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1 Lambek calculus L

A prosodic algebra for L is a free semigroup (L, +). The set F of types of L is
defined on the basis of a set A of atomic types as follows:

(1) Fu=A| FeF | F\F | F/F

A prosodic interpretation of L is a function [[-]] mapping each type A € F into
a subset of L such that:

(2) [[AeB]] = {si+s2| s1 € [[A]] & 52 € [B]]}
[[A\C)] = {sa| Vs1 € [[A]}; s1+s2 € [[C]]}
[C/B]] = {s1] Vs2 € [[B]], s1+s2 € [[C]]}

The set O of configurations of L is defined as follows:
3) Ou=F|F,0O

We extend the interpretation of types to include configurations as follows:
@) [AT]) = {sitsa] s1 € [[A]] & 52 € [[T]}

A sequent T' = A comprises an input configuration I' and an output type A; it
is walid iff [[T']] C [[A]] in every prosodic interpretation. The sequent calculus
for L is as follows, where A(T") indicates a configuration A with a distinguished
subconfiguration I':
) '=A A(A) =218
(5) id Cut
A=A A(l) = B

I'= A A(C):>DL AT =C
AT, A\C) = D I' = A\C

*Work partially funded by the DGICYT project TIN2005-08832-C03-03 (MOISES-BAR).
Email: morrill@lsi.upc.edu, oriol.valentin@Qupf.edu, and fadda@lsi.upc.edu. Http: //www-
Isi.upc.edu/ morrill/.
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I'= B A(C’)ﬁDL F,B:C/R
A(C/B,T) = D I = C/B
A(A,B) = D 's=A A=2B
L oR

—_— o
A(AeB) = D I'A = AeB

A theorem is a sequent which is derivable in this calculus.

(6) Proposition (soundness of L)

In L, every theorem is valid.
Proof. Straightforward induction on the length of proofs. O

(7) Theorem (Cut-elimination for L)

In L, every theorem has a Cut-free proof.
Proof. Lambek (1958)[3]. O

(8) Corollary (subformula property for L)

In L, every theorem has a proof containing only its subformulas.

Proof. Every rule except Cut has the property that all the types in the premises
are either in the conclusion (side formulas) or are the immediate subtypes of
the active formula, and Cut itself is eliminable. [

(9) Corollary (decidability of L)
In L, it is decidable whether a sequent is a theorem.
Proof. By backward-chaining in the finite Cut-free sequent search space. J

(10) Theorem (completeness of L)

In L, every valid sequent is a theorem.

Proof. By the sophisticated reasoning of Pentus (1993)[10], which goes via
“quasi-models”. [

1.1 Proof nets for L

A polar type AP comprises a type A and a polarity p = e (input) or o (output).
The complements ® =4 o and © =4 e. The logical links are as shown in
figure 1.
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Figure 1: L logical links
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We refer to edges as parameter edges and we refer to sequences of dashed
parameter edges as V-segments. We refer to entire roadways seen as single edges
as predicate edges.

A polar type tree is the result of unfolding a polar type up to atomic leaves
according to the logical links. A proof frame for a sequent Ag,..., A, = A is
the multiset of polar type trees of A°, A1®,..., A,°*. An axiom link is as follows,
where P is atomic:

A proof structure is a proof frame to which have been added axiom links
connecting each leaf to exactly one other complementary leaf.
A proof net is a proof structure satisfying the following correctness criteria:

(12) o (Danos-Regnier acyclicity) Every predicate edge cycle crosses both
premise edges of some p-link.

o (V-correctness) If a parameter path does not form part of a cycle
then it does not contain any V-segment, and every parameter edge
cycle contains exactly one V-segment.

(13) Theorem (soundness and completeness of proof nets)

A sequent is a theorem iff a proof net can be built on its proof frame.

