Forcing in Łukasiewicz logic a joint work with Antonio Di Nola and George Georgescu

Luca Spada lspada@unisa.it

Department of Mathematics University of Salerno

Seventh International Tbilisi Symposium on Language, Logic and Computation
Tbilisi, October 1-5, 2007

Overview

- 1 Introduction
 History of forcing
 Łukasiewicz logic
- Properties of finite forcing Generic model theorem
- 3 Infinite forcing
 Properties of forcing
 Generic structures

History of forcing

- P. COHEN The independence of the continuum hypothesis. *Proc. Natl. Acad. Sci. U.S.A* 50: 1143-1148 (1963).
- A. Robinson, Forcing in model theory. In Actes du Congrès International des Mathématiciens (Nice, 1970), Tome 1: 245-250. Gauthier-Villars, Paris, 1971.
- A. ROBINSON, Infinite forcing in model theory. In Proceedings of the Second Scandinavian Logic Symposium (Oslo, 1970): 317-340. Studies in Logic and the Foundations of Mathematics, Vol. 63, North-Holland, Amsterdam, 1971.
- H. J. KEISLER, Forcing and the omitting types theories, *Studies in Model Theory*, MAA Studies in Math., Buffalo, N.Y., 8: 96-133, 1973.
- J.-C. LABLANIQUE, Propriétés de consistance et forcing, Ann. Sci. Univ. Clermont, Ser. Math., Fasc. 18: 37-45, 1979.

Motivations

The aim of our work is to generalize the classical model-theoretical notion of forcing to the infinite-valued Łukasiewicz predicate logic.

Łukasiewicz predicate logic is not complete w.r.t. standard models and, its set of standard tautologies is in Π_2 .

The Lindenbaum algebra of Łukasiewicz logic is not semi-simple.

In introducing our notions we will follow the lines of Robinson and Keisler.

Łukasiewicz propositional logic The language of Łukasiewicz propositional logic L_{∞} is defined from a countable set Var of propositional variables $p_1, p_2, \ldots, p_n, \ldots$, and two binary connectives \rightarrow and \neg .

 L_{∞} has the following axiomatization:

- $\varphi \to (\psi \to \varphi)$;
- $(\varphi \to \psi) \to ((\psi \to \chi) \to (\varphi \to \chi));$
- $((\varphi \to \psi) \to \psi) \to ((\psi \to \varphi) \to \varphi);$
- $(\neg \varphi \rightarrow \neg \psi) \rightarrow (\psi \rightarrow \varphi)$.

where φ, ψ and χ are formulas. Modus ponens is the only rule of inference. The notions of proof and theorem are defined as usual.

MV-algebras

A **MV-algebra** is structures $\mathcal{A} = \langle A, \oplus, {}^*, 0 \rangle$ satisfying the following equations:

- $x \oplus (y \oplus z) = (x \oplus y) \oplus z$,
- $x \oplus y = y \oplus x$,
- $x \oplus 0 = x$,
- $x \oplus 0^* = 0^*$,
- $x^{**} = x$,
- $(x^* \oplus y)^* \oplus y = (y^* \oplus x)^* \oplus x$.

Other operations are definable as follows:

$$x \to y = x^* \oplus y$$
 and $x \odot y = (x^* \oplus y^*)^*$.

MV-algebras form the equivalent algebraic semantics of the propositional Łukasiewicz logic, in the sense of Blok and Pigozzi.

Łukasiewicz predicate logic

The following are the axioms of Łukasiewicz predicate logic (PL_{∞}):

- **1** the axioms of ∞-valued propositional Łukasiewicz calculus L_{∞} ;
- 2 $\forall x \varphi \rightarrow \varphi(t)$, where the term t is substitutable for x in φ ;
- 3 $\forall x(\varphi \to \psi) \to (\varphi \to \forall x\psi)$, where x is not free in φ ;
- **4** $(\varphi \to \exists x \psi) \to \exists x (\varphi \to \psi)$, where x is not free in φ .

 PL_{∞} has two rules of inference:

- Modus ponens (m.p.): from φ and $\varphi \to \psi$, derive ψ ;
- Generalization (G): from φ , derive $\forall x \varphi$.

The semantic of PL_{∞}

Let L be an MV-algebra. An L-structure of the language PL_{∞} has the form $\mathfrak{A}=\left\langle A,(P^{\mathfrak{A}})_{P},(c^{\mathfrak{A}})_{C}\right\rangle$ where

A is a non-empty set (the universe of the structure);

for any *n*-ary predicate P of PL_{∞} , $P^{\mathfrak{A}}:A^n\to L$ is an *n*-ary L-relation on A;

for any constant c of PL_{∞} , $c^{\mathfrak{A}}$ is an element of A.

The notions of evaluations, tautology, etc. are defined as usual.

