$\frac{P(y), (\forall x)(\neg P(x) \lor P(b)) \vdash P(b)}{(\exists x)P(x), (\forall x)(\neg P(x) \lor P(b)) \vdash P(b)} \exists : l$$

$$\frac{(\forall x)(\neg P(x) \lor P(b)) \vdash (\exists x)P(x) \to P(b)}{(\forall x)(\neg P(x) \lor P(b)) \to ((\exists x)P(x) \to P(b))} \rightarrow : r$$

LK-proof with cut:

$$\frac{(\varphi_1)}{(\forall x)(\neg P(x) \lor P(b)) \vdash A \quad A \vdash (\exists x)P(x) \to P(b)} \underbrace{(\forall x)(\neg P(x) \lor P(b)) \vdash (\exists x)P(x) \to P(b)}_{(\forall x)(\neg P(x) \lor P(b)) \to ((\exists x)P(x) \to P(b))} \underbrace{cut}_{r}$$

for
$$A = (\forall x) \neg P(x) \lor P(b)$$
 and

$$\varphi_2 =$$

$$\frac{P(y) \vdash P(y)}{P(y) \vdash P(b), P(y)} w : r$$

$$\frac{P(y) \vdash P(b), P(y)}{P(y), \neg P(y) \vdash P(b)} \neg : l \qquad P(b) \vdash P(b)$$

$$\frac{P(y), (\forall x) \neg P(x) \vdash P(b)}{P(y), P(b) \vdash P(b)} w : l$$

$$\frac{P(y), (\forall x) \neg P(x) \lor P(b) \vdash P(b)}{(\exists x) P(x), (\forall x) \neg P(x) \lor P(b) \vdash P(b)} \exists : l$$

$$\frac{(\exists x) P(x), (\forall x) \neg P(x) \lor P(b) \vdash P(b)}{(\forall x) \neg P(x) \lor P(b) \vdash (\exists x) P(x) \to P(b)} \rightarrow : r$$

Gentzen's method of cut-elimination:

- reduction of rank and grade.
- "peeling" the cut-formulas from outside.
- elimination of an uppermost cut.

The method can be described as a

normal form computation

based on a set of rules \mathcal{R} .

Computational features:

- very slow
- weak in detecting redundancy.

Example of a Gentzen reduction:

$$\frac{P(a) \vdash P(a)}{(\forall x)P(x) \vdash P(a)} \, \forall : l \quad \frac{P(b) \vdash P(b)}{(\forall x)P(x) \vdash P(b)} \, \forall : l \quad \frac{P(a) \vdash P(a)}{P(a) \land P(b) \vdash P(a)} \land : l}{(\forall x)P(x) \vdash P(a) \land P(b)} \quad \frac{(\forall x)P(x) \vdash P(a)}{P(a) \land P(b) \vdash P(a)} \quad \frac{\exists : r}{cut}$$

rank = 3, grade = 1. reduce to rank = 2, grade = 1:

$$\frac{P(a) \vdash P(a)}{(\forall x)P(x) \vdash P(a)} \forall : l \quad \frac{P(b) \vdash P(b)}{(\forall x)P(x) \vdash P(b)} \forall : l \quad P(a) \vdash P(a) \\
\frac{(\forall x)P(x) \vdash P(a) \land P(b)}{(\forall x)P(x) \vdash P(a) \land P(b)} \land : r \quad \frac{P(a) \vdash P(a)}{P(a) \land P(b) \vdash P(a)} \land : l \\
\frac{(\forall x)P(x) \vdash P(a)}{(\forall x)P(x) \vdash (\exists x)P(x)} \exists : r$$

$$\frac{P(a) \vdash P(a)}{(\forall x)P(x) \vdash P(a)} \forall : l \quad \frac{P(b) \vdash P(b)}{(\forall x)P(x) \vdash P(b)} \forall : l \quad P(a) \vdash P(a)}{(\forall x)P(x) \vdash P(a) \land P(b)} \land : r \quad \frac{P(a) \vdash P(a)}{P(a) \land P(b) \vdash P(a)} \land : l \quad \frac{(\forall x)P(x) \vdash P(a)}{(\forall x)P(x) \vdash (\exists x)P(x)} \exists : r$$

