Temporal reasoning about messages

R. Ramanujam

The Institute of Mathematical Sciences, Chennai, India $jam@imsc.res.in \\ http://www.imsc.res.in/\sim jam$

You have got new mail

Every time
Every time the spray of the drizzle
chases me underneath an awning
and drenches my face
Every time I pull off my gajra
and a few flowers obstinately
stick in my hair
Every such time
I receive a message from you

A Tamil poem circa 9th cent AD.

Protocols

- Sequences of idealized communications.
- Usually to achieve a specific goal.
- A finite set of message types.
- Rules specify:
 - When a sender may send a message of a particular type,
 - ▶ What a receiver should do on receipt of a message.
- Communications travel on public channels.

Semantic issues

Assigning meaning to messages can get tricky, since the meaning of a message may well vary:

- depending on who sends it, who receives it;
- depending on the state at which it was sent / received;
- by use of cryptographic primitives;

and so on.

In synchronized systems, absence of messages may reveal information as well.

Crucially, the protocol determines the meaning(s) of a message.

Composing messages

- Protocol design: typically, constraints on the communication medium are specified, a set of desired goal states is given, and a sequence of communications is to be provided.
- ▶ If we had Hoare-style rules, $\{P\}m\{Q\}$, we could compose them.
- ▶ Typically the predicates *P* and *Q* above constrain not only what is true of the system, but also the *knowledge* of agents in the system.
- Security protocols specify negated knowledge (ignorance) assertions as well.
- ▶ It would be nice to have such clean logical constructions.

Messages as strategies

- ▶ It is natural to conceive of protocols as non-zero sum games of partial information between agents.
- ▶ Agents exercise a strategic choice when they decide on what message to send when.
- These are large games, in the sense of the game arena having nontrivial structure.
- Standard solution concepts of game theory, developed for small (normal form) games are not directly applicable.
- A natural framework for modelling interactions on the Web.
- ▶ Many interesting questions, and a few answers.

Security theory

Security considerations complicate analysis of protocols considerably.

- ▶ We have only probabilistic assertions.
- The presence of a hypothetical adversary with unbounded computational power typically implies undecidability of analysis.
- Combining protocols developed to meet different security objectives can easily lead to inconsistency.
- ▶ Information flow analysis is usually quite nontrivial.

Much room for logic: designing one at the "right" level of abstraction, without missing the tricky details but yet allowing decision procedures, is challenging.

Reasoning about messages

- ▶ In theory of distributed systems, messages are typically identified with their content.
- Determining the content depends on intended applications.
- ▶ In algorithms for coordination, message gets equated with the sender's local state when the message is sent (or a transition in the automaton).
- ▶ In security theory, patterns in messages are important, often more than the actual content.
- ► In distributed games, messages constitute (partial) information about players' strategies.

What kind of logic?

- ► Logic can play several rôles in the contexts we have been discussing, but we focus on two:
 - Requirement specification.
 - Verification.
- ► Then a natural question is whether messages need to figure as a syntactic category, at all.
- ► The second criterion above dictates decidability of the satisfiability problem, and efficient truth checking.

Temporal Logic

▶ Linear time temporal logic plays a similar rôle in the context of *reactive systems*.

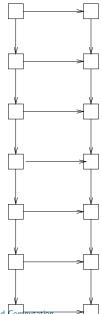
$$\Phi ::= p \in P \mid \neg \alpha \mid \alpha_1 \vee \alpha_2 \mid \bigcirc \alpha \mid \alpha_1 \mathbf{U} \alpha_2$$

- ▶ Note that model elements are abstracted away, and relative ordering of events in computation is important.
- ▶ We are guided by such an approach in what follows.
- ► The logics we discuss are extensions of linear time temporal logics and message behaviour is abstracted in terms of how they affect causal ordering.

Lamport Diagrams

- Partial orders depicting computations of systems of communicating automata.
- ► The model is that of a system of *n* agents that communicate by asynchronous message passing.
- ► The computation of each agent is given as a linear order of event occurrences.
- ► Causal ordering between *i*-events and *j*-events, for distinct agents *i* and *j*, is introduced by communication.
- ▶ Note that there are implicit unbounded buffers, leading to nonregular behaviour (in terms of sequentializations).