Proof. Morrill and Fadda (to appear)[7]. O

2 1-Discontinuous Lambek calculus, 1-DLC

A discontinuous prosodic algebra is a free algebra (L,+,0,1) where (L, +,0) is
a monoid and 1 (the separator) is a prime (Morrill 2002)[6]; let o(s) be the
number of separators in a prosodic object s. This induces the I-discontinuous
prosodic structure (Lo, L1, +, x,0,1) where

(14) e Loy={se L|o(s) =0}

L= {8 S L| 0'(8) = 1} = LolLg

o | : LZ‘7LJ‘ — Li+j,i+j S 1

e x:Li,Lj — Lj,j<1issuch that (s;+1+4s3)xs2 = s1+52+53

The sets Fy and Fy of I-discontinuous types of sort zero and one are defined
on the basis of sets Ag and A; of primitive 1-discontinuous types of sort zero
and one as follows:!

1Sorting for discontinuity was introduced in Morrill and Merenciano (1996)[9)].
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[bA4]] = {1+s|se[[A]l} right injection
[>7'B]] = {s| 1+s€[B]]} right projection
[«4]] = {s+1|se[[A]]} left injection
[«'B]] = {s|s+1¢€][B]} left projection
[FA]] = {si+s2f si+1+s2 € [[A]]} bridge
["B]] = {si+1l+s2|se€|[[B]]} split
[[AeB]] = {si+s2| s1 €[[A]] & s2 € [[B]]} (continuous) product
[A\C]] = {s2| Vs1 € [[A]}, s1+s2 € [[C]]} under
[[C/B]] = {s1]|Vs2 € [[B]],s1+s2 € [[C]]} over
[AGB]] = {si+s2+s3| s1+1+s3 € [[4]] & s2 € [[B]]} discontinuous product
[[ALC']] = {82| V51+1+83 S [[A]],$1+52+83 S HCH} infix
[[C1B]] = {si1+1+s3| Vs2 € [[B]],s1+s2+s3 € [[C]]} extract
Figure 2: Prosodic interpretation of 1-DLC types
(15) Fo == Ao |>7tFA | <1 " F | Fo\Fo | Fi\Fi |
Fo/Fo | Fi/F1 | FoeFo | FilFo | F1OFo
fl n= Al | l>.7:0 ‘ <L7:0 | V]‘-o | fo\fl | f1/f() |
FooF1 | FieFo | FilFi | FolFo | FiOF:
A prosodic interpretation of 1-discontinuous types is a function [[-]] mapping

each type A; € F; into a subset of L; as shown in figure 2.2

We give hypersequent calculus (not in the sense of A. Avron) for sorted
discontinuity (Morrill 1997)[4]. The sets Qp and Qp of output figures of sort
zero and one of 1-DLC are defined as follows:

(16) Qo == A
Q1 = VAL VA

The vectorial notation A refers to the figure of a type A. The sets Oy and O,
of input configurations of sort zero and one of 1-DLC are defined as follows:

(17) 00 0= A | Ao,OO ‘ \O/Al, Oo, \1/A1,OO

O1 == 00,[],00 | Oo, VA1, 01, v/ A1,09
Note that figures are “singular” configurations. We define the components of
a configuration as its maximal substrings not containing []. We extend the

interpretation of types to include configurations as follows:

(18) (Al = {0}
(LTI = {i+s[s e[}
[A,T]) = {si+s2] s1 € [[A]] & 52 € [[T]}
([VAT, VA A = {si+satsstsa| si+1+s3 € [[A]] & 52 € [[T]] & 54 € [[A]]}
2The first type-logical formulations of discontinuous product, infix and extract were made

by M. Moortgat. Bridge and split were introduced in Morrill and Merenciano (1996)[9].
Injections and projections are new here.
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r=4 AdA)=>X

A=A AT) = X
A(WVAT,VA) = X [T = VA [],VA
>—17, >T1R
A, >714) = X =714
Al A) = X ['=A

>R

AVAT ol = X ° T = VeA [, Vel

A(VA,T,VA) =X ., L= VA, [], VA

-1R
A(<1*1A,F) = X I=«q14

<
A(AT) = X = A

AVAT Vo X To Var | vaa "

AB) = X ) I'(A) = B

A(WB,vV"B) = X r F([}):“'B,[],WVR

A(VA VA) = X . ()= VA1), vVA .
ACCA) = X I'A) = A

Figure 3: 1-DLC hypersequent calculus, part 1

A hypersequent I' = X of sort ¢ comprises an input configuration I' of sort i
and an output figure X of sort 4; it is walid iff [[[']] C [[X]] in every prosodic

interpretation. The hypersequent calculus for 1-DLC is as shown in figures 3
and 4 where A(T") means a configuration A in which in some distinguished po-
sitions the components of I' appear in order successively though not necessarily
continuously.