rank = 2, grade = 1. reduce to grade = 0, rank = 3:

$$\frac{P(a) \vdash P(a)}{(\forall x)P(x) \vdash P(a)} \forall : l \quad P(a) \vdash P(a) \\ \frac{(\forall x)P(x) \vdash P(a)}{(\forall x)P(x) \vdash (\exists x)P(x)} \exists : r$$

eliminate cut with axiom:

$$\frac{P(a) \vdash P(a)}{(\forall x)P(x) \vdash P(a)} \forall : l$$
$$(\forall x)P(x) \vdash (\exists x)P(x) \exists : r$$

Cut-elimination by Resolution (CERES):

based on a structural analysis of LK-proofs.

sub-derivation into cuts

 φ

sub-derivation into end sequent

 $CL(\varphi)$: characteristic clause set, carries substantial information on derivations of cut formulas.

clause = atomic sequent.

sequent = $\Gamma \vdash \Delta$. Γ, Δ multisets of formulas cut-elimination = reduction to *atomic cuts*.

The Method CERES:

Example:

$$\frac{\varphi_1}{(\forall x)(P(x) \to Q(x)) \vdash (\exists y)(P(a) \to Q(y))} cut$$

$$\varphi_1 =$$

$$\frac{P(u)^* \vdash P(u) \quad Q(u) \vdash Q(u)^*}{P(u)^*, P(u) \to Q(u) \vdash Q(u)^*} \to : l$$

$$\frac{P(u) \to Q(u) \vdash (P(u) \to Q(u))^*}{P(u) \to Q(u) \vdash (\exists y)(P(u) \to Q(y))^*} \exists : r$$

$$\frac{P(u) \to Q(u) \vdash (\exists y)(P(u) \to Q(y))^*}{(\forall x)(P(x) \to Q(x)) \vdash (\exists y)(P(u) \to Q(y))^*} \forall : l$$

$$\frac{(\forall x)(P(x) \to Q(x)) \vdash (\forall x)(\exists y)(P(x) \to Q(y))^*}{(\forall x)(P(x) \to Q(x)) \vdash (\forall x)(\exists y)(P(x) \to Q(y))^*} \forall : r$$

$$\varphi_2 =$$

$$\frac{P(a) \vdash P(a)^{\star} \quad Q(v)^{\star} \vdash Q(v)}{P(a), (P(a) \to Q(v))^{\star} \vdash Q(v)} \to : l$$

$$\frac{P(a) \vdash P(a)^{\star} \quad Q(v)^{\star} \vdash Q(v)}{(P(a) \to Q(v))^{\star} \vdash P(a) \to Q(v)} \to : r$$

$$\frac{P(a) \vdash P(a)^{\star} \quad Q(v)^{\star} \vdash Q(v)}{(P(a) \to Q(v))^{\star} \vdash (\exists y)(P(a) \to Q(y))} \to : r$$

$$\frac{P(a) \vdash P(a)^{\star} \quad Q(v)^{\star} \vdash Q(v)}{(P(a) \to Q(v))^{\star} \vdash (\exists y)(P(a) \to Q(y))} \to : l$$

$$\frac{P(a) \vdash P(a)^{\star} \quad Q(v)^{\star} \vdash Q(v)}{(P(a) \to Q(v))^{\star} \vdash (\exists y)(P(a) \to Q(y))} \to : l$$

$$\frac{P(a) \vdash P(a)^{\star} \quad Q(v)^{\star} \vdash Q(v)}{(P(a) \to Q(v))^{\star} \vdash (\exists y)(P(a) \to Q(v))} \to : l$$

$$\frac{P(a) \vdash P(a)^{\star} \quad Q(v)^{\star} \vdash Q(v)}{(P(a) \to Q(v))^{\star} \vdash (\exists y)(P(a) \to Q(v))} \to : l$$

$$\frac{P(a) \vdash P(a)^{\star} \quad Q(v)^{\star} \vdash Q(v)}{(P(a) \to Q(v))^{\star} \vdash (\exists y)(P(a) \to Q(v))} \to : l$$