Forcing properties

Let $PL_{\infty}(C)$ be the language of PL_{∞} , to which we add an infinite set C of new constants. Let E be set of sentences of $PL_{\infty}(C)$ and At the set of atomic sentences of $PL_{\infty}(C)$.

Definition

A **forcing property** is a structure of the form $\mathbf{P} = \langle P, \leq, 0, f \rangle$ such that the following properties hold:

- (i) $(P, \leq, 0)$ is a poset with a first element 0;
- (ii) Every well-orderd subset of P has an upper bound;
- (iii) $f: P \times At \rightarrow [0,1]$ is a function such that for all $p, q \in P$ and $\varphi \in At$ we have $p \leq q \Longrightarrow f(p,\varphi) \leq f(q,\varphi)$.

The elements of *P* are called **conditions**.

Finite forcing

Definition

Let $< P, \le, 0, f>$ be a forcing property. For any $p \in P$ and any formula φ we define the real number $[\varphi]_p \in [0,1]$ by induction on the complexity of φ :

- **1** if $\varphi \in At$ then $[\varphi]_p = f(p, \varphi)$;
- 2) if $\varphi = \neg \psi$ then $[\varphi]_p = \bigwedge_{p \leq q} [\psi]_q^*$;
- 3 if $\varphi = \psi \to \chi$ then $[\varphi]_p = \bigwedge_{p \le q} ([\psi]_q \to [\chi]_p)$;
- **4** if $\varphi = \exists x \psi(x)$ then $[\varphi]_p = \bigvee_{c \in C} [\psi(c)]_p$.

The real number $[\varphi]_p$ is called the **forcing value** of φ at p.

Some properties of finite forcing

For any forcing property P, $p \in P$ and for any sentence φ , ψ or $\forall x \chi(x)$ of $\mathrm{PL}_{\infty}(C)$ we have :

- **1** If $p \leq q$ then $[\varphi]_p \leq [\varphi]_q$
- $(3) [\varphi]_p \leq [\neg \neg \varphi]_p.$

Generic sets

Definition

A non-empty subset G of P is called **generic** if the following conditions hold

 $\text{If } p \in \textit{G} \text{ and } q \leq p \text{ then } q \in \textit{G},$

For any $p, g \in G$ there exists $v \in G$ such that $p, g \leq v$;

For any $\varphi \in E$ there exists $p \in G$ such that $[\varphi]_p \oplus [\neg \varphi]_p = 1$.

Definition

Given a forcing property $\langle P, \leq, 0, f \rangle$, a model $\mathfrak A$ is **generated by** a generic set G if for all $\varphi \in E$ and $p \in G$ we have $[\varphi]_p \leq \|\varphi\|_{\mathfrak A}$. A model $\mathfrak A$ is **generic** for $p \in P$ if it is generated by a generic subset G which contains p. $\mathfrak A$ is generic if it is generic for 0.

Generic model theorem

Theorem

Let $< P, \le, 0, f > be$ a forcing property and $p \in P$. Then there exists a generic model for p.

Sketch of the proof.

For any $p \in P$ build by stages a generic set G such that $p \in G$, proving that the condition $[\varphi]_q \oplus [\neg \varphi]_q < 1$ must fail for some $q \geq p_n$

Build a structure starting form the constants in the language and define an evaluation by $e(\varphi) = \bigvee_{p \in G} [\varphi]_p$. Such an enumerable model is generated by G.

Generic model theorem

Corollary

If p belongs to some generic set G which has a maximum g, then there exists \mathfrak{M} , generic model for p, such that $[\varphi]_g = \|\varphi\|_{\mathfrak{M}}$

Corollary

For any $\varphi \in E$ and $p \in P$ we have

$$[\neg\neg\varphi]_p = \bigwedge \{ \|\varphi\|_{\mathfrak{M}} \mid \mathfrak{M} \text{ is a generic structure for } p \}.$$

Infinite forcing

Henceforth all structures will be assumed to be members of a fixed inductive class Σ .

Definition

For any structure $\mathfrak A$ and for any sentence φ of $PL_{\infty}(\mathfrak A)$ we shall define by induction the real number $[\varphi]_{\mathfrak A} \in [0,1]$:

- **1** If φ is an atomic sentence then $[\varphi]_{\mathfrak{A}} = ||\varphi||_{\mathfrak{A}}$;
- 2 If $\varphi = \neg \psi$ then $[\varphi]_{\mathfrak{A}} = \bigwedge_{\mathfrak{A} \subseteq \mathfrak{B}} [\psi]_{\mathfrak{B}}^*$;
- 3 If $\varphi = \psi \to \chi$ then $[\varphi]_{\mathfrak{A}} = \bigwedge_{\mathfrak{A} \subset \mathfrak{B}} ([\psi]_{\mathfrak{B}} \to [\chi]_{\mathfrak{A}});$
- $4 \text{ If } \varphi = \exists x \psi(x) \text{ then } [\varphi]_{\mathfrak{A}} = \bigvee_{a \in \mathfrak{A}} [\psi(a)]_{\mathfrak{A}}.$

 $[\varphi]_{\mathfrak{A}}$ will be called the **forcing value** of φ in \mathfrak{A} .

