Cut: Rule for using lemmas in a proof.

Cut-Elimination:
Elimination of lemmas from proofs.
Transformation to elementary proofs.
ODbtain proofs with sub-formula property.

Example:

proofs of theorems in number theory may use
topological structures. Cut-elimination yields
proofs without topology.

other applications:
extraction of bounds via Herbrand’'s theorem
extraction of programs from proofs



Gentzens’ ‘“Hauptsatz’:

For every (LK-) proof of a formula A there
exists a proof of A without cuts (which can be
constructed effectively).

The sequent calculus:

Sequent: A+ B, for finite multi-sets of for-
mulas A, B.

Aq,...,An - B1,...,Bn represents
NA; — V B;.
: separation-symbol.

LK: calculus on sequents,
based on logical and structural rules.

axioms: A+ A for atoms A.



I. The logical rules:

A-introduction:
AT FA B, I'A

ANBTFAN AABTEAN

rFAA THFA,B
FrFA,AANB

AN.r

V-introduction:

ATHFA BTFA
AVBTFA Vil

Mr-AA '=A,B

reaAvBY '™ FEAa avBY

—-introduction:
MM FA{,A B,[>FA>

A= BTy, ToF Ay, Ay !

AT FHFAB
= A, A—> B
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—-introduction:

r-0,A ATHEA
—ATEAT! rFA,—A 7

V-introduction (eigenvariable cond. for V : r):

A(z/t), T F A _ M= A, A(z/y)
V2)A@). TFA Y L FEA, (Vo) A(x)

Y:ir

J-introduction (the eigenvariable conditions for
3 :1 are these for V : r):

A(z/y), T = A _ A, A(x/t) _
(@A) A@) . TFAT L FTEA (@2)A) "




II. The structural rules:

weakening:
VAN : = A .
|_|_2,A'w.fr A’r|_2w.l

contraction:

AATEAN Fr-A A A
ATFA € r-AaA <7
cut:
r-AA ANEFA
r A A cut(d)

Let A be a formula s.t. A occurs in A and in
[1. Then the mix is defined as:

e R R i

where I* = 1 after elimination of A, similar
for A.



LK-proof without cut:

P(y) - P(y)
P(y) = P(b), P(y) ", , P(b) - P(b) I
P(y),-P(y)-P(®) ~° P(y),P()F P(b) Vo

P(y),~P(y) Vv P(b) - P(b) w7
P(y), (Vz)(—=P(z) v P(b)) - P(b) B
(3z) P(x), (Vz)(=P(z) vV P(b)) = P(b) = "
(¥2)(=P(z) V P())) F Q) P(z) — P(6) "

w.r

- (Vz)(=P(2) vV P(b)) — ((32)P(z) — P(b))



LK-proof with cut:

(¢1) (¢2)
(Vz)(=P(zx) VP(B)FA AF (dx)P(x) — P(b)
(Vx)(=P(x) VvV P(b)) F (3z)P(x) — P(b)
= (Vx)(=P(x) vV P(b)) — ((Fx)P(x) — P(b))

cut
—. T

for A = (Vx)—-P(x) Vv P(b) and
Y2 —

P(y) - P(y)
P(y) - PO), P(y) "
P(y),~Py) - P®) | PWFPB)
P(y), (Vz)=P(z) - P(b) """ P(y), P(b) = P()
P(y), (Vz)-P(z) vV P(b) - P(b) . |
(32)P(z), (V&)~P(z) v P(b) F P(5) = *!
(Vx)-P(z) vV P(b) + (3z)P(x) — P(b)

w.r

/r'o



Gentzen’s method of cut-elimination:

e reduction of rank and grade.
e ‘‘peeling”’ the cut-formulas from outside.
e climination of an uppermost cut.

The method can be described as a

normal form computation

based on a set of rules R.

Computational features:

e very slow
e weak in detecting redundancy.