$$\frac{P(a) \vdash P(a)^{\star} \quad Q(v)^{\star} \vdash Q(v)}{(P(a) \to Q(v))^{\star} \vdash (\exists y)(P(a) \to Q(v))} \to : l$$

$$S_1 = \{P(u) \vdash\}, \ S_2 = \{\vdash Q(u)\}, \ S_3 = \{\vdash P(a)\}, \ S_4 = \{Q(v) \vdash\}.$$

$$S = S_1 \times S_2 = \{P(u), Q(u)\}.$$

$$S' = S_3 \cup S_4 = \{\vdash P(a); \ Q(v) \vdash\}.$$

$$\mathsf{CL}(\varphi) = S \cup S' = \{P(u) \vdash Q(u); \ \vdash P(a); \ Q(v) \vdash\}.$$

Projection to $CL(\varphi)$:

- Skip inferences leading to cuts.
- Obtain cut-free proof of end-sequent + a clause in $CL(\varphi)$.

Let φ be the proof of the sequent

 $S: (\forall x)(P(x) \rightarrow Q(x)) \vdash (\exists y)(P(a) \rightarrow Q(y))$ shown above.

$$\mathsf{CL}(\varphi) = \{ P(u) \vdash Q(u); \vdash P(a); \quad Q(v) \vdash \}.$$

Skip inferences in φ_1 leading to cuts:

$$\frac{P(u) \vdash P(u) \quad Q(u) \vdash Q(u)}{P(u), P(u) \to Q(u) \vdash Q(u)} \to : l$$

$$P(u), (\forall x)(P(x) \to Q(x)) \vdash Q(u) \forall : l$$

$$\varphi(C_1) =$$

$$\frac{P(u) \vdash P(u) \quad Q(u) \vdash Q(u)}{P(u), P(u) \rightarrow Q(u) \vdash Q(u)} \rightarrow : l$$

$$\frac{P(u), (\forall x)(P(x) \rightarrow Q(x)) \vdash Q(u)}{P(u), (\forall x)(P(x) \rightarrow Q(x)) \vdash (\exists y)(P(a) \rightarrow Q(y)), Q(u)} w : r$$

For $C_2 = \vdash P(a)$ we obtain the projection $\varphi(C_2)$:

$$\frac{P(a) \vdash P(a)}{P(a) \vdash P(a), Q(v)} w : r$$

$$\frac{P(a) \vdash P(a), Q(v)}{\vdash P(a) \to Q(v), P(a)} \to : r$$

$$\frac{P(a) \vdash P(a), Q(v)}{\vdash P(a) \to Q(v), P(a)} \exists : l$$

$$(\forall x)(P(x) \to Q(x)) \vdash (\exists y)(P(a) \to Q(y)), P(a) w : l$$

next step:

- Construct an R-refutation γ of $CL(\varphi)$,
- ullet insert the projections of φ into γ .

Let φ be the proof of

$$S: (\forall x)(P(x) \to Q(x)) \vdash (\exists y)(P(a) \to Q(y))$$

as defined above. Then

$$CL(\varphi) =$$

$$\{C_1: P(u) \vdash Q(u), C_2: \vdash P(a), C_3: Q(u) \vdash \}.$$

First we define a resolution refutation δ of $CL(\varphi)$:

$$\frac{\vdash P(a) \quad P(u) \vdash Q(u)}{\vdash Q(a)} R \quad Q(v) \vdash R$$

R = atomic mix + most general unification.

ground projection γ of δ :

$$\frac{\vdash P(a) \quad P(a) \vdash Q(a)}{\vdash Q(a)} R \quad Q(a) \vdash R$$

$$\vdash R$$

The ground substitution defining the ground projection is

$$\sigma: \{u \leftarrow a, v \leftarrow a\}.$$

Let
$$\chi_1 = \varphi(C_1)\sigma$$
,
 $\chi_2 = \varphi(C_2)\sigma$ and
 $\chi_3 = \varphi(C_3)\sigma$.

