SATISFACTION AND FRIENDLINESS RELATIONS WITHIN CLASSICAL LOGIC: PROOF-THEORETIC APPROACH

Alexei Muravitky

Tbilisi, October, 2007

PROPOSITIONAL LANGUAGE

Formulas:

Formula
$$= \mathbb{Q}[(true)|variable|(\alpha \land \beta)|(\alpha \lor \beta)|(\alpha \to \beta)|$$

 $|\neg \alpha|$

- Var is a (countable) set of variables.
- *Fm* is the set of formulas.
- Γ, Δ are unspecified multisets of formulas.

Substitution:

 $\mathbf{s}(\alpha) = \alpha[p_1 \backslash \beta_1, p_2 \backslash \beta_2, ..., p_n \backslash \beta_n]$, where $p_1, p_2, ..., p_n$ are variables (not necessarily all), occurring in α .

SEMANTICS: Partial Valuations

Notation:

 $E(\alpha)$ is the set of variables which occur in α .

 $E(\Gamma) = \bigcup \{E(\alpha) \mid \alpha \in \Gamma\}.$

A *valuation* is a mapping $v: Var \rightarrow \{0,1\}$, extended up to a homomorphism to $Fm \rightarrow \{0,1\}$.

If v is a valuation, its restriction $v \upharpoonright E(\Gamma)$ is called a *partial valuation* w.r.t. $E(\Gamma)$.

Partial valuations will play a key role in the sequel.

A VARIATION ON CONSEQUENCE RELATION: Logical Friendliness

A valuation v_1 is an *extension* of v_0 , in symbols $v_1 \ge v_0$, if the domain of v_0 is included in the domain of v_1 and for each variable p in the domain of v_0 , $v_1(p) = v_0(p)$.

Main Definition: A muliset Γ is *friendly* to a formula α , in symbols $\Gamma = \alpha$, if for any partial valuation w.r.t. $E(\Gamma)$, which validates Γ, there is its extension w.r.t. $E(\Gamma, \alpha)$, which validates α . (Cf. [Makinson 2005].)

Comparisons: Consequence Relation (♥) vs. Logical Friendliness (□)

Observations [Makinson 2005]:I

- If $\Gamma \nearrow \alpha$ then $\Gamma \neg \alpha$.
- Both relations are *compact*. Namely, [Logical Friendliness]: *If for nonvoid* Γ , $\Gamma = \alpha$, then there is a finite nonvoid $\Gamma_0 \subseteq \Gamma$, such that $\Gamma_0 = \alpha$. [Makinson 2005].
- Logical Friendliness relation \neg is not monotone. Indeed, it is clear that $p\neg q$ holds but $p, \neg q \neg q$ does not.

Comparisons: Consequence Relation (♂) vs. Logical Friendliness (□) (continued)

Main result:

There is a deduction relation
 \(\alpha \) (defined below) such that Γ□α is equivalent to Γ \(\alpha \) α. (Theorem 5 below)

6

RESTRICTED CASE FOR : SATISFACTION

If $\Gamma = \emptyset$ in $\Gamma = \alpha$, then $= \alpha$ just means that there is a valuation which validates α ; or in other words, α is a *satisfiable* formula.

The satisfiable formulas form a *recursive*, and hence *recursively enumerable*, set of propositional formulas. However, it has not been known any deduction for generating this set.

DEDUCTION FOR SATISFACTION PROPERTY: System S

System S:

Axioms:

- $\not \sim p$, where p is a variable.

Rules of Inference:

- $\Rightarrow \alpha \rightarrow \beta$ and $x \alpha$ (Soundness w.r.t. classical deduction) $x \beta$
- $\triangle S(\alpha)$ (Reverse substitution)

SYSTEM S (continued)

Theorem 1 (soundness and completeness) For any formula α , α is satisfiable, i.e. $\neg \alpha$, if and only if the sequent $\triangle \alpha$ is derivable in **S**.

