Introduction Finite forcing Infinite forcing

(e]e} (e]e] [e]
0000 (o] [e]e]e}

Forcing in Lukasiewicz logic

a joint work with Antonio Di Nola and George Georgescu

Luca Spada

lspada@unisa.it

Department of Mathematics
University of Salerno

Seventh International Tbilisi Symposium on Language, Logic
and Computation
Thilisi, October 1-5, 2007



Introduction Finite forcing Infinite forcing

00 [e]e] (e}
0000 [e]e] 000
Overview

@ Introduction
History of forcing
tukasiewicz logic

@ Finite forcing
Properties of finite forcing
Generic model theorem

© Infinite forcing
Properties of forcing
Generic structures



Introduction

[ ]o}

History of forcing

P. CoHEN The independence of the continuum hypothesis.
Proc. Natl. Acad. Sci. U.S5.A 50: 1143-1148 (1963).

A. ROBINSON, Forcing in model theory. In Actes du Congrés
International des Mathématiciens (Nice, 1970), Tome 1:
245-250. Gauthier-Villars, Paris, 1971.

A. ROBINSON, Infinite forcing in model theory. In
Proceedings of the Second Scandinavian Logic Symposium
(Oslo, 1970): 317-340. Studies in Logic and the Foundations
of Mathematics, Vol. 63, North-Holland, Amsterdam, 1971.

H. J. KEISLER, Forcing and the omitting types theories,
Studies in Model Theory, MAA Studies in Math., Buffalo,
N.Y., 8: 96-133, 1973.

J.-C. LABLANIQUE, Propriétés de consistance et forcing,
Ann. Sci. Univ. Clermont, Ser. Math., Fasc. 18: 37-45, 1979.



Introduction

oe

Motivations

The aim of our work is to generalize the classical model-theoretical
notion of forcing to the infinite-valued Lukasiewicz predicate logic.

tukasiewicz predicate logic is not complete w.r.t. standard models
and, its set of standard tautologies is in I,.
The Lindenbaum algebra of Lukasiewicz logic is not semi-simple.

In introducing our notions we will follow the lines of Robinson and
Keisler.
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tukasiewicz propositional logic The language of tukasiewicz
propositional logic L., is defined from a countable set Var of
propositional variables p1, p2, ..., pn,..., and two binary
connectives — and —.

L has the following axiomatization:

o= (b—o)

* (p—=¥) = (¥ —x) = (¢ —=x))

c ((p=¥) =)= (v =)= o)

* (mp—= ) = (¥ — o)
where ¢, and x are formulas. Modus ponens is the only rule of
inference. The notions of proof and theorem are defined as usual.
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MV-algebras

A MV-algebra is structures A = (A, @, *,0) satisfying the
following equations:

cx®(ydz)=(xDy)D 2
e xPy=y®dXx,

e xd0=x,
e x D 0* = 0%
° X**:X,

s (x*ay)yey=yex)ax
Other operations are definable as follows:

X—=y=x"®y and xOy=Kx"®y")".

MV-algebras form the equivalent algebraic semantics of the
propositional tukasiewicz logic, in the sense of Blok and Pigozzi.
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tukasiewicz predicate logic

The following are the axioms of tukasiewicz predicate logic
(PL):
@ the axioms of oco-valued propositional tukasiewicz calculus
Leo;
® Vxp — p(t), where the term t is substitutable for x in ¢;
© Vx(p — ) — (¢ — Vx1b), where x is not free in ¢;
0O (¢ — Ixy) — Ix(p — 1), where x is not free in ¢.
Pt has two rules of inference:
- Modus ponens (m.p.): from ¢ and ¢ — 1), derive 1;
- Generalization (G): from ¢, derive Vxp.
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The semantic of Pt

Let L be an MV-algebra. An L-structure of the language Pt has
the form 2 = <A PQ[ )P, ( C> where

A is a non-empty set (the universe of the structure);

for any n-ary predicate P of PLo,, P%: A" — L is an n-ary
L-relation on A;

for any constant ¢ of Pto, c® is an element of A.

The notions of evaluations, tautology, etc. are defined as usual.
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Forcing properties

Let PLo(C) be the language of PL, to which we add an infinite
set C of new constants. Let E be set of sentences of PL,(C) and
At the set of atomic sentences of Pt (C).

Definition
A forcing property is a structure of the form P =< P, <,0,f >
such that the following properties hold:

(i) (P,<,0) is a poset with a first element 0;
(ii) Every well-orderd subset of P has an upper bound;

(iii) f: P x At — [0,1] is a function such that for all p,q € P and
@ € At we have p < g = f(p, ) < f(q, ).