$$B = (\forall x)(P(x) \to Q(x)),$$

$$C = (\exists y)(P(a) \to Q(y)).$$

Then $\varphi(\gamma) =$

$$\frac{B \vdash C, P(a) \quad P(a), B \vdash C, Q(a)}{B, B \vdash C, C, Q(a)} \underbrace{cut \quad (\chi_3)}_{Q(a), B \vdash C} \underbrace{\frac{B, B \vdash C, C, Q(a)}{B \vdash C}}_{Cut} cut$$

Definition 1

- SK = set of all **LK**-derivations with skolemized end-sequents.
- \mathcal{SK}_{\emptyset} = set of all cut-free proofs in \mathcal{SK} .
- \bullet $\mathcal{SK}^i=$ derivations in \mathcal{SK} with cut-formulas of formula complexity $\leq i$. \sharp

Goal: reduction to derivations with only atomic cuts, i.e.

transform $\varphi \in \mathcal{SK}$ into $\psi \in \mathcal{SK}^0$.

first step: construction of the characteristic clause set

Characteristic Clause Set:

Let φ be an **LK**-derivation of S and let Ω be the set of all occurrences of cut formulas in φ . We define the set of clauses $\mathsf{CL}(\varphi)$ inductively:

Let ν be the occurrence of an initial sequent in φ and seq_{ν} the corresponding sequent. Then

$$S/\nu = \{seq(\nu, \Omega)\}$$

where $seq(\nu, \Omega)$ is the subsequent of seq_{ν} containing the ancestors of Ω .

Assume:

 S/ν already constructed for depth $(\nu) \leq k$.

$$depth(\nu) = k + 1$$
:

- (a) ν is the consequent of μ : $S/\nu = S/\mu$.
- (b) ν is the consequent of μ_1 and μ_2 :
- (b1) The auxiliary formulas of ν are ancestors of Ω , i.e. the formulas occur in $seq(\mu_1, \Omega), seq(\mu_2, \Omega)$:
- $(+) S/\nu = S/\mu_1 \cup S/\mu_2.$
- (b2) The auxiliary formulas of ν are not ancestors of Ω :

$$(\times)$$
 $S/\nu = S/\mu_1 \times S/\mu_2$.

 $CL(\varphi) = S/\nu_0$ where ν_0 is the occurrence of the end-sequent.

Remark: If φ is a cut-free proof then there are no occurrences of cut formulas in φ and $CL(\varphi) = \emptyset$.

Proposition 1

Let φ be an **LK**-derivation. Then $CL(\varphi)$ is unsatisfiable.

Projection:

Lemma 1

Let φ be a deduction in SK of a sequent S: $\Gamma \vdash \Delta$. Let $C: \bar{P} \vdash \bar{Q}$ be a clause in $CL(\varphi)$. Then there exists a deduction

$$\varphi(C)$$
 of $\bar{P}, \Gamma \vdash \Delta, \bar{Q}$

s.t.

$$\varphi(C) \in \mathcal{SK}_{\emptyset}$$
 and $l(\varphi(C)) \leq l(\varphi)$.

Projection of φ to C: construct $\varphi(C)$.

the remaining steps:

- Construct an R-refutation γ of $CL(\varphi)$,
- \bullet insert the projections of φ into γ .
- add some contractions and obtain a proof with (only) atomic cuts.
- (• eliminate the atomic cuts)

CERES does not only work for LK.

- any sound sequent calculus for classical logic (with cut) does the job.
- unary rules do not "count".
- necessary: auxiliary formulas, principal formulas, ancestor relation

Example: LKDe

LK + equality rules + definition introduction. Important to *formalization of mathematical proofs*.

Corresponding clausal calculus: resolution + paramodulation.

Example:

If a divides b then it divides b^2 .