Example of a Gentzen reduction:

P(a) - P(a) Pb) F P(b) P(a) - P(a)

Vil Vil Al

(Vz)P(z) - P(a) (Vx)P(z) - P(b) A ' - P(a) NP(b) - P(a) " _" .
(Vx)P(z) - P(a) N P(b) ' P(a) NP(b) - (3x)P(x) cu-t
(Vz)P(z) - (3x)P(x)

rank = 3, grade = 1.
reduce to rank = 2, grade = 1:

P(a) F P(a) _ P(b) + P(b)

Vo) P(z) - P(a) " ! (Y2)P(z) F P(b) X lr P@FP@
(Vo) P (@) - P(a) A P(b) " P@APOFP@
(PG P)

(Vz)P(z) - (Fz)P(x)
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P(a)F P(a) P(b) - P(b)
Vo) P(z) - P(a) ¥ -

Vo) P(z) F P(b) ¥ ! P(a) - P(a)

(Vz)P(z) + P(a) -
(Vz)P(z) - (dz)P(x) ~°

rank = 2, grade = 1.
reduce to grade = 0, rank = 3:

P(a)F P(a) .,

(Vx)P(x) F P(a) " P(a) F P(a)
()P F Pla)

(Vx)P(x) F (Jz)P(x) — -

cut

eliminate cut with axiom:

P(a) F P(a)
(Vx)P(z) F P(a)
(Vx)P(x) - (3z) P(x)

Vil
J:7r

11
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Cut-elimination by Resolution (CERES):

based on a structural analysis of LK-proofs.

sub-derivation into cuts

sub-derivation into end sequent

CL(yp): characteristic clause set,

carries substantial information on derivations
of cut formulas.

clause = atomic sequent.

sequent =T F A. ', A multisets of formulas

cut-elimination = reduction to atomic cuts.

12



The Method CERES:

Example:

©1 ©2 cuut
(Vz)(P(z) — Q(z)) F (Fy)(P(a) — Q(y))

Y1 —

P(w)* F P(u)  Q(w) - Q(u)*
P(w)*, P(w) = Q(u) F Q(w)*
P(u) = Q(w) F (P(w) — Q(u)* 1"
P(u) — Q) F Gy)(P(w) = QW)* ' 1,
(V) (P() — Q@) F Gy) (P(w) — Q)* " /.
(V) (P(2) — Q(2)) F (V) Gp) (P(2) — Q)™ 7

—:

—. T

Y2 =

P(a)F P(a)* Q) F Q)
P(a), (P(a) = Q@)* F Q) !,
(P(a) = Q) P(a) — Q) 'L
(P(a) — Q))* - Gy)(P(a) = Q)
(F)(P(a) — Q)" F Gy)(P(a) — Q)

(Vz)(Fy) (P(z) — Q())* - @) (P(a) — Q) " **
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S1={P(u) F}, So={FQ(w)},
53 ={F P(a)}, S4 ={Q(v) F}.

S =51 xS ={P(u),Q(u)}.
S'=S3USs = {F P(a); Q(v)F}.

CL(p) =SuUS =
{P(u) F Q(u); F P(a); Q(v)F}.

14



Projection to CL(y):
e SKip inferences leading to cuts.

e Obtain cut-free proof of end-sequent
+ a clause in CL(yp).

Let ¢ be the proof of the sequent

S:(Vz)(P(z) — Q(z)) F (Fy)(P(a) — Q(¥y))

shown above.

15



CL(p) ={P(u) - Q(u); + P(a); Q(v)F}.

