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Church’s Problem

Alonzo Church

at the “Summer Institute of Symbolic Logic”

Cornell University, 1957:

“Given a requirement which a circuit is to satisfy, we may
suppose the requirement expressed in some suitable logistic
system which is an extension of restricted recursive
arithmetic. The synthesis problem is then to find recursion
equivalences representing a circuit that satisfies the given
requirement (or alternatively, to determine that there is no
such circuit).”
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Requirements as Winning Conditions

β = 010101 . . .

output
α = 001101 . . .

input

Requirement ϕ(α, β) is considered as winning condition in
an infinite two-person game.

Player 1 for input bits, Player 2 for output bits

Players 1 and 2 choose their bits α(t) and β(t)

in alternation.

Play (α(0)
β(0)) (α(1)

β(1)) (α(2)
β(2)) . . . is won by Player 2

if ϕ(α, β) is satisfied
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Strategies

A strategy for Player 1 is a map

(α(0)
β(0)) (α(1)

β(1)) . . . (α(k)
β(k)) 7→ 0/1

A strategy for Player 2 is a map

(α(0)
β(0)) (α(1)

β(1)) . . . (α(k)
∗ ) 7→ 0/1

Finite-state strategy: computable by a finite automaton over

Σ = {(0
0
), (0

1
), (1

0
), (1

1
), (0

∗), (1
∗)}

with output function.

Example: If β should be “double α”,
then a finite-state strategy does not suffice.
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Example

Consider the conjunction of three conditions on the
input-output stream (α, β):

1. ∀t(α(t) = 1 → β(t) = 1)

2. ¬∃t β(t) = β(t + 1) = 0

3. ∃ωt α(t) = 0 → ∃ωt β(t) = 0
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Common-Sense Solution

for input 1 produce output 1

for input 0 produce
output 1 if last output was 0
output 0 if last output was 1

last
output

0

last
output

1

1/1

1/1
0/1

0/0

This is a “finite-state strategy”: a solution for the specification
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Infinite Games in Computer Science

Area: Nonterminating reactive systems (operating
systems, control systems, business software, etc.)

Strategy construction is program synthesis

Asymmetric view in applications (controller against
environment)
Symmetric view is helpful in game analysis

Cantor space rather than Baire space

Winning conditions define special B( Σ
0
2) sets rather than

open ( Σ
0
1) sets or Borel sets

Wolfgang Thomas



Overview

1. Church’s Problem and the B üchi-Landweber Theorem

2. From logic to Muller games

3. An interesting Muller game

4. Solving Muller games

5. Refinement of B üchi-Landweber Theorem
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Part 1

Church’s Problem and the
Büchi-Landweber Theorem
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Specification Language

Underlying structure: (N, +1, <)

t, s, . . . as number variables (for time instances)
α, β, γ, . . . as sequence variables

Use Boolean connectives and quantifiers (over both kinds of
variables)

Write ∃ωt . . . for ∀s∃t(s < t ∧ . . .))

The logic is called S1S (second-order theory of one successor)

or MSO-logic (monadic second-order logic)

Wolfgang Thomas



Church’s Problem and its Solution

Church’s Problem asks to decide, for an S1S-specification
ϕ(α, β), whether Player 2 wins the corresponding game, and in
this case to construct a finite-state winning strategy.

Büchi-Landweber Theorem (1969)

For each S1S-specification ϕ(α, β) one can decide whether
Player 2 can win the corresponding game, in this case
synthesize a finite automaton that executes a winning strategy.

Present approach is from W.T., LNCS 900 (1995).
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Part 2

From Logic to Muller Games
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Muller Games: Intuition

1 2 3

4

5 67

Winning condition for Player 2 for play ρ depends on the
set Inf(ρ) of vertices visited infinitely often .

Example: “Visit 2 and 6 again and again”

Strategy: From 1 go to 2 and 7 in alternation
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Two Winning Conditions

Muller condition , given by a family F = {F1, . . . , Fk}

Play ρ is won by Player 2 iff Inf(ρ) is one of the sets Fi

Example: Take for F all sets which contain 2 and 6

We speak of a Muller game

Reachability condition , given by a set F of vertices
Play ρ is won by Player 2 iff ∃t ρ(t) ∈ F
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Solving a Game

Given a game graph and a winning condition for Player 2,

decide for each vertex v whether Player 2 has a winning
strategy for plays starting from v

(“ v belongs to the winning region W2 of Player 2”)

for v ∈ W2 provide a winning strategy for Player 2 from v

Easy:

Solution of reachability games by memoryless strategies

Method: Computation of “2-attractor of F”
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From Logic to Games

Büchi (1960), McNaughton (1966):

Each S1S-formula ϕ(α, β) can be transformed into a Muller
game with designated vertex v0 such that