D stands for "divides" and is defined by

$$D(x,y) \leftrightarrow \exists zx * z = y.$$

The active equations are written in boldface.

$$\frac{a * z_0 = b \vdash a * z_0 = b \quad \vdash b * b = b * b}{a * z_0 = b \vdash (a * z_0) * b = b * b} = : r$$

$$\frac{a * z_0 = b \vdash a * (z_0 * b) = b * b}{a * z_0 = b \vdash \exists z \cdot a * z = b * b} \exists : r$$

$$\frac{a * z_0 = b \vdash \exists z \cdot a * z = b * b}{\exists z \cdot a * z = b + b} \exists : l$$

$$\frac{\exists z \cdot a * z = b \vdash \exists z \cdot a * z = b * b}{\exists z \cdot a * z = b + b} \det_{D} : r$$

$$\frac{\exists z \cdot a * z = b \vdash D(a, b * b)}{D(a, b) \vdash D(a, b * b)} \to : r$$

Axioms:

- (1) an instance of associativity,
- (2) $\vdash b * b = b * b$ (instance of reflexivity),
- (3) $a * z_0 = b \vdash a * z_0 = b$.

Experiments with CERES:

- underlying theorem prover: OTTER.
- very large proofs can be handled.
- Analysis of an example from C. Urban.
 mathematically different proofs from CERES.
- work in progress:

 analysis of a proof from the BOOK.
 elimination of topological arguments
 from a proof in number theory.
- system ceres available at http://www.logic.at/ceres/

Complexity:

complexity of cut-elimination is nonelementary.

Orevkov, Statman (1979):

There exists a sequence of **LK**-proofs φ_n of sequents S_n s.t.

- $\|\varphi_n\| \le 2^{k*n}$ and
- for all cut-free proofs ψ of φ_n :

$$\|\psi\| > s(n)$$
 where $s(0) = 1, \ s(n+1) = 2^{s(n)}.$

There exists no cheap way of cut-elimination in principle!

CERES:

main point of complexity: resolution proof.

 φ : **LK**-proof of S.

Let γ be a resolution refutation of $CL(\varphi)$. Then there exists a proof ψ of S with (only) atomic cuts s.t.

$$\|\psi\| \le 2 * \|\gamma\| * \|\varphi\|.$$

If all axioms are standard $(A \vdash A)$ then there exists a cut-free proof ψ' of S s.t.

$$\|\psi'\| \le 2^{d*\|\gamma\|*\|\varphi\|}.$$

CERES is superior to Gentzen:

nonelementary speed-up of Gentzen by CERES:

• There exists a sequence of LK-proofs φ_n s.t. $\|\varphi_n\| \le 2^{k*n}$ and all Gentzen-eliminations are of size > s(n).

CERES produces $\leq 2^{m*n}$ symbols.

• There is no nonelementary speed-up of CERES by Gentzen!

Characteristic Clause Sets and Cut-Reduction

Lemma 2

Let φ, φ' be **LK**-derivations with $\varphi > \varphi'$ for a cut reduction relation > based on \mathcal{R} . Then $\mathsf{CL}(\varphi) \leq_{ss} \mathsf{CL}(\varphi')$.

proof:

by cases according to the definitions of > and $\mathcal{R}.$

 $\mathcal{R}=$ set of cut-reduction rules extracted from Gentzen's proof.

 \leq_{ss} : subsumption relation on clause sets.

Theorem 1

Let φ be an **LK**-deduction and ψ be a normal form of φ under a cut reduction relation > based on \mathcal{R} . Then

$$\mathsf{CL}(\varphi) \leq_{ss} \mathsf{CL}(\psi).$$

Theorem 2

Let φ be an **LK**-derivation and ψ be a normal form of φ under a cut reduction relation $>_{\mathcal{R}}$ based on \mathcal{R} . Then there exists a resolution refutation γ of $\mathsf{CL}(\varphi)$ s.t.

$$\gamma \leq_{ss} \mathsf{RES}(\psi)$$
.

 $RES(\psi) = (standard)$ resolution refutation of $CL(\psi)$.