Skip inferences in ¢4 leading to cuts:

P(u) F P() QM) FQ(w)
P(w), P(u) = Q) F Q(w) !
P(w), (¥2)(P(z) — Q@) - Q(w) ¥

©(C1) =

P(u) - P(u) Q) F Q)
P(u), P(u) — Q(u) - Q(u) ")
P(u), (Vz)(P(z) — Q(z)) F Q(u) "

P(u), (V2)(P(z) — Q) F (Fy)(P(a) — Q(®)), Q(w) “ "

For C> = + P(a) we obtain the projection ¢(C>):

P(a) F P(a)
P(a) - P(@),Q) 7
- P(@) — Q) P@) L
FGP@ = Q). P@
(V) (P(2) = Q@) F Gy (P(a) — Qw)), P(a) '

w.r
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next step:

e Construct an R-refutation v of CL(y),
e insert the projections of ¢ into ~.

Let ¢ be the proof of

S: (Vz)(P(z) — Q(z)) F (Fy)(P(a) — Q(y))

as defined above. Then

CL(p) =
{C1:P(u)FQ(u), Cr:F P(a), C3:Q(u) F}.

17



First we define a resolution refutation 6 of
CL(p):

FP(a) P(u)tF Q(u)
- Q(a)

R

" awr,

R = atomic mix 4+ most general unification.

ground projection v of 4:

= P(a) P(a)F Q(a)
= Q(a)

R
Qa)

|_

The ground substitution defining the ground
projection is

o {u+—a,v—a}l.
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Let x1 = ¢(C1)o,
x2 = ¢(C2)o and
x3 = ¢(C3)o.

B = (Vz)(P(z) — Q(z)),
C = (Fy)(Pa) — Qy)).

Then p(v) =

(x2) (x1)
B+C,P(a) P(a),BFC,Q(a)

B,BFC,C,Q(a)

cut

(x3)
Q(a),BEC .

B,B.BFC,C.C

BFC

contractions

19
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Definition 1
e SK = set of all LK-derivations with
skolemized end-sequents.

o SKy = set of all cut-free proofs in SK.

e SK! = derivations in SK with cut-formulas of
formula complexity <z. {

Goal: reduction to derivations with only atomic
cuts, i.e.
transform ¢ € SK into ¢ € SKO.

first step: construction of the
characteristic clause set

20



Characteristic Clause Set:

Let © be an LK-derivation of S and let 2 be
the set of all occurrences of cut formulas in .
We define the set of clauses CL(p) inductively:

Let v be the occurrence of an initial sequent in
@ and seq, the corresponding sequent. Then

S/v={seq(v,2)}

where seq(v,2) is the subsequent of seq, con-
taining the ancestors of 2.

21



Assume:
S/v already constructed for depth(v) < k.

depth(v) = k + 1:

(a) v is the consequent of u:
S/v=2S5/p.

(b) v is the consequent of p1 and u»:

(b1) The auxiliary formulas of v are ancestors
of €2, i.e. the formulas occur in

SGQ(M17Q)>SGQ(M27Q):
(+) S/v=5/u1US/ux.

(b2) The auxiliary formulas of v are
not ancestors of £2:

(x) S/v==5/p1 X S/u2.

CL(¢) = S/vg where g is the occurrence of
the end-sequent.

22



Remark: If ¢ is a cut-free proof then there
are no occurrences of cut formulas in ¢ and
CL(p) = 0.

Proposition 1
Let ¢ be an LK-derivation. Then CL(yp) is
unsatisfiable.

23



Projection:
Lemma 1
Let o be a deduction in SKC of a sequent S

T A. Let C:PF Q be a clause in CL(yp).
T hen there exists a deduction

o(C) of P,TFA,Q

S.t.

p(C) € SKy and 1(o(C)) < I(p).

Projection of ¢ to C: construct o(C).

24



the remaining steps:
e Construct an R-refutation v of CL(y),
e insert the projections of ¢ into ~.

e add some contractions and obtain a proof
with (only) atomic cuts.

(e eliminate the atomic cuts)

25



CERES does not only work for LK.

e any sound sequent calculus for classical logic
(with cut) does the job.

e unary rules do not “count’.

e necessary: auxiliary formulas,
principal formulas, ancestor relation

Example: LKDe
LK 4 equality rules + definition introduction.
Important to formalization of mathematical proofs.