An example



The definition

- ▶ Let [n] denote the set $\{1, ..., n\}$, the set of n agents.
- ▶ $D = (E_1, ..., E_n, \le)$, where: E_i is the set of event occurrences of agent i, \le is a partial order on $E \stackrel{\text{def}}{=} \bigcup_i E_i$ called the causality

relation such that:

- 1. for all $i \in [n]$, E_i is totally ordered by \leq ,
- 2. for all $e \in E$, $\downarrow e \stackrel{\text{def}}{=} \{e' \mid e' \leq e\}$ is finite.
- ▶ Let $e \in E_i$. ↓e is the local state of agent i when the event e has just occurred.
- $LC_i \stackrel{\text{def}}{=} \{\epsilon_i\} \cup \{ \downarrow e \mid e \in E_i \}.$ $LC \stackrel{\text{def}}{=} \bigcup_i LC_i.$

Remarks

- ▶ $e_1 \le e_2$ denotes that in any computation when e_2 has occurred, the event e_1 has occurred earlier.
- ▶ Let < denote the covering relation of the partial order.
- ▶ When $e_1 \in E_i$, $e_2 \in E_j$, $i \neq j$ and $e_1 \leqslant e_2$, we can read e_1 as the sending of a message from i to j, and e_2 as its receipt; we denote this by $e_1 <_c e_2$.
- ▶ Note that under this reading, there is an implicit *FIFO* assumption: messages are delivered in the same order as they were sent.
- More general notions of information transfer are consistent.

The temporal logic m-LTL

- ▶ Syntax: $(P_1, P_2, ..., P_n)$; $P \stackrel{\text{def}}{=} \bigcup_i P_i$.
- ▶ i-local formulas:

$$\Phi_{i} ::= p \in P_{i} \mid \neg \alpha \mid \alpha_{1} \lor \alpha_{2} \mid \bigcirc \alpha \mid \alpha_{1} \mathbf{U} \alpha_{2}$$
$$\mid \bigcirc_{j} \alpha, j \neq i, \alpha \in \Phi_{j}$$

Global formulas:

$$\Psi ::= \alpha @i, \ \alpha \in \Phi_i \mid \neg \psi \mid \psi_1 \lor \psi_2$$

 $\triangleright \bigcirc_j \alpha$, asserted by i, says that α held in the last j-local state visible to i.

Semantics: local formulas

M=(D,V), where $D=(E_1,\ldots,E_n,\leq)$ is a Lamport diagram such that $E=\bigcup_i E_i$ is a countably infinite set and $V:LC\to 2^P$ is the valuation map such that for $d\in LC_i$, $V(d)\subseteq P_i$.

- ▶ $M, d \models_i \bigcirc \alpha$ iff there exists $d' \in LC_i$ such that $d \lessdot d'$ and $M, d' \models_i \alpha$.
- ▶ $M, d \models_i \alpha \mathbf{U}\beta$ iff $\exists d' \in LC_i$: $d \subseteq d', M, d' \models_i \beta$ and $\forall d'' \in LC_i$: $d \subseteq d'' \subset d'$: $M, d'' \models_i \alpha$.
- ▶ $M, d \models_i \oslash_j \alpha$ iff there exists $d' \in LC_j$ such that $d' \lessdot d$ and $M, d' \models_i \alpha$.

Note that the future modalities are local.

Semantics: global formulas

The global formulas are simply boolean combinations of local formulas.

- \blacktriangleright $M \models \alpha @i$ iff $M, \epsilon_i \models_i \alpha$.
- ▶ $M \models \neg \psi$ iff $M \not\models \psi$.
- ▶ $M \models \psi_1 \lor \psi_2$ iff $M \models \psi_1$ or $M \models \psi_2$.

There are no global modalities in the logic.

Examples

- ([]($p \land \oslash_2 \neg `OK' \implies \bigcirc (q \implies \oslash_2 `OK')$))@1. agent 1 can make a transition from a state satisfying p into a state in which q holds only after hearing an 'OK' from agent 2, and must block otherwise.
- ▶ $(p@3 \land ([] \oslash_3 p)@1) \implies ([] \oslash_3 p)@2$. Any information about agent 3 that agent 2 gets (regarding p) is communicated through agent 1.

Decidability

Let ψ be a m-LTL formula of length m.