Corollary 1

Let φ be an **LK**-derivation and ψ be a normal form of φ under a cut reduction relation $>_{\mathcal{R}}$ based on \mathcal{R} . Then there exists a resolution refutation γ of $\mathsf{CL}(\varphi)$ s.t.

$$l(\gamma) \le l(\mathsf{RES}(\psi)) \le l(\psi) * 2^{2*l(\psi)}.$$

Corollary 2

Let φ be an **LK**-derivation and ψ be a normal form of φ under a cut reduction relation $>_{\mathcal{R}}$ based on \mathcal{R} . Then there exists a proof χ obtained from φ by CERES s.t.

$$l(\chi) \le l(\varphi) * l(\psi) * 2^{2*l(\psi)}.$$

Proof: χ is defined by inserting the projections of φ into a refutation γ of $CL(\varphi)$. \diamondsuit

Corollary 3

Let φ be an **LK**-derivation and ψ be a normal form of φ under Gentzen's or Tait's method. Then there exists an proof χ obtained from φ by CERES s.t.

$$l(\chi) \le l(\varphi) * l(\psi) * 2^{2*l(\psi)}.$$

Proof: Gentzens and Tait's methods are based on \mathcal{R} .

Cut Reduction Rules:

If a cut-derivation ψ is transformed to ψ' then we define

$$\psi > \psi'$$

where $\psi =$

$$\frac{(\rho) \qquad (\sigma)}{\Gamma, \, \Pi^* \vdash \Delta \qquad \Pi \vdash \Lambda} \, cut$$

3.11. rank = 2.

The last inferences in ρ , σ are logical ones and the cut-formula is the principal formula of these inferences:

3.113.31.

$$\frac{\Gamma \vdash \Delta, A \quad \Gamma \vdash \Delta, B}{\Gamma \vdash \Delta, A \land B} \land : r \quad \frac{A, \Pi \vdash \Lambda}{A \land B, \Pi \vdash \Lambda} \land : l$$

$$\Gamma, \Pi \vdash \Delta, \Lambda$$

$$Cut(A \land B)$$

transforms to

$$\frac{\Gamma \vdash \Delta, A \quad A, \Pi \vdash \Lambda}{\Gamma, \Pi \vdash \Delta^*, \Lambda} cut(A)$$

$$\frac{\Gamma, \Pi^* \vdash \Delta^*, \Lambda}{\Gamma, \Pi \vdash \Delta, \Lambda} w :^*$$

For the other form of \wedge : l the transformation is straightforward.

3.113.33.

$$\frac{\Gamma \vdash \Delta, B_{\alpha}^{x}}{\Gamma \vdash \Delta, (\forall x)B} \forall : r \quad \frac{B_{t}^{x}, \Pi \vdash \Lambda}{(\forall x)B, \Pi \vdash \Lambda} \forall : l \\ \frac{\Gamma, \Pi \vdash \Delta, \Lambda}{}$$

transforms to

$$\frac{\Gamma \vdash \Delta, B_t^x \quad B_t^x, \Pi \vdash \Lambda}{\frac{\Gamma, \Pi^* \vdash \Delta^*, \Lambda}{\Gamma, \Pi \vdash \Delta, \Lambda} w} cut(B_t^x)$$

3.113.34. The last inferences in ρ, σ are \exists : r, \exists : l: symmetric to 3.113.33.

- **3.12.** rank > 2:
- **3.121.** right-rank > 1:
- **3.121.2.** The cut formula does not occur in the antecedent of the end-sequent of ρ .
- **3.121.23.** The last inference in σ is binary:
- **3.121.231.** The case $\wedge : r$. Here

$$\frac{(\rho)}{\Pi \vdash \Lambda} \frac{\Gamma \vdash \Delta, B}{\Gamma \vdash \Delta, B} \frac{\Gamma \vdash \Delta, C}{\Gamma \vdash \Delta, B \land C} \land : r$$

$$\frac{\Pi \vdash \Lambda}{\Pi, \Gamma^* \vdash \Lambda^*, \Delta, B \land C} cut(A)$$

transforms to

3.121.232. The case $\vee:l.$ Then ψ is of the form

$$\frac{(\rho)}{\Pi \vdash \Lambda} \frac{B, \Gamma \vdash \Delta}{B \lor C, \Gamma \vdash \Delta} \lor : l$$

$$\frac{\Pi \vdash \Lambda}{\Pi, (B \lor C)^*, \Gamma^* \vdash \Lambda^*, \Delta} cut(A)$$

 $(B \lor C)^*$ is empty if $A = B \lor C$ and $B \lor C$ otherwise.