An example

A natural question is whether $[\varphi]_{\mathfrak{A}}=1$ for any formal theorem φ of PL_{∞} . The following example shows that the answer is negative: Let us consider a language of PL_{∞} with a unique unary predicate symbol R. We define two standard structures $\mathfrak A$ and $\mathfrak B$ by putting

$$\mathfrak{A} = \{a, b\},$$
 $R^{\mathfrak{A}}(a) = 1/2,$ $R^{\mathfrak{A}}(b) = 1/3$ $\mathfrak{B} = \{a, b, c\},$ $R^{\mathfrak{B}}(a) = 1/2,$ $R^{\mathfrak{B}}(b) = 1/3,$ $R^{\mathfrak{B}}(c) = 1.$

Of course $\mathfrak A$ is a substructure of $\mathfrak B$. Let us take $\Sigma=\{\mathfrak A,\mathfrak B\}$ and consider the following sentence of PL_∞

$$\exists x R(x) \rightarrow \exists x R(x).$$

This sentence is a formal theorem of PL_{∞} (identity principle), but:

$$[\exists x R(x)]_{\mathfrak{A}} = [R(a)]_{\mathfrak{A}} \vee [R(b)]_{\mathfrak{A}} = \max(1/2, 1/3) = 1/2$$
$$[\exists x R(x)]_{\mathfrak{B}} = [R(a)]_{\mathfrak{B}} \vee [R(b)]_{\mathfrak{B}} \vee [R(c)]_{\mathfrak{B}} = \max(1/2, 1/3, 1) = 1.$$

and

$$[\exists x R(x) \to \exists x R(x)]_{\mathfrak{A}} = [\exists x R(x)]_{\mathfrak{B}} \to [\exists x R(x)]_{\mathfrak{A}} = 1 \to 1/2 = 1/2.$$

Properties of infinite forcing

For any structure $\mathfrak A$ and for any sentences φ , ψ and $\forall x \chi(x)$ of $\mathsf{PL}_{\infty}(\mathfrak A)$ the following hold:

- **1** If $\mathfrak{A} \subseteq \mathfrak{B}$ then $[\varphi]_{\mathfrak{A}} \leq [\varphi]_{\mathfrak{B}}$.
- $(3) [\varphi]_{\mathfrak{A}} \leq [\neg \neg \varphi]_{\mathfrak{A}}.$

- 6 $[\forall x \chi(x)]_{\mathfrak{A}} = \bigwedge_{\mathfrak{A} \subseteq \mathfrak{B}} \bigwedge_{b \in \mathfrak{B}} \bigvee_{\mathfrak{B} \subseteq \mathfrak{C}} [\chi(b)]_{\mathfrak{C}}.$

Generic structures

The following result characterizes the members $\mathfrak A$ of Σ for which $[\]_{\mathfrak A}$ and $\|\ \|_{\mathfrak A}$ coincide.

Proposition

For any $\mathfrak{A} \in \Sigma$ the following assertions are equivalent:

- (1) $\|\varphi\|_{\mathfrak{A}} = [\varphi]_{\mathfrak{A}}$, for all sentences φ of $PL_{\infty}(\mathfrak{A})$;
- (2) $\|\varphi\|_{\mathfrak{A}} = [\neg \neg \varphi]_{\mathfrak{A}}$, for all sentences φ of $PL_{\infty}(\mathfrak{A})$;
- (3) $[\varphi]_{\mathfrak{A}} \oplus [\neg \varphi]_{\mathfrak{A}} = 1$, for all sentences φ of $PL_{\infty}(\mathfrak{A})$;
- (4) $[\neg \varphi]_{\mathfrak{A}} = [\varphi]_{\mathfrak{A}}^*$, for all sentences φ of $PL_{\infty}(\mathfrak{A})$.

Generic structures

Definition

A structure $\mathfrak{A} \in \Sigma$ which satisfies the equivalent conditions of the proposition above will be called Σ -generic.

Theorem

Any structure $\mathfrak{A} \in \Sigma$ is a substructure of a Σ -generic structure.

Theorem

Any Σ -generic structure $\mathfrak A$ is Σ -existentially-complete.

Let use denote by \mathfrak{G}_{Σ} the class of Σ -generic structures.

Proposition

 \mathfrak{G}_{Σ} is an inductive class.

Theorem

 \mathfrak{G}_{Σ} is the unique subclass of Σ satisfying the following properties:

- (1) it is model-consistent with Σ ;
- (2) it is model-complete;
- (3) it is maximal with respect to (1) and (2).