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Mission Statement

Meaning is information exchange potential

Information exchange is a dynamic 
process of raising and resolving issues
Inquisitive meanings directly reflect this
They embody both information and issues
When the notion of meaning changes, so 
does the logic that comes with it
In inquisitive logic the core notion is 
licensing
Licensing is a notion of logical relatedness
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Overview
1. Syntax and semantics for a language of 

inquisitive propositional logic

2.Disjunction responsible for inquisitiveness

3.Conditional questions and other constructions

4.Inquisitive meanings and pictures of them

5.Inquisitive logic: the logical notion of licensing

6.Inquisitive semantics meets Grice on disjunction
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Syntax of propositional language L

gives classical logic

gives inquisitiveness

1. If p ∈ PV, dan p ∈ L 

2.⊥ ∈ L 

3.If φ ∈ L and ψ ∈ L, then (φ → ψ) ∈ L 

4.If φ ∈ L and ψ ∈ L, then (φ ