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You have got new mail

Every time

Every time the spray of the drizzle

chases me underneath an awning

and drenches my face

Every time I pull off my gajra
and a few flowers obstinately

stick in my hair

Every such time

I receive a message from you

A Tamil poem circa 9th cent AD.
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Protocols

◮ Sequences of idealized communications.

◮ Usually to achieve a specific goal.

◮ A finite set of message types.

◮ Rules specify:
◮ When a sender may send a message of a particular type,
◮ What a receiver should do on receipt of a message.

◮ Communications travel on public channels.
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Semantic issues

Assigning meaning to messages can get tricky, since the
meaning of a message may well vary:

◮ depending on who sends it, who receives it;

◮ depending on the state at which it was sent / received;

◮ by use of cryptographic primitives;

and so on.
In synchronized systems, absence of messages may reveal
information as well.
Crucially, the protocol determines the meaning(s) of a
message.
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Composing messages

◮ Protocol design: typically, constraints on the
communication medium are specified, a set of desired
goal states is given, and a sequence of communications is
to be provided.

◮ If we had Hoare-style rules, {P}m{Q}, we could compose
them.

◮ Typically the predicates P and Q above constrain not
only what is true of the system, but also the knowledge of
agents in the system.

◮ Security protocols specify negated knowledge (ignorance)
assertions as well.

◮ It would be nice to have such clean logical constructions.
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Messages as strategies

◮ It is natural to conceive of protocols as non-zero sum
games of partial information between agents.

◮ Agents exercise a strategic choice when they decide on
what message to send when.

◮ These are large games, in the sense of the game arena
having nontrivial structure.

◮ Standard solution concepts of game theory, developed for
small (normal form) games are not directly applicable.

◮ A natural framework for modelling interactions on the
Web.

◮ Many interesting questions, and a few answers.
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Security theory

Security considerations complicate analysis of protocols
considerably.

◮ We have only probabilistic assertions.

◮ The presence of a hypothetical adversary with unbounded
computational power typically implies undecidability of
analysis.

◮ Combining protocols developed to meet different security
objectives can easily lead to inconsistency.

◮ Information flow analysis is usually quite nontrivial.

Much room for logic: designing one at the ”right” level of
abstraction, without missing the tricky details but yet allowing
decision procedures, is challenging.
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Reasoning about messages

◮ In theory of distributed systems, messages are typically
identified with their content.

◮ Determining the content depends on intended
applications.

◮ In algorithms for coordination, message gets equated with
the sender’s local state when the message is sent (or a
transition in the automaton).

◮ In security theory, patterns in messages are important,
often more than the actual content.

◮ In distributed games, messages constitute (partial)
information about players’ strategies.
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What kind of logic ?

◮ Logic can play several rôles in the contexts we have been
discussing, but we focus on two:

◮ Requirement specification.
◮ Verification.

◮ Then a natural question is whether messages need to
figure as a syntactic category, at all.

◮ The second criterion above dictates decidability of the
satisfiability problem, and efficient truth checking.
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Temporal Logic

◮ Linear time temporal logic plays a similar rôle in the
context of reactive systems.

Φ ::= p ∈ P | ¬ α | α1 ∨ α2 | © α | α1 U α2

◮ Note that model elements are abstracted away, and
relative ordering of events in computation is important.

◮ We are guided by such an approach in what follows.

◮ The logics we discuss are extensions of linear time
temporal logics and message behaviour is abstracted in
terms of how they affect causal ordering.
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Lamport Diagrams

◮ Partial orders depicting computations of systems of
communicating automata.

◮ The model is that of a system of n agents that
communicate by asynchronous message passing.

◮ The computation of each agent is given as a linear order
of event occurrences.

◮ Causal ordering between i -events and j-events, for
distinct agents i and j , is introduced by communication.

◮ Note that there are implicit unbounded buffers, leading to
nonregular behaviour (in terms of sequentializations).
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An example
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The definition

◮ Let [n] denote the set {1, . . . , n}, the set of n agents.

◮ D = (E1, . . . , En,≤), where:
Ei is the set of event occurrences of agent i ,

≤ is a partial order on E
def
=

⋃

i

Ei called the causality

relation such that:

1. for all i ∈ [n], Ei is totally ordered by ≤,

2. for all e ∈ E , ↓e
def
= {e ′ | e

′ ≤ e} is finite.