Corresponding clausal calculus:
resolution 4+ paramodulation.

26



Example:

If a divides b then it divides b2.

D stands for "divides’ and is defined by

D(x,y) < Jzx x 2z = y.

The active equations are written in boldface.

axzo=blFaxzg=b Fbxb=bxb

F(axzg)*b=ax*(zgx*b) axzg=>bF (a*xz0) *xb=0>bxb _ -

axzog=blFax(zo*xb) =bxb _ o
a*xzp=bkFdz.axz=0>bxb E?'.lr

Elz.a*z=b|—Elz.a*zzb*bd'efD:r

Jdz.axz=0bF D(a,bx*b) def e ]
D(a,b) - D(a,bxb) 7

- D(a,b) — D(a,bxb)

ir

Axioms:

(1) an instance of associativity,

(2) Fbxb=0bx*xb (instance of reflexivity),
(3) axzg=bk ax*zy=0>.

27



Experiments with CERES:

e underlying theorem prover: OTTER.

e very large proofs can be handled.

e Analysis of an example from C. Urban.
mathematically different proofs from CERES.

e WOrk in progress:
analysis of a proof from the BOOK.
elimination of topological arguments
from a proof in number theory.

e system ceres available at
http://www.logic.at/ceres/
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Complexity:
complexity of cut-elimination is nonelementary.

Orevkov, Statman (1979):
There exists a sequence of LK-proofs ¢, of
sequents S, s.t.

o ||on|l < 2F*" and
e for all cut-free proofs ¢ of vy:

||| > s(n) where
s(0)=1, s(n+ 1) =25(n)

There exists no cheap way of cut-elimination
in principle!

29



CERES:
main point of complexity: resolution proof.

@. LK-proof of S.

Let v be a resolution refutation of CL(yp).
Then there exists a proof i of S with (only)
atomic cuts s.t.

[l < 2% Iy + [l

If all axioms are standard (A + A) then there
exists a cut-free proof ¢’ of S s.t.

[!]] < 2a*[17lIxllell.

30



CERES is superior to Gentzen:

nonelementary speed-up of Gentzen by CERES:

e [ here exists a sequence of LK-proofs ¢, s.t.
ln| < 287 and
all Gentzen-eliminations are of size > s(n).

CERES produces < 2™* gymbols.

e [ hereis no nonelementary speed-up of CERES
by Gentzen!

31



Characteristic Clause Sets and
Cut-Reduction

Lemma 2
Let o, be LK-derivations with ¢ > ¢’ for a
cut reduction relation > based on R. Then

CL(¢p) <ss CL(¢").

proof:
by cases according to the definitions of > and
R. &

R = set of cut-reduction rules extracted from
Gentzen's proof.

<gs. Subsumption relation on clause sets.
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Theorem 1

Let o be an LK-deduction and i be a nor-
mal form of ¢ under a cut reduction relation
> based on R. Then

CL(p) <ss CL(%).

Theorem 2

Let o be an LK-derivation and ¢ be a normal
form of ¢ under a cut reduction relation >x
based on R. Then there exists a resolution
refutation v of CL(y) s.t.

v <ss RES(¢).

RES(v) = (standard) resolution refutation of
CL(%).

33



Corollary 1

Let o be an LK-derivation and ¢ be a normal
form of ¢ under a cut reduction relation >x
based on R. Then there exists a resolution
refutation v of CL(y) s.t.

1(7) < I(RES(%)) < I(3) » 22+(¥),

Corollary 2

Let o be an LK-derivation and ¢ be a nor-
mal form of ¢ under a cut reduction relation
>n based on R. Then there exists a proof x
obtained from ¢ by CERES s.t.

[(x) < 1(p) * () + 22¥W),

Proof: x is defined by inserting the projections
of ¢ into a refutation ~ of CL(y). &
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Corollary 3

Let o be an LK-derivation and ¢ be a normal
form of ¢ under Gentzen’s or Tait’'s method.
T hen there exists an proof x obtained from
by CERES s.t.

1(x) < 1(p) * ()  22¥W).

Proof: Gentzens and Tait’'s methods are based
on R. O

35



Cut Reduction Rules:

If a cut-derivation % is transformed to ' then
we define

W >
where ¢ =
(p) (o)
A TTEA

F - A% A W
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3.11. rank = 2.

The last inferences in p,o are logical ones and
the cut-formula is the principal formula of these
inferences:

3.113.31.
(p1) (p2) (")
r-2,A THEAB, . ADEAN
rFA AAB T AABNFAN:
F e A A cut(A N B)
transforms to
984 A2
FeEan A cut(A)

FAOFAA W

For the other form of A : [ the transformation
IS straightforward.

37



3.113.33.
(P'[a]) (o)
r-A,BE BE,ME A
FEA (Vo)B' T (Vo)B.ME A
FOFAA

cut((Vz)B)

transforms to
('[t]) (o)
= A, BY £, EA
MM EASN
C,AOFAAN W

cut(BY)

3.113.34. The last inferences in p,o are 3 :
r,3 1. symmetric to 3.113.33.
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3.12. rank > 2:
3.121. right-rank > 1:

3.121.2. The cut formula does not occur in
the antecedent of the end-sequent of p.

3.121.23. The last inference in o is binary:
3.121.231. The case A : r. Here

(01) (02)
(p) A, B rl—A,C/\_T
A T-ABAC LS

NI FA* A, BAC

transforms to

(p) (o1) (p) (02)
NEA TEAB o4y TEA TEAC

N, A* A, B M- A% A, C
N5 FA A BAC

cut(A)
NIT
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3.121.232. The case Vv :l. Then v is of the
form

(1) (02)
() BITFA CTFa
mE A BVOTEA Y

N,(BVC*T*F A", A

(Bv(CO)*is empty if A = BvC and Bv C
otherwise.
We first define the proof :

(p) (o1) (p) (02)
NEA BTEA oy OFEA CTEA

B* M. T*F A" A C LT AR A Cut(A)
BOT*FA A" C’,I‘I,I‘*I—/\*,Aw_l
BV O, N, T*F A" A Ve

Note that, in case A = B or A = C, the in-
ference x is w : [; otherwise z is the identical
transformation and can be dropped.

If (Bv(C)*= BVC then v transforms to r.
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If, on the other hand, (B Vv C)* is empty (i.e.
BV (C = A) then we transform v to

25
T cut(A
O, 0% = AN A *( )

N,r* - A< A -
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3.121.233. The last inference in ¢, is —: [.
Then ¢ is of the form:

(x1) (x2)
(b)) THO,B CAFA

NFS B-CTlrAFO.A —“tl(m
N(B—C)T* A*Fx* o N
As in 3.121.232 (B — C)* = B — C for B —
C # A and (B — C)* empty otherwise.

3.121.233.1. A occursin [ and in A. Again
we define a proof T:

(1) (x2)
(Y1) (x1) NE> C,AFA

NEsS rEe,s CF. 0, A% F 5%, A (A

nrryr o8 @A) TR ATTTAA
BoCNrrnAFs o s A -l

If (B— C)* =B — C then, as in 3.121.232,

Y is transformed to © 4+ some additional con-

tractions. Otherwise an additional cut with cut

formula A is appended.
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3.121.233.2 A occurs in A, but notin . As
in 3.121.233.1 we define a proof T:

(1) (x2)
NFEsS O AFA

(x1) CHIOLA A ;“t(A)
rF8,B CNATF A"
B—C,I N,A*FO,Z* N

Again we distinguish the cases B — C' = A and
B — C # A and define the transformation of
1 exactly like in 3.121.233.1.
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