9

DEDUCTION FOR LOGICAL FRIENDLINESS: System F

Now we will extend the unary relation $\triangle \alpha$ to the binary relation $\Gamma \triangle \alpha$ (defined below). Remark:

To prevent a possible confusion, we note that, although derivability in S is used in the definition of F and, hence, derivability in F depends on derivability in S, as it will be proven, a sequent of the form $\triangle \alpha$ is provable in F if and only if it is provable in S. (Proposition 2 below)

SYSTEM F

Axioms:

- Γ\(\omega\);
- $\Gamma \triangle \alpha$, when $E(\Gamma) \cap E(\alpha) = \emptyset$ and the sequent $\triangle \alpha$ is derivable in S;
- $\Gamma \triangle \wedge \Delta$, where $\Delta \subseteq \Gamma$ and Δ is finite. Here $\wedge \Delta$ is conjunction of the formulas in Δ ; if $\Delta = \emptyset$ then $\wedge \Delta = \mathbb{J}$.

SYSTEM *F* (continued)

Rules of Inference:

```
1* \Gamma \Rightarrow \alpha (soundness w.r.t. classical deduction) \Gamma \bowtie \alpha
```

- 2* $\Gamma,\alpha \bowtie \gamma$ and $\Gamma,\beta \bowtie \gamma$ (\vee -intro. in antecedent) $\Gamma \alpha \vee \beta$ providing that $E(\alpha) = E(\beta)$.
- 3^* $\Gamma \triangle \alpha$ (\vee -intro. in consequent) $\Gamma \triangle \alpha \vee \beta$

SYSTEM *F* (continued)

Rules of Inference (continued):

```
4* \underline{\Gamma \trianglerighteq \mathbf{s}(\alpha)} (Reverse substitution)
\Gamma \trianglerighteq \alpha \text{ where } \mathbf{s}(\alpha) = \alpha[p_1 \backslash \beta_1, p_2 \backslash \beta_2, ..., p_n \backslash \beta_n]
and E(\Gamma) \cap \{p_1, p_2, ..., p_n\} = \emptyset.

5* \underline{\Gamma \trianglerighteq \alpha} and \underline{\alpha \trianglerighteq \beta} (Cut)
\underline{\Gamma \trianglerighteq \beta}
```

providing that either $E(\Gamma) \subseteq E(\underline{\alpha})$, or $E(\underline{\alpha}) \subseteq E(\Gamma)$ and $E(\Gamma) \cap E(\beta) \subseteq E(\underline{\alpha})$.

SYSTEM *F* (continued)

Rules of Inference (continued):

6* Γ,α \bowtie β and γ \bowtie α (deduct. replacem. in antecedent) $\Gamma\gamma$ \bowtie β

providing that $E(\gamma) \subseteq E(\Gamma, \alpha)$.

7* $\Gamma\alpha \not \cap \beta$ and $\beta \Rightarrow \gamma$ (deduct. replacem. in consequent)

 Γ , α

SOUNDNESS FOR SYSTEM F

Proposition 2 A sequent $\triangle \alpha$ is derivable in **S** if and only if the sequent $\varnothing \triangle \alpha$ is derivable in **F**.

Theorem 3 (soundness) If a sequent $\Gamma \not \supseteq \alpha$ is derivable in \mathbf{F} then $\Gamma = \alpha$ holds.

FINITE COMPLETENESS FOR SYSTEM F

Theorem 4 (*finite completeness*) For any finite Γ , if $\Gamma = \alpha$ holds, then the sequent $\Gamma \not\simeq \alpha$ is derivable in $\textbf{\textit{F}}$.

What is a problem in proving completeness for \triangle for any Γ ?

The consequence relation \triangle is *monotone*, which means that if $\triangle \triangle \alpha$ and $\triangle \subseteq \Gamma$ then $\Gamma \triangle \alpha$. Thus to prove Completeness Theorem for classical

derivation \Rightarrow one can use monotonicity and compactness of the relation \lozenge .

It is not the case for Logical Friendliness -.

FULL COMPLTENESS FOR SYSTEM F

Theorem 5 (completeness) For any finite Γ , if $\Gamma = \alpha$ holds, then the sequent $\Gamma \not\simeq \alpha$ is derivable in $\textbf{\textit{F}}$.

Thank you