
Cut: Rule for using lemmas in a proof.

Cut-Elimination:

Elimination of lemmas from proofs.

Transformation to elementary proofs.

Obtain proofs with sub-formula property.

Example:

proofs of theorems in number theory may use

topological structures. Cut-elimination yields

proofs without topology.

other applications:

extraction of bounds via Herbrand’s theorem

extraction of programs from proofs

2



Gentzens’ “Hauptsatz”:

For every (LK-) proof of a formula A there

exists a proof of A without cuts (which can be

constructed effectively).

The sequent calculus:

Sequent: A ` B, for finite multi-sets of for-

mulas A,B.

A1, . . . , An ` B1, . . . , Bm represents

∧
Ai →

∨
Bj.

`: separation-symbol.

LK: calculus on sequents,

based on logical and structural rules.

axioms: A ` A for atoms A.

3



I. The logical rules:

∧-introduction:

A,Γ `∆
A ∧B,Γ `∆ ∧ : l1

B,Γ `∆
A ∧B,Γ `∆ ∧ : l2

Γ `∆, A Γ `∆, B
Γ `∆, A ∧B ∧ : r

∨-introduction:

A,Γ `∆ B,Γ `∆
A ∨B,Γ `∆ ∨ : l

Γ `∆, A
Γ `∆, A ∨B ∨ : r1

Γ `∆, B
Γ `∆, A ∨B ∨ : r2

→-introduction:

Γ1 `∆1, A B,Γ2 `∆2
A→ B,Γ1,Γ2 `∆1,∆2

→: l

A,Γ `∆, B
Γ `∆, A→ B

→: r

4



¬-introduction:

Γ `∆, A
¬A,Γ `∆ ¬ : l

A,Γ `∆
Γ `∆,¬A ¬ : r

∀-introduction (eigenvariable cond. for ∀ : r):

A(x/t),Γ `∆
(∀x)A(x),Γ `∆ ∀ : l

Γ `∆, A(x/y)
Γ `∆, (∀x)A(x) ∀ : r

∃-introduction (the eigenvariable conditions for

∃ : l are these for ∀ : r):

A(x/y),Γ `∆
(∃x)A(x),Γ `∆ ∃ : l

Γ `∆, A(x/t)
Γ `∆, (∃x)A(x) ∃ : r

5



II. The structural rules:

weakening:

Γ `∆
Γ `∆, A

w : r Γ `∆
A,Γ `∆ w : l

contraction:

A,A,Γ `∆
A,Γ `∆ c : l

Γ `∆, A,A
Γ `∆, A

c : r

cut:
Γ `∆, A A,Π ` Λ

Γ,Π `∆,Λ cut(A)

Let A be a formula s.t. A occurs in ∆ and in

Π. Then the mix is defined as:

Γ `∆ Π ` Λ
Γ,Π∗ `∆∗,Λ mix(A)

where Π∗ = Π after elimination of A, similar

for ∆.
6



LK-proof without cut:

P (y) ` P (y)
P (y) ` P (b), P (y)

w : r

P (y),¬P (y) ` P (b) ¬ : l
P (b) ` P (b)

P (y), P (b) ` P (b) w : l

P (y),¬P (y) ∨ P (b) ` P (b) ∨ : l

P (y), (∀x)(¬P (x) ∨ P (b)) ` P (b) ∀ : l

(∃x)P (x), (∀x)(¬P (x) ∨ P (b)) ` P (b) ∃ : l

(∀x)(¬P (x) ∨ P (b)) ` (∃x)P (x)→ P (b)
→: r

` (∀x)(¬P (x) ∨ P (b))→ ((∃x)P (x)→ P (b))
→: r

7



LK-proof with cut:

(ϕ1)
(∀x)(¬P (x) ∨ P (b)) ` A

(ϕ2)
A ` (∃x)P (x)→ P (b)

(∀x)(¬P (x) ∨ P (b)) ` (∃x)P (x)→ P (b)
cut

` (∀x)(¬P (x) ∨ P (b))→ ((∃x)P (x)→ P (b))
→: r

for A = (∀x)¬P (x) ∨ P (b) and

ϕ2 =

P (y) ` P (y)
P (y) ` P (b), P (y)

w : r

P (y),¬P (y) ` P (b) ¬ : l

P (y), (∀x)¬P (x) ` P (b) ∀ : l
P (b) ` P (b)

P (y), P (b) ` P (b) w : l

P (y), (∀x)¬P (x) ∨ P (b) ` P (b) ∨ : l

(∃x)P (x), (∀x)¬P (x) ∨ P (b) ` P (b) ∃ : l

(∀x)¬P (x) ∨ P (b) ` (∃x)P (x)→ P (b)
→: r

8



Gentzen’s method of cut-elimination:

• reduction of rank and grade.

• “peeling” the cut-formulas from outside.

• elimination of an uppermost cut.

The method can be described as a

normal form computation

based on a set of rules R.

Computational features:

• very slow

• weak in detecting redundancy.

9



Example of a Gentzen reduction:

P (a) ` P (a)
(∀x)P (x) ` P (a)

∀ : l
P (b) ` P (b)

(∀x)P (x) ` P (b)
∀ : l

(∀x)P (x) ` P (a) ∧ P (b)
∧ : r

P (a) ` P (a)
P (a) ∧ P (b) ` P (a)

∧ : l

P (a) ∧ P (b) ` (∃x)P (x)
∃ : r

(∀x)P (x) ` (∃x)P (x)
cut

rank = 3, grade = 1.

reduce to rank = 2, grade = 1:

P (a) ` P (a)
(∀x)P (x) ` P (a)

∀ : l
P (b) ` P (b)

(∀x)P (x) ` P (b)
∀ : l

(∀x)P (x) ` P (a) ∧ P (b)
∧ : r

P (a) ` P (a)
P (a) ∧ P (b) ` P (a)

∧ : l

(∀x)P (x) ` P (a)
cut

(∀x)P (x) ` (∃x)P (x)
∃ : r

10



P (a) ` P (a)
(∀x)P (x) ` P (a)

∀ : l
P (b) ` P (b)

(∀x)P (x) ` P (b)
∀ : l

(∀x)P (x) ` P (a) ∧ P (b)
∧ : r

P (a) ` P (a)
P (a) ∧ P (b) ` P (a)

∧ : l

(∀x)P (x) ` P (a)
cut

(∀x)P (x) ` (∃x)P (x)
∃ : r

rank = 2, grade = 1.

reduce to grade = 0, rank = 3:

P (a) ` P (a)
(∀x)P (x) ` P (a) ∀ : l

P (a) ` P (a)
(∀x)P (x) ` P (a)

cut

(∀x)P (x) ` (∃x)P (x) ∃ : r

eliminate cut with axiom:

P (a) ` P (a)
(∀x)P (x) ` P (a) ∀ : l

(∀x)P (x) ` (∃x)P (x) ∃ : r

11



Cut-elimination by Resolution (CERES):

based on a structural analysis of LK-proofs.

sub-derivation into cuts

ϕ

sub-derivation into end sequent

CL(ϕ): characteristic clause set,

carries substantial information on derivations

of cut formulas.

clause = atomic sequent.

sequent = Γ `∆. Γ,∆ multisets of formulas

cut-elimination = reduction to atomic cuts.

12



The Method CERES:

Example:

ϕ1 ϕ2
(∀x)(P (x)→ Q(x)) ` (∃y)(P (a)→ Q(y))

cut

ϕ1 =

P (u)? ` P (u) Q(u) ` Q(u)?

P (u)?, P (u)→ Q(u) ` Q(u)? →: l

P (u)→ Q(u) ` (P (u)→ Q(u))?
→: r

P (u)→ Q(u) ` (∃y)(P (u)→ Q(y))? ∃ : r

(∀x)(P (x)→ Q(x)) ` (∃y)(P (u)→ Q(y))? ∀ : l

(∀x)(P (x)→ Q(x)) ` (∀x)(∃y)(P (x)→ Q(y))? ∀ : r

ϕ2 =

P (a) ` P (a)? Q(v)? ` Q(v)
P (a), (P (a)→ Q(v))? ` Q(v)→: l

(P (a)→ Q(v))? ` P (a)→ Q(v)
→: r

(P (a)→ Q(v))? ` (∃y)(P (a)→ Q(y)) ∃ : r

(∃y)(P (a)→ Q(y))? ` (∃y)(P (a)→ Q(y)) ∃ : l

(∀x)(∃y)(P (x)→ Q(y))? ` (∃y)(P (a)→ Q(y)) ∀ : l

13



S1 = {P (u) `}, S2 = {` Q(u)},
S3 = {` P (a)}, S4 = {Q(v) `}.

S = S1 × S2 = {P (u), Q(u)}.

S′ = S3 ∪ S4 = {` P (a); Q(v) `}.

CL(ϕ) = S ∪ S′ =
{P (u) ` Q(u); ` P (a); Q(v) `}.

14



Projection to CL(ϕ):

• Skip inferences leading to cuts.

• Obtain cut-free proof of end-sequent

+ a clause in CL(ϕ).

Let ϕ be the proof of the sequent

S: (∀x)(P (x) → Q(x)) ` (∃y)(P (a) → Q(y))

shown above.

15



CL(ϕ) = {P (u) ` Q(u); ` P (a); Q(v) `}.

Skip inferences in ϕ1 leading to cuts:

P (u) ` P (u) Q(u) ` Q(u)
P (u), P (u)→ Q(u) ` Q(u) →: l

P (u), (∀x)(P (x)→ Q(x)) ` Q(u) ∀ : l

ϕ(C1) =

P (u) ` P (u) Q(u) ` Q(u)
P (u), P (u)→ Q(u) ` Q(u)

→: l

P (u), (∀x)(P (x)→ Q(x)) ` Q(u)
∀ : l

P (u), (∀x)(P (x)→ Q(x)) ` (∃y)(P (a)→ Q(y)), Q(u)
w : r

For C2 = ` P (a) we obtain the projection ϕ(C2):

P (a) ` P (a)
P (a) ` P (a), Q(v)

w : r

` P (a)→ Q(v), P (a)
→: r

` (∃y)(P (a)→ Q(y)), P (a)
∃ : l

(∀x)(P (x)→ Q(x)) ` (∃y)(P (a)→ Q(y)), P (a)
w : l

16



next step:

• Construct an R-refutation γ of CL(ϕ),

• insert the projections of ϕ into γ.

Let ϕ be the proof of

S: (∀x)(P (x)→ Q(x)) ` (∃y)(P (a)→ Q(y))

as defined above. Then

CL(ϕ) =

{C1 : P (u) ` Q(u), C2 : ` P (a), C3 : Q(u) `}.

17



First we define a resolution refutation δ of

CL(ϕ):

` P (a) P (u) ` Q(u)
` Q(a) R

Q(v) `
` R

R = atomic mix + most general unification.

ground projection γ of δ:

` P (a) P (a) ` Q(a)
` Q(a) R

Q(a) `
` R

The ground substitution defining the ground

projection is

σ : {u← a, v ← a}.

18



Let χ1 = ϕ(C1)σ,

χ2 = ϕ(C2)σ and

χ3 = ϕ(C3)σ.

B = (∀x)(P (x)→ Q(x)),

C = (∃y)(P (a)→ Q(y)).

Then ϕ(γ) =

(χ2)
B ` C,P (a)

(χ1)
P (a), B ` C,Q(a)

B,B ` C,C,Q(a)
cut

(χ3)
Q(a), B ` C

B,B,B ` C,C,C cut

B ` C contractions

19



Definition 1

• SK = set of all LK-derivations with

skolemized end-sequents.

• SK∅ = set of all cut-free proofs in SK.

• SKi = derivations in SK with cut-formulas of

formula complexity ≤ i. ]

Goal: reduction to derivations with only atomic

cuts, i.e.

transform ϕ ∈ SK into ψ ∈ SK0.

first step: construction of the

characteristic clause set

20



Characteristic Clause Set:

Let ϕ be an LK-derivation of S and let Ω be

the set of all occurrences of cut formulas in ϕ.

We define the set of clauses CL(ϕ) inductively:

Let ν be the occurrence of an initial sequent in

ϕ and seqν the corresponding sequent. Then

S/ν = {seq(ν,Ω)}

where seq(ν,Ω) is the subsequent of seqν con-

taining the ancestors of Ω.

21



Assume:
S/ν already constructed for depth(ν) ≤ k.

depth(ν) = k+ 1:

(a) ν is the consequent of µ:
S/ν = S/µ.

(b) ν is the consequent of µ1 and µ2:

(b1) The auxiliary formulas of ν are ancestors
of Ω, i.e. the formulas occur in
seq(µ1,Ω), seq(µ2,Ω):

(+) S/ν = S/µ1 ∪ S/µ2.

(b2) The auxiliary formulas of ν are
not ancestors of Ω:

(×) S/ν = S/µ1 × S/µ2.

CL(ϕ) = S/ν0 where ν0 is the occurrence of
the end-sequent.

22



Remark: If ϕ is a cut-free proof then there

are no occurrences of cut formulas in ϕ and

CL(ϕ) = ∅.

Proposition 1

Let ϕ be an LK-derivation. Then CL(ϕ) is

unsatisfiable.

23



Projection:

Lemma 1

Let ϕ be a deduction in SK of a sequent S :

Γ ` ∆. Let C: P̄ ` Q̄ be a clause in CL(ϕ).

Then there exists a deduction

ϕ(C) of P̄ ,Γ `∆, Q̄

s.t.

ϕ(C) ∈ SK∅ and l(ϕ(C)) ≤ l(ϕ).

Projection of ϕ to C: construct ϕ(C).

24



the remaining steps:

• Construct an R-refutation γ of CL(ϕ),

• insert the projections of ϕ into γ.

• add some contractions and obtain a proof

with (only) atomic cuts.

(• eliminate the atomic cuts)

25



CERES does not only work for LK.

• any sound sequent calculus for classical logic

(with cut) does the job.

• unary rules do not “count”.

• necessary: auxiliary formulas,

principal formulas, ancestor relation

Example: LKDe

LK + equality rules + definition introduction.

Important to formalization of mathematical proofs.

Corresponding clausal calculus:

resolution + paramodulation.

26



Example:

If a divides b then it divides b2.

D stands for “divides” and is defined by

D(x, y)↔ ∃zx ∗ z = y.

The active equations are written in boldface.

` (a ∗ z0) ∗ b = a ∗ (z0 ∗ b)
a ∗ z0 = b ` a ∗ z0 = b ` b ∗ b = b ∗ b

a ∗ z0 = b ` (a ∗ z0) ∗ b = b ∗ b =: r

a ∗ z0 = b ` a ∗ (z0 ∗ b) = b ∗ b =: r

a ∗ z0 = b ` ∃z.a ∗ z = b ∗ b ∃: r
∃z.a ∗ z = b ` ∃z.a ∗ z = b ∗ b ∃: l
∃z.a ∗ z = b ` D(a, b ∗ b) defD: r

D(a, b) ` D(a, b ∗ b) defD: l

` D(a, b)→ D(a, b ∗ b) →: r

Axioms:

(1) an instance of associativity,

(2) ` b ∗ b = b ∗ b (instance of reflexivity),

(3) a ∗ z0 = b ` a ∗ z0 = b.

27



Experiments with CERES:

• underlying theorem prover: OTTER.

• very large proofs can be handled.

• Analysis of an example from C. Urban.

mathematically different proofs from CERES.

• work in progress:

analysis of a proof from the BOOK.

elimination of topological arguments

from a proof in number theory.

• system ceres available at

http://www.logic.at/ceres/

28



Complexity:

complexity of cut-elimination is nonelementary.

Orevkov, Statman (1979):

There exists a sequence of LK-proofs ϕn of

sequents Sn s.t.

• ‖ϕn‖ ≤ 2k∗n and

• for all cut-free proofs ψ of ϕn:

‖ψ‖ > s(n) where

s(0) = 1, s(n+ 1) = 2s(n).

There exists no cheap way of cut-elimination

in principle!

29



CERES:

main point of complexity: resolution proof.

ϕ: LK-proof of S.

Let γ be a resolution refutation of CL(ϕ).

Then there exists a proof ψ of S with (only)

atomic cuts s.t.

‖ψ‖ ≤ 2 ∗ ‖γ‖ ∗ ‖ϕ‖.

If all axioms are standard (A ` A) then there

exists a cut-free proof ψ′ of S s.t.

‖ψ′‖ ≤ 2d∗‖γ‖∗‖ϕ‖.

30



CERES is superior to Gentzen:

nonelementary speed-up of Gentzen by CERES:

• There exists a sequence of LK-proofs ϕn s.t.

‖ϕn‖ ≤ 2k∗n and

all Gentzen-eliminations are of size > s(n).

CERES produces ≤ 2m∗n symbols.

• There is no nonelementary speed-up of CERES

by Gentzen!

31



Characteristic Clause Sets and

Cut-Reduction

Lemma 2

Let ϕ, ϕ′ be LK-derivations with ϕ > ϕ′ for a

cut reduction relation > based on R. Then

CL(ϕ) ≤ss CL(ϕ′).

proof:

by cases according to the definitions of > and

R. 3

R = set of cut-reduction rules extracted from

Gentzen’s proof.

≤ss: subsumption relation on clause sets.

32



Theorem 1

Let ϕ be an LK-deduction and ψ be a nor-

mal form of ϕ under a cut reduction relation

> based on R. Then

CL(ϕ) ≤ss CL(ψ).

Theorem 2

Let ϕ be an LK-derivation and ψ be a normal

form of ϕ under a cut reduction relation >R
based on R. Then there exists a resolution

refutation γ of CL(ϕ) s.t.

γ ≤ss RES(ψ).

RES(ψ) = (standard) resolution refutation of

CL(ψ).

33



Corollary 1

Let ϕ be an LK-derivation and ψ be a normal

form of ϕ under a cut reduction relation >R
based on R. Then there exists a resolution

refutation γ of CL(ϕ) s.t.

l(γ) ≤ l(RES(ψ)) ≤ l(ψ) ∗ 22∗l(ψ).

Corollary 2

Let ϕ be an LK-derivation and ψ be a nor-

mal form of ϕ under a cut reduction relation

>R based on R. Then there exists a proof χ

obtained from ϕ by CERES s.t.

l(χ) ≤ l(ϕ) ∗ l(ψ) ∗ 22∗l(ψ).

Proof: χ is defined by inserting the projections

of ϕ into a refutation γ of CL(ϕ). 3

34



Corollary 3

Let ϕ be an LK-derivation and ψ be a normal

form of ϕ under Gentzen’s or Tait’s method.

Then there exists an proof χ obtained from ϕ

by CERES s.t.

l(χ) ≤ l(ϕ) ∗ l(ψ) ∗ 22∗l(ψ).

Proof: Gentzens and Tait’s methods are based

on R. 3

35



Cut Reduction Rules:

If a cut-derivation ψ is transformed to ψ′ then

we define

ψ > ψ′

where ψ =

(ρ)
Γ `∆

(σ)
Π ` Λ

Γ,Π∗ `∆∗,Λ cut

36



3.11. rank = 2.

The last inferences in ρ, σ are logical ones and

the cut-formula is the principal formula of these

inferences:

3.113.31.

(ρ1)
Γ `∆, A

(ρ2)
Γ `∆, B

Γ `∆, A ∧B ∧ : r

(σ′)
A,Π ` Λ

A ∧B,Π ` Λ ∧ : l

Γ,Π `∆,Λ cut(A ∧B)

transforms to

(ρ1)
Γ `∆, A

(σ′)
A,Π ` Λ

Γ,Π∗ `∆∗,Λ cut(A)

Γ,Π `∆,Λ w :∗

For the other form of ∧ : l the transformation

is straightforward.

37



3.113.33.

(ρ′[α])
Γ `∆, Bxα

Γ `∆, (∀x)B ∀ : r

(σ′)
Bxt ,Π ` Λ

(∀x)B,Π ` Λ ∀ : l

Γ,Π `∆,Λ cut((∀x)B)

transforms to

(ρ′[t])
Γ `∆, Bxt

(σ′)
Bxt ,Π ` Λ

Γ,Π∗ `∆∗,Λ cut(Bxt )

Γ,Π `∆,Λ w :∗

3.113.34. The last inferences in ρ, σ are ∃ :

r, ∃ : l: symmetric to 3.113.33.

38



3.12. rank > 2:

3.121. right-rank > 1:

3.121.2. The cut formula does not occur in

the antecedent of the end-sequent of ρ.