Player 2 has a winning strategy to satisfy the condition
ϕ(α, β) iff Player 2 wins the Muller game from v0,

a finite-state winning strategy for Player 2 in the Muller
game from v0 allows to construct a finite-state strategy for
Player 2 to satisfy ϕ(α, β)

So it remains to solve Muller games.
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Example

1 2 6 7

3 4

5

1

1

01

0 0, 1

0, 1

0

0

0

1

1

F contains {1, 2, 3, 4}, {1, 2, 3, 4, 5}, {1, 3, 4, 5}, {1, 4}
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Part 3

An Interesting Muller Game
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DJW Game

invented by Dziembowski, Jurdzinski and Walukiewicz (1997)

A

B

C

D

4

3

2

1

Winning condition:
|Inf(ρ) ∩ {A, B, C, D}| = max(Inf(ρ) ∩ {1, 2, 3, 4})
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Latest Appearance Record
Visited letter LAR

A ABCD

C CABD

C CABD

D DCAB

B BDCA

D DBCA

C CDBA

D DCBA

D DCBA
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Solution of the DJW-Game

Player 2 wins the DJW game with the LAR strategy.

This is a finite-state strategy,
although the number of memory states is large:
n! · n states for n letter-vertices

Use letter-vertices as input

Use update of LAR for the transition function

Use hit position for the output (choice of next step)
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An Essential Observation

Call the letters up to hit position the “hit set”.

For the maximal hit occurring infinitely often in the
LAR-sequence,

call the corresponding hit set the permanence set .

The set of letters chosen infinitely often coincides with the
permanence set of the LAR-sequence.
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Part 4

Solving Muller Games
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General Idea

Step 1

Over a game graph G with states 1, . . . , n we will use the finite
automaton with

all LAR’s (i1 . . . ih . . . in) as memory states

the vertices of G as “input letters”

the LAR update rule as transition function

Step 2

We have to determine the outputs of the LAR-automaton

Build a new game graph G′ = G × LAR(G)

A play ρ over G is mapped to a play ρ′ over G′
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Analyzing the Muller Condition over G

Over G′ we can reformulate the Muller winning condition.

The set Inf(ρ) is the permanence set of the LAR sequence
The permanence set is the hit set for the highest hit
occurring infinitely often
So the Muller winning condition says:
The hit set for the highest hit occurring infinitely often
belongs to {F1, . . . , Fm}

Merge hit value h and status of hit set into a color :
color 2h if hit set belongs to {F1, . . . , Fm}, otherwise 2h − 1

So the Muller winning condition says:

The highest LAR-color occurring infinitely often is even
(”parity condition” )
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Intermediate Summary

We have transformed a game graph G into an expanded
game graph G′ = G × LAR(G).

A play ρ over G induces a play ρ′ over G′.

The play ρ′ records ρ plus the state sequence which the
LAR-automaton assumes during ρ.

The Muller winning condition on ρ becomes the parity
condition for ρ′.

Conclusion:
Suppose we have a memoryless winning strategy for
Player 2 in the parity game over G′.
This gives the output function of the LAR automaton,
and we have a finite-state winning strategy for the Muller
game over G.
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Solving Parity Games

Memoryless Determinacy of Parity Games :

Given a parity game
(by a finite game graph G and a coloring c),

one can compute the winning regions of the two players and
corresponding memoryless winning strategies.

Moreover, the two winning regions cover the whole game
graph.

Proof by induction over the number of vertices of G.
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Part 5

Refinement of B üchi-Landweber
Theorem
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Definability of Strategies

A strategy f : (α(0)
β(0)) (α(1)

β(1)) . . . (P(k−1)
Q(k−1

)(α(k)
∗ ) 7→ 0/1

is MSO-definable iff there is an MSO-formula ψ(X, Y , x)

which says when the output bit is 1:

([0, k], <, α[0, k], β[0, k − 1], k) |= ψ

iff

f ((α(0)
β(0)) . . . (α(k−1)

β(k−1))(
α(k)

∗ )) = 1

Büchi, Elgot, Trakhtenbrot (1957-1960):
Finite-state strategies are MSO-definable.
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L-Definable Games and Strategies

An L-defined game is determined with L′-definable strategies
if

for each L-formula ϕ(α, β), there is either an L′-definable
winning strategy of Player 1 or an L′-definable winning
strategy for Player 2.

Büchi-Landweber:

MSO-defined games are determined with MSO-definable
strategies.

What about other logics?
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Results

Theorem

For L = MSO, FO(<), FO(+1):

Each L-definable game is determined with L-definable
winning strategies (which are computable from the
specification).

Theorem

If L = Presburger arithmetic, this fails.

(A. Rabinovich, W.T., CSL 2007)
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Part 6

Perspectives
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Research Areas

Games over infinite graphs

Concurrent games

Games with quantitative winning conditions

Timed games

Stoachstic games

A fundamental problem: Is there a methodology to solve
games “compositionally”, i.e. following the structure of the
formula that defines the winning condition?
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