(19) Proposition (soundness of 1-DLC)

In 1-DLC, every theorem is valid.
Proof. Easy induction on the length of proofs.
(20) Theorem (Cut-elimination for 1-DLC)

In 1-DLC, every theorem has a Cut-free proof.

Proof. Essentially Valentin (2006)[12]. O
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r=4 A(C”):>X\L Z’,F#C”\R
AT, A\C) = X I = A\C

r=FH A(@):>XL I'=7C
A(C/B,T) = X I'=C/B /

A(Z),?):>X 1“1:>71) F2:>P)

— oL oR
A(Aog) = X Iy, Ty — AeB

Ty, [Ty = VA [, VA A(E*):»XL {’/Z,r,\m:»ﬁR
ATy, AIC,Ty) = X . I = AC

=1 A(C) = X I,B.Ty=C
1L R
A(YCTB,T, {/CTB) = X ry,[],I, = CTB

A(VA, B,VA) = X . I, [].Ts= VA[],VA Ty=B
A(AGB) = X © Iy,T2,Ts = A0B

Figure 4: 1-DLC hypersequent calculus, part II

OR
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(21) Corollary (subformula property for 1-DLC)

In 1-DLC, every theorem has a proof containing only its subformulas.

Proof. Every rule except Cut has the property that all the types in the premises
are either in the conclusion (side formulas) or are the immediate subtypes of
the active formula, and Cut itself is eliminable. [

(22) Corollary (decidability of 1-DLC)
In 1-DLC, it is decidable whether a sequent is a theorem.
Proof. By backward-chaining in the finite Cut-free sequent search space. J

(23) Conjecture (completeness of 1-DLC)

In 1-DLC, every valid sequent is a theorem.

Proof. We think the reasoning of Pentus (1993)[10] can be replicated. For
some results see Valentin (2006)[12]. O

2.1 Prospects for proof nets for 1-DLC

Morrill and Fadda (to appear)[7] give proof nets for a subsystem of 1-DLC
called basic discontinuous Lambek calculus, BDLC. BDLC has only function-
alities + : Ly, Lo — Lo and X : Ly, Ly — Lg, and has no unary connectives. The
logical links for the discontinuous connectives of that subsystem are exemplified
in figure 5. For BDLC we need to augment the correctness criteria (12) of L
with:

(24) (Input-acyclicity) No parameter edge cycle goes through both the start
and the end points of any input type of sort zero.

It is an open question whether this characterisation remains adequate for the
more polymorphic 1-DLC binary connectives. It is an even more open problem
how to formulate proof nets for the 1-DLC unary connectives. The difficulty
is that they are akin to units, for which it has been found difficult to give proof
nets.

3 Dutch word order

Subordinate clauses are verb final:

(25) (... dat) Jan boeken las
(... that) J. books  reads
CP/S N N N\(N\S) = CP
‘(... that) Jan reads books’
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Figure 5: BDLC discontinuous logical links
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Modals and control verbs, so-called verb raising triggers, appear in a verb final
verb cluster with the English word order:

(26) (... dat) Jan boeken kan lezen
(... that) J. books  is able read
CP/S N N (N\Si)[(N\S) »>"L(N\(N\Si)) = CP
‘(... that) Jan is able to read books’
(27) (... dat) Jan boeken wil kunnen
(... that) J. books  wants be able
CP/S N N (N\Si)[(N\S) >~1((N\Si)|(N\Si))
lezen
read

>~I(N\(N\Si)) = CP
‘(... that) Jan wants to be able to read books’

When the infinitival complement verbs also take objects, cross-serial depen-
dencies are generated. Calcagno (1995)[1] provides an analysis of cross-serial
dependencies which is a close precedent to ours, but in terms of categorial head-
wrapping of headed strings, rather than wrapping of separated strings.