◮ Let e ∈ Ei . ↓e is the local state of agent i when the event
e has just occurred.

◮ LCi
def
= {ǫi} ∪ {↓e | e ∈ Ei}.

LC
def
=

⋃

i

LCi .
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Remarks

◮ e1 ≤ e2 denotes that in any computation when e2 has
occurred, the event e1 has occurred earlier.

◮ Let <. denote the covering relation of the partial order.

◮ When e1 ∈ Ei , e2 ∈ Ej , i 6= j and e1<. e2, we can read e1

as the sending of a message from i to j , and e2 as its
receipt; we denote this by e1 <c e2.

◮ Note that under this reading, there is an implicit FIFO

assumption: messages are delivered in the same order as
they were sent.

◮ More general notions of information transfer are
consistent.
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The temporal logic m-LTL

◮ Syntax: (P1, P2, . . . , Pn); P
def
=

⋃

i

Pi .

◮ i -local formulas:

Φi ::= p ∈ Pi | ¬ α | α1 ∨ α2 | © α | α1 U α2

| ⊘j α, j 6= i , α ∈ Φj

◮ Global formulas:

Ψ ::= α@i , α ∈ Φi | ¬ ψ | ψ1 ∨ ψ2

◮ ⊘jα, asserted by i , says that α held in the last j-local
state visible to i .
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Semantics: local formulas

M = (D, V ), where D = (E1, . . . , En,≤) is a Lamport diagram

such that E =
⋃

i

Ei is a countably infinite set and

V : LC → 2P is the valuation map such that for d ∈ LCi ,
V (d) ⊆ Pi .

◮ M , d |=i ©α iff there exists d ′ ∈ LCi such that d<. d ′

and M , d ′ |=i α.

◮ M , d |=i αUβ iff ∃d ′ ∈ LCi : d ⊆ d ′, M , d ′ |=i β and
∀d ′′ ∈ LCi : d ⊆ d ′′ ⊂ d ′ : M , d ′′ |=i α.

◮ M , d |=i ⊘jα iff there exists d ′ ∈ LCj such that d ′<. d

and M , d ′ |=j α.

Note that the future modalities are local.
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Semantics: global formulas

The global formulas are simply boolean combinations of local
formulas.

◮ M |= α@i iff M , ǫi |=i α.

◮ M |= ¬ψ iff M 6|= ψ.

◮ M |= ψ1 ∨ ψ2 iff M |= ψ1 or M |= ψ2.

There are no global modalities in the logic.
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Examples

◮ ([](p ∧⊘2¬ ‘OK ’ =⇒ ©(q =⇒ ⊘2 ‘OK ’)))@1.
agent 1 can make a transition from a state satisfying p

into a state in which q holds only after hearing an ‘OK ’
from agent 2, and must block otherwise.

◮ (p@3 ∧ ([]⊘3p)@1) =⇒ ([]⊘3p)@2.
Any information about agent 3 that agent 2 gets
(regarding p) is communicated through agent 1.
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Decidability

Let ψ be a m-LTL formula of length m.

◮ Theorem: Satisfiability of ψ over n-agent Lamport
diagrams can be decided in time 2O(mn).

◮ Proof is by construction of a system of n communicating
automata (n-SCA), which runs on n-agent Lamport
diagrams.

◮ Given an n-SCA S , we can define the verification
problem: S |= ψ iff L(S) ⊆ L(ψ).

◮ Theorem: The verification question S |= ψ can be
answered in time k · 2O(mn), where k = |S |.
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Strengthening

◮ m-LTL is quite a weak logic, as temporal logics go.

◮ We can strengthen the past: alongwith ⊘jα, we can add
αSjβ, without disturbing the results.

◮ We can consider global future: ©j and αUjβ modalities,
as well as modalities in global formulas.

◮ These lead to undecidability.
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First order logic

m-LTL is a fragment of a natural first order logic F on
n-agent Lamport diagrams.

Γ ::= Pi(x) | Pa(x) | S(x , y) | x < y | ¬ φ | φ1 ∨ φ2 | ∃x .φ,

where i ∈ [n], a ∈ Σ.