- ▶ **Theorem**: Satisfiability of ψ over *n*-agent Lamport diagrams can be decided in time $2^{O(mn)}$.
- ▶ Proof is by construction of a system of n communicating automata (n-SCA), which runs on n-agent Lamport diagrams.
- ▶ Given an *n*-SCA S, we can define the verification problem: $S \models \psi$ iff $\mathcal{L}(S) \subseteq \mathcal{L}(\psi)$.
- ▶ **Theorem**: The verification question $S \models \psi$ can be answered in time $k \cdot 2^{O(mn)}$, where k = |S|.

Strengthening

- ▶ m-LTL is quite a weak logic, as temporal logics go.
- ▶ We can strengthen the past: alongwith $\bigcirc_j \alpha$, we can add $\alpha \mathbf{S}_j \beta$, without disturbing the results.
- We can consider global future: \bigcirc_j and $\alpha \mathbf{U}_j \beta$ modalities, as well as modalities in global formulas.
- ▶ These lead to undecidability.

First order logic

m-LTL is a fragment of a natural first order logic F on n-agent Lamport diagrams.

$$\Gamma ::= P_i(x) \mid P_a(x) \mid S(x,y) \mid x < y \mid \neg \phi \mid \phi_1 \lor \phi_2 \mid \exists x.\phi,$$
 where $i \in [n], a \in \Sigma$.

- ▶ The satisfiability problem for *F* is undecidable.
- More interestingly, even the two-variable fragment is undecidable.
- ▶ The FO(S) sub-logic is also undeciable.

The problem

- ▶ The main culprit is the existence of *unbounded buffers*.
- Since a sender can proceed asynchronously and pile up messages which a receiver may look at arbitrarily later, we have excessive computational power.
- One natural solution is to place bounds on channel capacity.
- Over such systems, we can not only get decidability, but can also do interesting automata theory.

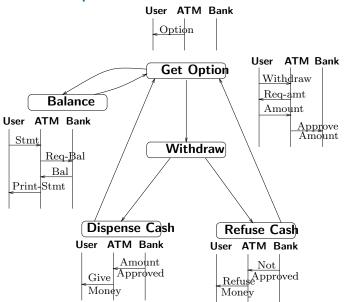
Generating infinite LDs

- ► Typically, we wish to reason not about individual messages but about message patterns.
- Message sequence charts: a standard grphical notation for describing system requirements in the design of communication protocols.
- ► MSCs are very similar to LDs: a graph rather than the Hasse diagram of a partial order.
- ▶ Infinite behaviours are obtained by concatenating a fixed number of MSCs in some periodic manner.

An ATM example

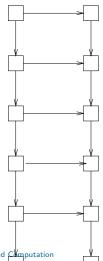
- The communication scenario of an automatic teller machine (ATM):
- ▶ There are three agents—User, Bank and the ATM.
- ► The ATM provides options for the user to check the balance in his/her account and to withdraw cash after validating the balance.

The ATM example

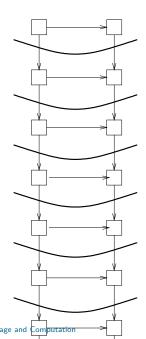


Layered Diagrams

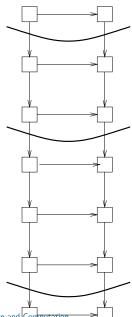
Following this intuition, we define here a class of Layered Lamport Diagrams (LLDs), in such a way that every LD can be thought of as a concatenation of finite layers.



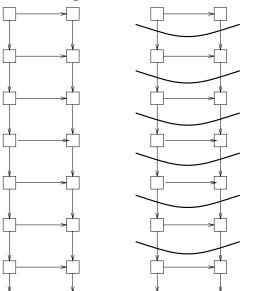
Layering

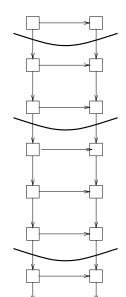


Unbounded layering



Layered diagrams





Definition

A **layered Lamport diagram** is a tuple $D = (E, \leq, \phi, \lambda)$ where (E, \leq, ϕ) is a Lamport diagram and $\lambda : E \to \mathbf{N}$ is a layering function which satisfies the following conditions:

- ▶ for all $e \in E$, if $\lambda(e) = k$ then, for all $i \in [n]$, there exists $e' \in E_i$ such that $\lambda(e') = k$.
- ▶ for $e, e' \in E$, $e \le e'$ implies $\lambda(e) \le_{\mathbf{N}} \lambda(e')$.
- for every k, $\lambda^{-1}(k)$ is finite.