(28) (... dat) Jan Ceciliay Henks de nijlpaardens
(... that) J. C. H. the hippos
CP/S N N N N/CN CN
zagy helpeny voerens
saw help feed

(N\Si)L(N\(N\S))  >~"((N\Si)L(N\(N\S}))) »>~'(N\(N\Si)) = CP
‘(... that) Jan saw; Cecilia; helps Henks feeds the hipposs’

(29) ‘An increasing load in processing makes such multiple embeddings increas-
ingly unacceptable.” [Steedman (1985)[11], fn. 29, p.546]

Main clause yes/no interrogative word order, V1, is derived from subordinate
clause word order by fronting the finite verb. We therefore propose a lexical
rule mapping (subordinate clause) finite verb types V' to Q/"(STV), cf. Hepple
(1990)[2].

(30) Wil Jan  boeken lezen?
wants J. books  read
Q/"(ST((N\SI)L(N\S))) N N THN\(N\SY) = Q
‘Does Jan want to read books?’

Main clause declarative word order, V2, is further derived from V1 by fronting a

major constituent. We propose to achieve this by allowing complex distinguished
types (cf. Morrill and Gavarré 1992)[8].

(31) Jan wil boeken lezen.
J. wants books read
N Q/7(STN\SL(N\S))) N >THN\(N\Si)) = Ne*(QIN)

‘Jan wants to read books.’
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VVPi,[],VVPi = YVPi,[],¥VPi N, VP=15 .
N=N N,VVPi,VPi|VP,~/VPi= S \L
N,N, Y/N\VPi,VPi|VP, {/N\VPi = S -1y
N,N,VPi|VPs"Y{(N\VPi) = S -
N,N,[],b0-Y(N\VPi) = /ST(VPilVP),[],{/ST(VPilVP) _
N, N,>"Y{(N\VPi) = "(S1(VPi|VP)) Q=Q
Q/"(S1(VPi|VP)),N,N,b"Y(N\VPi) = Q -
Q/ (S1(VPilVP)),[],N,>" (N\VPi) = VQTIN,[], VQIN -
N=N Q/"(S1(VPilVP)),N,>" (N\VPi) = "(QN)
N,Q/ (ST(VPilVP)),N,>-*(N\VPi) = Ne (QIN)

/L

oR

Figure 6: Hypersequent derivation of Jan wil boeken lezen.

4 Analyses of Dutch

A hypersequent calculus derivation of Jan wil boeken lezen is given in figure 6,
where here and henceforth VP abbreviates N\S and V Pi abbreviates N\Si. The
proof net syntactic structure for Jan wil boeken lezen is given in figure 7. The
complexity profile (Morrill 2000)[5] is as follows:

(32) a a

3
2 a a
1
0

‘ Jan wil boeken lezen

A hypersequent calculus derivation of Marie zegt dat Jan Cecilia Henk de
nijlpaarden zag helpen voeren (‘Marie says that Jan saw Cecilia help Henk feed
the hippos’) is given in figure 8. The syntactic structure for Marie zegt dat Jan
Cecilia Henk de nijlpaarden zag helpen voeren is given in figures 9 and 10. The
complexity profile is as follows:
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Figure 7: Proof net syntactic structure for Jan wil boeken lezen

12
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(33)

O N W Lo
Qo
<

Marie zegt dat Jan Cecilia Henk

RN Wk Ot
<4
o

de nijlpaarden zag helpen voeren
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Figure 8: Hypersequent derivation of Marie zegt dat Jan Cecilia Henk de nijl-

paarden zag helpen voeren
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Figure 9: Syntactic structure for Marie zegt dat Jan Cecilia Henk de nijlpaarden
zag helpen voeren, part 1
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Figure 10: Syntactic structure for Marie zegt dat Jan Cecilia Henk de nijlpaar-
den zag helpen voeren, part 11