◮ The satisfiability problem for F is undecidable.

◮ More interestingly, even the two-variable fragment is
undecidable.

◮ The FO(S) sub-logic is also undeciable.
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The problem

◮ The main culprit is the existence of unbounded buffers.

◮ Since a sender can proceed asynchronously and pile up
messages which a receiver may look at arbitrarily later, we
have excessive computational power.

◮ One natural solution is to place bounds on channel
capacity.

◮ Over such systems, we can not only get decidability, but
can also do interesting automata theory.
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Generating infinite LDs

◮ Typically, we wish to reason not about individual
messages but about message patterns.

◮ Message sequence charts: a standard grphical notation
for describing system requirements in the design of
communication protocols.

◮ MSCs are very similar to LDs: a graph rather than the
Hasse diagram of a partial order.

◮ Infinite behaviours are obtained by concatenating a fixed
number of MSCs in some periodic manner.
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An ATM example

◮ The communication scenario of an automatic teller
machine (ATM):

◮ There are three agents—User, Bank and the ATM.

◮ The ATM provides options for the user to check the
balance in his/her account and to withdraw cash after
validating the balance.
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The ATM example
User ATM Bank

Option

User ATM Bank

Amount
Approved

Money

Give

BankATMUser

Not
ApprovedRefuse

Money

Get Option

Withdraw

User ATM Bank

Stmt

Req-Bal

Bal

Print-Stmt

Balance

User ATM Bank

Withdraw

Req-amt

Approve
Amount

Amount

Dispense Cash Refuse Cash
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Layered Diagrams
Following this intuition, we define here a class of Layered
Lamport Diagrams (LLDs), in such a way that every LD can
be thought of as a concatenation of finite layers.
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Layering

Tbilisi Symposium on Logic, Love, Language and Computation October 5, 2007



Unbounded layering
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Layered diagrams
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Definition

A layered Lamport diagram is a tuple D = (E ,≤, φ, λ)
where (E ,≤, φ) is a Lamport diagram and λ : E → N is a
layering function which satisfies the following conditions:

◮ for all e ∈ E , if λ(e) = k then, for all i ∈ [n], there exists
e ′ ∈ Ei such that λ(e ′) = k .

◮ for e, e ′ ∈ E , e ≤ e ′ implies λ(e) ≤N λ(e ′).

◮ for every k , λ−1(k) is finite.

Thus a layer is a finite set of events that includes at least one
event of each agent, and the layering respects the causality
relation.
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The layers

◮ Given a countable layered Lamport diagram
D = (E ,≤, φ, λ), λ(E ) is an infinite set and can be
denoted by an increasing (infinite) sequence of natural
numbers.

◮ More precisely, let νD denote the sequence of natural
numbers k1, k2, . . . such that λ(E ) = {k1, k2, . . .} and
k1 <N k2 <N k3 . . .. For i , j ∈ λ(E ), we say that j is a
successor of i iff there exists l such that kl = i and
kl+1 = j in νD .

◮ For k ∈ λ(E ), λ−1(k) induces a (finite) Lamport diagram
which we call a layer of D and denote by Dk . Note that
the sequence of layers Dk1 , Dk2 , . . ., where νD = k1, k2 . . .,
completely specifies the diagram D.
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Natural conditions on layering

Consider a layered Lamport diagram D =
(E ,≤, φ, λ). Let delayD = {λ(e ′) − λ(e) | e <c e ′} denote the
set of communication delays associated with D.

1. D is said to be communication-closed if for every
e, e ′ ∈ E such that e <c e ′, λ(e) = λ(e ′).

2. Let b > 0. D is said to be b-bounded, if for all
k ∈ λ(E ), |λ−1(k)| ≤ b. D is said to be bounded if
there exists b ∈ N such that D is b-bounded.

3. Let b > 0. D is said to be strongly b-bounded, if D is
b-bounded and for all k ∈ delayD , k ≤ b.
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The temporal logic λ-LTL

Syntax: (P1, P2, . . . , Pn); P
def
=

⋃

i

Pi . Γ, a finite set of layer

names.
Layer formulas:

Φ1 ::= p ∈ Pi | τi | ¬ α | α1 ∨ α2

X α | Y α | F α | P α

Temporal formulas:

Ψ ::= α@i , α ∈ Φ1 , i ∈ [n] | a, a ∈ Γ

¬ φ | φ1 ∨ φ2 | © φ | φ1 U φ2

This is the same as the standard propositional temporal logic
of linear time, but built up from layer formulas and layer
propositions.
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Semantics: layer formulas
Models are M = (D, VE , Vλ), where D =
(E ,≤, φ, λ) is a layered Lamport diagram, VE : E → 2P and
Vλ : λ(E ) → Γ.
Let α ∈ Φl and e ∈ E . The notion that α holds at e in M is
denoted M , e |=l α and is defined inductively as follows:

◮ M , e |=l p iff p ∈ VE (e).
◮ M , e |=l τi iff τi ∈ VE (e) and φ(e) = i .
◮ M , e |=l Xα iff there exists e ′ ∈ E such that e<. e ′ and

M , e ′ |=l α.
◮ M , e |=l Fα iff there exists e ′ ∈ E such that e ≤ e ′,

λ(e) = λ(e ′) and M , e ′ |=l α.
◮ M , e |=l Y α iff there exists e ′ ∈ E such that e ′<. e and

M , e ′ |=l α.
◮ M , e |=l Pα iff there exists e ′ ∈ E such that e ′ ≤ e,

λ(e) = λ(e ′) and M , e ′ |=l α.
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Semantics: temporal formulas

Temporal formulas are interpreted at layers of a layered
Lamport diagram.
Given a model M = (D, VE , Vλ) and φ ∈ Ψ, the notion that φ

holds in the layer k of D is denoted M , k |= φ and is defined
inductively as follows:

◮ M , k |= α@i iff M , e |=l α where e is the i -minimum
event of Dk .

◮ M , k |= a, a ∈ Γ iff Vλ(k) = a.

◮ M , k |= ©φ iff M , k ′ |= φ where k ′ is the successor of k

in νD .

◮ M , k |= φUψ iff there exists k ′ ∈ l(E ):
k ≤N k ′, M , k ′ |= ψ and for all
k ′′ ∈ l(E ) : k ≤N k ′′ <N k ′ : M , k ′′ |= φ.
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Satisfiability

Note that several notions of satisfiability are relevant now.

◮ C -satisfiability (over models based on communication
closed layers),

◮ B-satisfiability (over models based on bounded LLDs),

◮ Sb-satisfiability (over strongly b-bounded LLDs),

◮ Cb-satisfiability.
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Results

Theorem
B-satisfiability and C-satisfiability are undecidable, whereas,

for b > 0, Cb-satisfiability and Sb-satisfiability are decidable in

Exptime.

◮ The negative results here mainly stem from the fact that
instances of the Post Correspondence Problem (PCP) can
be described easily using Lamport Diagrams.

◮ The fact that B-satisfiability is undecidable is a little
surprising, considering that the layers are uniformly
bounded.

◮ The decidability of Sb-satisfiability, is technically
nontrivial.
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PCP: B-satisfiability

dummy

1 2 3

x1 y1
event

1

1
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PCP: C-satisfiability

dummy

1 2 3

x1 y1
event

1

1
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The decidable cases

◮ Observe that satisfiability of layer formulas within
bounded communication closed layers is decidable.

◮ Now, given a temporal formula φ0 we can construct the
formula automaton A0 in the standard manner to decide
Cb-satisfiability.

◮ When it comes to Sb-satisfiability, the automaton
construction gets considerably more complicated.

◮ We can no longer check for satisfiability of layer formulas
within b-bounded layers; to satisfy a formula of the form
Xα, we may need to consider subsequent layers, and
similarly previous layers need to be remembered for
formulas of the form Y α.
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MSGs are not enough
The Alternating Bit protocol.

Lamport diagram Bounded layering CMSG representation
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Fragments of LDs

◮ MSG where nodes are not labelled with LDs but with
fragments, having ”sticky ends”.

◮ Under FIFO assumption, there is a well-defined notion of
concatenation of fragments.

◮ Infinite diagrams are generated by tiling such fragments.

◮ Protocols like Alternating Bit can be modelled thus.
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Bounded channel capacity

◮ When we consider only channel bounded diagrams, good
automata theory is possible.