Thus a layer is a finite set of events that includes at least one event of each agent, and the layering respects the causality relation.

The layers

- ▶ Given a countable layered Lamport diagram $D = (E, \leq, \phi, \lambda)$, $\lambda(E)$ is an infinite set and can be denoted by an increasing (infinite) sequence of natural numbers.
- More precisely, let ν_D denote the sequence of natural numbers k_1, k_2, \ldots such that $\lambda(E) = \{k_1, k_2, \ldots\}$ and $k_1 <_{\mathbf{N}} k_2 <_{\mathbf{N}} k_3 \ldots$ For $i, j \in \lambda(E)$, we say that j is a successor of i iff there exists l such that $k_l = i$ and $k_{l+1} = j$ in ν_D .
- ▶ For $k \in \lambda(E)$, $\lambda^{-1}(k)$ induces a (finite) Lamport diagram which we call a layer of D and denote by D_k . Note that the sequence of layers D_{k_1}, D_{k_2}, \ldots , where $\nu_D = k_1, k_2 \ldots$, completely specifies the diagram D.

Natural conditions on layering

Consider a layered Lamport diagram $D=(E,\leq,\phi,\lambda)$. Let $delay_D=\{\lambda(e')-\lambda(e)\mid e<_c e'\}$ denote the set of *communication delays* associated with D.

- 1. *D* is said to be **communication-closed** if for every $e, e' \in E$ such that $e <_c e'$, $\lambda(e) = \lambda(e')$.
- 2. Let b > 0. D is said to be b-bounded, if for all $k \in \lambda(E)$, $|\lambda^{-1}(k)| \le b$. D is said to be bounded if there exists $b \in \mathbb{N}$ such that D is b-bounded.
- 3. Let b > 0. D is said to be **strongly** b-bounded, if D is b-bounded and for all $k \in delay_D$, $k \le b$.

The temporal logic λ -**LTL**

Syntax: (P_1, P_2, \dots, P_n) ; $P \stackrel{\text{def}}{=} \bigcup_i P_i$. Γ , a finite set of *layer names*.

Layer formulas:

$$\Phi_{1} ::= p \in P_{i} \mid \tau_{i} \mid \neg \alpha \mid \alpha_{1} \lor \alpha_{2}$$

$$X \alpha \mid Y \alpha \mid F \alpha \mid P \alpha$$

Temporal formulas:

$$\Psi ::= \alpha @ i, \ \alpha \in \Phi_1 \ , \ i \in [n] \mid a, \ a \in \Gamma$$

$$\neg \phi \mid \phi_1 \lor \phi_2 \mid \bigcirc \phi \mid \phi_1 \ \mathbf{U} \ \phi_2$$

This is the same as the standard propositional temporal logic of linear time, but built up from layer formulas and layer propositions.

Semantics: layer formulas

Models are $M=(D,V_E,V_\lambda)$, where $D=(E,\leq,\phi,\lambda)$ is a layered Lamport diagram, $V_E:E\to 2^P$ and $V_\lambda:\lambda(E)\to \Gamma$.

Let $\alpha \in \Phi_I$ and $e \in E$. The notion that α holds at e in M is denoted $M, e \models_I \alpha$ and is defined inductively as follows:

- ▶ $M, e \models_I p \text{ iff } p \in V_E(e)$.
- ▶ $M, e \models_I \tau_i \text{ iff } \tau_i \in V_E(e) \text{ and } \phi(e) = i.$
- ▶ $M, e \models_I X\alpha$ iff there exists $e' \in E$ such that $e \lessdot e'$ and $M, e' \models_I \alpha$.
- ▶ $M, e \models_I F\alpha$ iff there exists $e' \in E$ such that $e \leq e'$, $\lambda(e) = \lambda(e')$ and $M, e' \models_I \alpha$.
- ▶ $M, e \models_I Y \alpha$ iff there exists $e' \in E$ such that $e' \lessdot e$ and $M, e' \models_I \alpha$.
- ▶ $M, e \models_I P\alpha$ iff there exists $e' \in E$ such that $e' \leq e$, $\lambda(e) = \lambda(e')$ and $M, e' \models_I \alpha$.