The elements of P are called conditions.
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Finite forcing

Definition
Let < P, <,0,f > be a forcing property. For any p € P and any
formula ¢ we define the real number [¢], € [0, 1] by induction on
the complexity of ¢:
@ if ¢ € At then [¢], = f(p, ¢);
@ if o =~ then [p], = A <, [1/1]:;;
© if ¢ = — x then [¢], = A< ([¢¥]q — [X]p):
0 if ¢ = 3xt(x) then [p]p =V cclt(0)]p-
The real number [y], is called the forcing value of ¢ at p.
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Some properties of finite forcing

For any forcing property P, p € P and for any sentence ¢, % or
Vxx(x) of PLoo(C) we have :

@ If p < q then [¢], < [¢]q

O [y, = /\pgq ngv[W]v?

© [¢]p < [¢]p

0 [~¢lp = [¢lp.

O [Vxx(X)]p = Ap<g Acec V< [x()]r
0 [¢p — Ylp = [~¢lp © [Y]p:

0 [ @ V]p = ["¢lp @ [Y]p;
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Generic sets

Definition
A non-empty subset G of P is called generic if the following
conditions hold

If p€ G and g < pthen g € G,

For any p, g € G there exists v € G such that
p,g& =V,

For any ¢ € E there exists p € G such that
[elp & [~¢lp = 1.

Definition

Given a forcing property (P, <,0,f), a model 2 is generated by a
generic set G if for all p € E and p € G we have [¢], < |lollo. A
model 2 is generic for p € P if it is generated by a generic subset
G which contains p. 2 is generic if it is generic for 0.
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Generic model theorem

Theorem
Let < P,<,0,f > be a forcing property and p € P. Then there
exists a generic model for p.

Sketch of the proof.

For any p € P build by stages a generic set G such that p € G,
proving that the condition [p]q ® [~¢]q < 1 must fail for some

q = Pn

Build a structure starting form the constants in the language and
define an evaluation by e(¢) =\ ,cclplp. Such an enumerable
model is generated by G.
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Generic model theorem

Corollary

If p belongs to some generic set G which has a maximum g, then
there exists M, generic model for p, such that [p]g = ||¢]lom

Corollary
For any ¢ € E and p € P we have

[—¢]p = /\{HtpHgm\ M is a generic structure for p}.
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Infinite forcing

Henceforth all structures will be assumed to be members of a fixed
inductive class 3.

Definition

For any structure 2 and for any sentence ¢ of PL, () we shall
define by induction the real number [¢]g € [0, 1]:

@ If o is an atomic sentence then [¢]a = ||o||;
@ If o =~ then [pla = Agcp[V]5m:
© If o =1 — x then [pla = Agcn([¥]s — [X]2):

@ If ¢ = Ixy(x) then [pla =V, calv(a)]a
[]sr will be called the forcing value of ¢ in 2.
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An example

A natural question is whether [p]g = 1 for any formal theorem ¢
of PL,. The following example shows that the answer is negative:
Let us consider a language of PL, with a unique unary predicate
symbol R. We define two standard structures 2l and B by putting

2A = {a, b}, R¥*(a)=1/2, R*(b)=1/3
B ={ab,c}, RP>E)=1/2, R®(b)=1/3, R®(c)=1.
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An example

Of course 2 is a substructure of B. Let us take ¥ = {2,B} and
consider the following sentence of Pt

IxR(x) — IxR(x).
This sentence is a formal theorem of Pt (identity principle), but:

[BxR()a = [R(@)]a V [R(b)]or = max(1/2,1/3) = 1/2
[BxR()]m = [R(3)]w V [R(B)]s V [R(c)]m = max(1/2,1/3,1) = 1.

and

[AxR(x) — IxR(x)]a = [AxR(X)]ss — [IxR(X)]a=1—1/2=1/2.
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Properties of infinite forcing

For any structure 2 and for any sentences ¢, 1 and Vxx(x) of
PLoo(2A) the following hold:

@ If A C B then [¢]a < [¢]s-

@ [pla= /\Q[QB \/nge[‘P]Q;

O [¢la < [¢]a

O [p — Y] = [~¢la @ [Y];

0 [v © Yla = ["pla® [¢]a;

O [Vxx(¥)la = Aacs Npem Viscelx(b)]e
0 [pla © [~p]a = 0.
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Generic structures

The following result characterizes the members 21 of ¥ for which
[ ]2 and || || coincide.

Proposition

For any 2l € ¥ the following assertions are equivalent:
(1) llella = [@la, for all sentences ¢ of Ptoo(2L);
(2) llella = [7—¢la, for all sentences ¢ of Pt (2);
(3) [pla® [~¢]a = 1, for all sentences ¢ of Ploo(2A);
(4) [~la = [@l for all sentences ¢ of Pt ().
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Generic structures

Definition
A structure 21 € ¥ which satisfies the equivalent conditions of the
proposition above will be called ¥ -generic.

Theorem
Any structure 2 € ¥ is a substructure of a ¥-generic structure.

Theorem
Any Y-generic structure 2l is >-existentially-complete.
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Characterization of generic structures

Let use denote by &y the class of X-generic structures.

Proposition
By is an inductive class.

Theorem
By is the unique subclass of ¥ satisfying the following properties:

(1) it is model-consistent with ¥;
(2) it is model-complete;
(3) it is maximal with respect to (1) and (2).
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