◮ The monadic second order theory, and corresponding
message passing automata are well studied.

◮ Interesting results exist on realizability of MSG
specifications by systems of communicating automata.

◮ Blaise Genest, 2004, has a nice survey.
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Message overtaking

◮ The undecidability proofs crucially use FIFO assumption
on channels.

◮ When the medium can re-order messages, the logics are
less expressive.

◮ FO(S , <) remains undecidable, but the two-variable
fragment is now decidable.

◮ The proof is by reduction to emptiness of multi-counter
automata, for which the complexity is very high (not
known to be elementary).
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Unboundedly many processes

◮ In ”real world” MSCs, the number of agents is not fixed.

◮ In many applications, we have a dynamic network of
processes, which processes join and leave at will.

◮ Web services are an especially interesting instance.

◮ There are many applications where temporal properties
depend on the number of live processes.

◮ Natural extensions to such systems are typically
undecidable.
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Unbounded clients

◮ We consider a model of n communicating servers,
handling an unbounded number of clients.

◮ Clients are very simple: a client sends a request to a
server, and waits for an answer. On receiving the answer,
the client exits.

◮ We extend m-LTL with formulas of the form ∃x .φ(x),
where φ(x) is a boolean formula over monadic predicates
of the form p(x).

◮ The language includes x = y as well; thus we can speak
of the number of live clients.

◮ The satisfiability and verification problem are shown to be
decidable.
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Security
◮ In security theory, we have an unbounded message

alphabet, generated by an algebraic structure.
◮ The set of all message terms is given by the structure:

t ∈ T := t0 ∈ T0 | (t1, t2) | {t}k

◮ Message generation rules govern when a message can be
sent by a principal, as well as what a receiver learns from
the message.

◮ An all-powerful intruder is assumed, who can monitor the
network and eavesdrop on messages.

◮ The model is easier: every send / receive is an
instantaneous communication with the intruder.

◮ Even simple reachability questions are undecidable, and
we obtain decidability results for the interesting subclass
of tagged protocols.
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Relation to knowledge theory

◮ Clearly, every message m can be seen as a view
transformer: it can be described as a set of pairs of the
form (Kiα, Kiβ), where if the receiver i knows A before
receiving the message, then i knows B before receiving it.

◮ There is a natural notion of knowledge here: given a
Lamport diagram D, and configurations c , c ′

(down-closed subsets of E ), c ∼i c ′ iff c ∩ Ei = c ′ ∩ Ei .

◮ Thus we can give the semantics of messages as sets of
pairs as above, where the formulas come from an
epistemic temporal logic.

◮ Ths gives a specific kind of update semantics.

◮ Relating such semantics to automata theoretic techniques
seems difficult.
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In conclusion

◮ Formal reasoning about messages is logically interesting,
has a wide range of applications in computer science but
computationally difficult.

◮ Many foundational questions remain: what is the algebra
of LDs ? What are star-free collections ? Where does
m-LTL fit in ?

◮ We have abstracted away all data in messages; this is not
reasonable.

◮ MSCs typically involve time-outs; bringing in clocks and
clock values again complicates matters.

◮ At present, we are very far from a theory that is general,
nice as well as tractable.
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Joint work

◮ on Lamport diagrams: with B. Meenakshi.

◮ on unbounded processes: with S. Sheerazuddin.

◮ on games: with Sunil Simon.

◮ on security: with S. P. Suresh.

◮ on semantics of messages: with Rohit Parikh.
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charts: many ideas presented here intersect with the work of:
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Narayan Kumar, P. Madhusudan, Madhavan Mukund, Anca

Muscholl, Doron Peled.
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Welcome to India!

◮ We have an Association for Logic in India, a forum for
interaction between researchers in logic, mathematics,
philosophy and computer science. (www.cmi.ac.in/∼ali)

◮ Odd years: Conference on logic and its applications.

◮ Even years: School on logic. Next one – January 2008,
IIT, Kanpur.

◮ We also have an annual conference in theoretical
computer science in December. Next one – December
2007, IIT, Delhi. (www.fsttcs.org, www.iarcs.org.in).

You are also welcome at the Institute of Mathematical

Sciences, Chennai (www.imsc.res.in).
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