Semantics: temporal formulas

Temporal formulas are interpreted at layers of a layered Lamport diagram.

Given a model $M=(D,V_E,V_\lambda)$ and $\phi\in\Psi$, the notion that ϕ holds in the layer k of D is denoted $M,k\models\phi$ and is defined inductively as follows:

- ▶ $M, k \models \alpha@i$ iff $M, e \models_I \alpha$ where e is the i-minimum event of D_k .
- ▶ $M, k \models a, a \in \Gamma \text{ iff } V_{\lambda}(k) = a.$
- ▶ $M, k \models \bigcirc \phi$ iff $M, k' \models \phi$ where k' is the successor of k in ν_D .
- ▶ $M, k \models \phi \mathbf{U} \psi$ iff there exists $k' \in I(E)$: $k \leq_{\mathbf{N}} k', M, k' \models \psi$ and for all $k'' \in I(E) : k \leq_{\mathbf{N}} k'' <_{\mathbf{N}} k' : M, k'' \models \phi$.

Satisfiability

Note that several notions of satisfiability are relevant now.

- C-satisfiability (over models based on communication closed layers),
- ▶ B-satisfiability (over models based on bounded LLDs),
- \triangleright S_b -satisfiability (over strongly b-bounded LLDs),
- ► *C*_b-satisfiability.

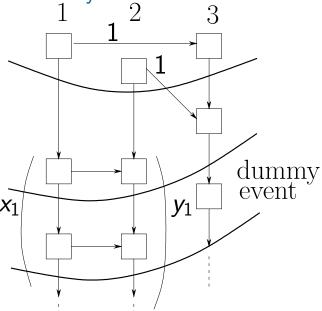
Results

Theorem

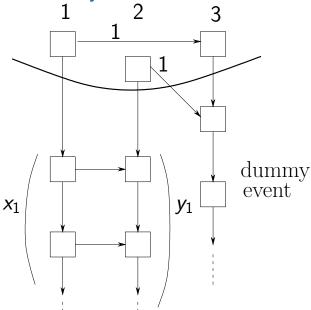
B-satisfiability and C-satisfiability are undecidable, whereas, for b > 0, C_b -satisfiability and S_b -satisfiability are decidable in Exptime.

- ► The negative results here mainly stem from the fact that instances of the Post Correspondence Problem (PCP) can be described easily using Lamport Diagrams.
- ► The fact that B-satisfiability is undecidable is a little surprising, considering that the layers are uniformly bounded.
- ► The decidability of *S_b*-satisfiability, is technically nontrivial.

PCP: B-satisfiability



PCP: C-satisfiability

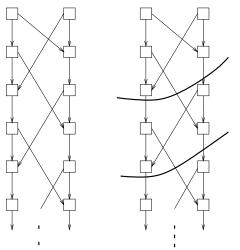


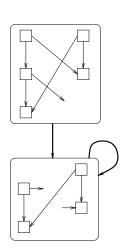
The decidable cases

- ▶ Observe that satisfiability of layer formulas within bounded communication closed layers is decidable.
- Now, given a temporal formula ϕ_0 we can construct the formula automaton \mathcal{A}_0 in the standard manner to decide C_b -satisfiability.
- ▶ When it comes to S_b -satisfiability, the automaton construction gets considerably more complicated.
- We can no longer check for satisfiability of layer formulas within b-bounded layers; to satisfy a formula of the form Xα, we may need to consider subsequent layers, and similarly previous layers need to be remembered for formulas of the form Yα.

MSGs are not enough

The Alternating Bit protocol.





Lamport diagram Bounded layering

CMSG representation

Fragments of LDs

- ► MSG where nodes are not labelled with LDs but with fragments, having "sticky ends".
- Under FIFO assumption, there is a well-defined notion of concatenation of fragments.
- ▶ Infinite diagrams are generated by tiling such fragments.
- Protocols like Alternating Bit can be modelled thus.