3.121.23. The last inference in σ is binary:

3.121.231. The case ∧ : r. Here

(ρ)
Π ` Λ

(σ1)
Γ `∆, B

(σ2)
Γ `∆, C

Γ `∆, B ∧ C ∧ : r

Π,Γ∗ ` Λ∗,∆, B ∧ C cut(A)

transforms to

(ρ)
Π ` Λ

(σ1)
Γ `∆, B

Π,Γ∗ ` Λ∗,∆, B
cut(A)

(ρ)
Π ` Λ

(σ2)
Γ `∆, C

Π,Γ∗ ` Λ∗,∆, C
cut(A)

Π,Γ∗,` Λ∗,∆, B ∧ C ∧ : r

39



3.121.232. The case ∨ : l. Then ψ is of the

form

(ρ)
Π ` Λ

(σ1)
B,Γ `∆

(σ2)
C,Γ `∆

B ∨ C,Γ `∆ ∨ : l

Π, (B ∨ C)∗,Γ∗ ` Λ∗,∆ cut(A)

(B ∨ C)∗ is empty if A = B ∨ C and B ∨ C
otherwise.

We first define the proof τ :

(ρ)
Π ` Λ

(σ1)
B,Γ `∆

B∗,Π,Γ∗ ` Λ∗,∆ cut(A)

B,Π,Γ∗ ` Λ∗,∆ x

(ρ)
Π ` Λ

(σ2)
C,Γ `∆

C∗,Π,Γ∗ ` Λ∗,∆ cut(A)

C,Π,Γ∗ ` Λ∗,∆ x

B ∨ C,Π,Γ∗ ` Λ∗,∆ ∨ : l

Note that, in case A = B or A = C, the in-

ference x is w : l; otherwise x is the identical

transformation and can be dropped.

If (B ∨ C)∗ = B ∨ C then ψ transforms to τ .

40



If, on the other hand, (B ∨ C)∗ is empty (i.e.

B ∨ C = A) then we transform ψ to

(ρ)
Π ` Λ τ

Π,Π∗,Γ∗ ` Λ∗,Λ∗,∆ cut(A)

Π,Γ∗ ` Λ∗,∆ c :∗

41



3.121.233. The last inference in ψ2 is →: l.

Then ψ is of the form:

(ψ1)
Π ` Σ

(χ1)
Γ ` Θ, B

(χ2)
C,∆ ` Λ

B → C,Γ,∆ ` Θ,Λ →: l

Π, (B → C)∗,Γ∗,∆∗ ` Σ∗,Θ,Λ
cut(A)

As in 3.121.232 (B → C)∗ = B → C for B →
C 6= A and (B → C)∗ empty otherwise.

3.121.233.1. A occurs in Γ and in ∆. Again

we define a proof τ :

(ψ1)
Π ` Σ

(χ1)
Γ ` Θ, B

Π,Γ∗ ` Σ∗,Θ, B
cut(A)

(ψ1)
Π ` Σ

(χ2)
C,∆ ` Λ

C∗,Π,∆∗ ` Σ∗,Λ cut(A)

C,Π,∆∗ ` Σ∗,Λ x

B → C,Π,Γ∗,Π,∆∗ ` Σ∗,Θ,Σ∗,Λ →: l

If (B → C)∗ = B → C then, as in 3.121.232,

ψ is transformed to τ + some additional con-

tractions. Otherwise an additional cut with cut

formula A is appended.

42



3.121.233.2 A occurs in ∆, but not in Γ. As

in 3.121.233.1 we define a proof τ :

(χ1)
Γ ` Θ, B

(ψ1)
Π ` Σ

(χ2)
C,∆ ` Λ

C∗,Π,∆∗ ` Σ∗,Λ cut(A)

C,Π,∆∗ ` Σ∗,Λ x

B → C,Γ,Π,∆∗ ` Θ,Σ∗,Λ →: l

Again we distinguish the cases B → C = A and

B → C 6= A and define the transformation of

ψ exactly like in 3.121.233.1.

43



References:

M. Baaz, S. Hetzl, A. Leitsch, C. Richter,

H. Spohr: Cut-Elimination: Experiments with

CERES, LPAR 2004, Lecture Notes in Artifi-

cial Intelligence, pp. 481-495, 2005.

M. Baaz, A. Leitsch: Cut-Elimination and Red-

undancy-Elimination by Resolution, Journal of

Symbolic Computation, 29, pp. 149-176, 2000.

M. Baaz, A. Leitsch: Towards a Clausal Anal-

ysis of Cut-Elimination, Journal of Symbolic

Computation, 41, pp. 381–410, 2006.

website: http://www.logic.at/ceres/

44