We first define the proof τ :

$$\frac{P \vdash \Lambda}{B^*, \Pi, \Gamma^* \vdash \Delta} (C, \Gamma) = \Delta (C, \Gamma) + \Delta (C,$$

Note that, in case A=B or A=C, the inference x is w:l; otherwise x is the identical transformation and can be dropped.

If $(B \lor C)^* = B \lor C$ then ψ transforms to τ .

If, on the other hand, $(B \vee C)^*$ is empty (i.e. $B \vee C = A$) then we transform ψ to

$$\frac{ \begin{array}{c} (\rho) \\ \frac{\Pi \vdash \Lambda}{\Pi, \Pi^*, \Gamma^* \vdash \Lambda^*, \Lambda^*, \Delta} \end{array} cut(A)}{ \begin{array}{c} \Gamma, \Gamma^* \vdash \Lambda^*, \Lambda^*, \Delta \\ \Gamma, \Gamma^* \vdash \Lambda^*, \Delta \end{array} c:^*$$

3.121.233. The last inference in ψ_2 is \rightarrow : l. Then ψ is of the form:

$$\frac{(\psi_1)}{\Pi \vdash \Sigma} \frac{\Gamma \vdash \Theta, B}{B \to C, \Gamma, \Delta \vdash \Lambda} \xrightarrow{C: l} \frac{(\chi_1)}{B \to C, \Gamma, \Delta \vdash \Theta, \Lambda} \xrightarrow{C: l} l$$

$$\frac{(\psi_1)}{B \to C, \Gamma, \Delta \vdash \Theta, \Lambda} \xrightarrow{cut(A)} cut(A)$$

As in 3.121.232 $(B \to C)^* = B \to C$ for $B \to C \neq A$ and $(B \to C)^*$ empty otherwise.

3.121.233.1. A occurs in Γ and in Δ . Again we define a proof τ :

$$\frac{(\psi_1)}{\prod \vdash \Sigma} (\chi_1) \qquad \frac{(\psi_1)}{C \vdash \Theta, B} (x_2) \qquad \frac{(\psi_1)}{C^*, \Pi, \Delta^* \vdash \Sigma} (x_2) \qquad cut(A) \qquad \frac{(\psi_1)}{C^*, \Pi, \Delta^* \vdash \Sigma^*, \Lambda} cut(A) \qquad \frac{(\psi_1)}{C, \Pi, \Delta^* \vdash \Sigma^*, \Lambda} x \qquad \rightarrow : l$$

If $(B \to C)^* = B \to C$ then, as in 3.121.232, ψ is transformed to τ + some additional contractions. Otherwise an additional cut with cut formula A is appended.

3.121.233.2 A occurs in Δ , but not in Γ . As in 3.121.233.1 we define a proof τ :

$$\frac{(\psi_1)}{\Box \vdash \Sigma} \frac{(\chi_2)}{C, \Delta \vdash \Lambda} cut(A)$$

$$\frac{(\chi_1)}{C \vdash \Theta, B} \frac{C^*, \Pi, \Delta^* \vdash \Sigma^*, \Lambda}{C, \Pi, \Delta^* \vdash \Sigma^*, \Lambda} x$$

$$B \to C, \Gamma, \Pi, \Delta^* \vdash \Theta, \Sigma^*, \Lambda \to : l$$

Again we distinguish the cases $B \to C = A$ and $B \to C \neq A$ and define the transformation of ψ exactly like in 3.121.233.1.

References:

M. Baaz, S. Hetzl, A. Leitsch, C. Richter, H. Spohr: Cut-Elimination: Experiments with CERES, LPAR 2004, *Lecture Notes in Artificial Intelligence*, pp. 481-495, 2005.

M. Baaz, A. Leitsch: Cut-Elimination and Redundancy-Elimination by Resolution, *Journal of Symbolic Computation*, 29, pp. 149-176, 2000.

M. Baaz, A. Leitsch: Towards a Clausal Analysis of Cut-Elimination, *Journal of Symbolic Computation*, 41, pp. 381–410, 2006.

website: http://www.logic.at/ceres/