Bounded channel capacity

- ▶ When we consider only channel bounded diagrams, good automata theory is possible.
- ► The monadic second order theory, and corresponding message passing automata are well studied.
- Interesting results exist on realizability of MSG specifications by systems of communicating automata.
- ▶ *Blaise Genest*, 2004, has a nice survey.

Message overtaking

- ► The undecidability proofs crucially use FIFO assumption on channels.
- When the medium can re-order messages, the logics are less expressive.
- ▶ FO(S, <) remains undecidable, but the two-variable fragment is now decidable.
- ➤ The proof is by reduction to emptiness of multi-counter automata, for which the complexity is very high (not known to be elementary).

Unboundedly many processes

- ▶ In "real world" MSCs, the number of agents is not fixed.
- ▶ In many applications, we have a dynamic network of processes, which processes join and leave at will.
- ▶ Web services are an especially interesting instance.
- ► There are many applications where temporal properties depend on the *number* of live processes.
- Natural extensions to such systems are typically undecidable.

Unbounded clients

- ▶ We consider a model of *n* communicating servers, handling an unbounded number of clients.
- ► Clients are very simple: a client sends a request to a server, and waits for an answer. On receiving the answer, the client exits.
- ▶ We extend m-LTL with formulas of the form $\exists x.\phi(x)$, where $\phi(x)$ is a boolean formula over monadic predicates of the form p(x).
- ▶ The language includes x = y as well; thus we can speak of the number of live clients.
- ► The satisfiability and verification problem are shown to be decidable.

Security

- ▶ In security theory, we have an *unbounded message alphabet*, generated by an algebraic structure.
- ▶ The set of all message terms is given by the structure:

$$t \in T := t_0 \in T_0 \mid (t_1, t_2) \mid \{t\}_k$$

- Message generation rules govern when a message can be sent by a principal, as well as what a receiver learns from the message.
- ► An all-powerful intruder is assumed, who can monitor the network and eavesdrop on messages.
- ► The model is easier: every send / receive is an instantaneous communication with the intruder.
- Even simple reachability questions are undecidable, and we obtain decidability results for the interesting subclass of tagged protocols.

Relation to knowledge theory

- ▶ Clearly, every message m can be seen as a view transformer: it can be described as a set of pairs of the form $(K_i\alpha, K_i\beta)$, where if the receiver i knows A before receiving the message, then i knows B before receiving it.
- ▶ There is a natural notion of knowledge here: given a Lamport diagram D, and configurations c, c' (down-closed subsets of E), $c \sim_i c'$ iff $c \cap E_i = c' \cap E_i$.
- Thus we can give the semantics of messages as sets of pairs as above, where the formulas come from an epistemic temporal logic.
- ▶ Ths gives a specific kind of *update semantics*.
- ► Relating such semantics to automata theoretic techniques seems difficult.

In conclusion

- Formal reasoning about messages is logically interesting, has a wide range of applications in computer science but computationally difficult.
- Many foundational questions remain: what is the algebra of LDs? What are star-free collections? Where does m-LTL fit in?
- We have abstracted away all data in messages; this is not reasonable.
- MSCs typically involve time-outs; bringing in clocks and clock values again complicates matters.
- ▶ At present, we are very far from a theory that is general, nice as well as tractable.

Joint work

- on Lamport diagrams: with *B. Meenakshi*.
- on unbounded processes: with *S. Sheerazuddin*.
- ▶ on games: with Sunil Simon.
- ▶ on security: with *S. P. Suresh*.
- on semantics of messages: with Rohit Parikh.

Many people have worked on the theory of message sequence charts: many ideas presented here intersect with the work of: Rajeev Alur, Benedikt Böllig, Paul Gastin, Blaise Genest, Narayan Kumar, P. Madhusudan, Madhavan Mukund, Anca Muscholl, Doron Peled.

Welcome to India!

- ▶ We have an Association for Logic in India, a forum for interaction between researchers in logic, mathematics, philosophy and computer science. (www.cmi.ac.in/~ali)
- ▶ *Odd years*: Conference on logic and its applications.
- ► Even years: School on logic. Next one January 2008, IIT, Kanpur.
- We also have an annual conference in theoretical computer science in December. Next one – December 2007, IIT, Delhi. (www.fsttcs.org, www.iarcs.org.in).

You are also welcome at the *Institute of Mathematical Sciences, Chennai* (www.imsc.res.in).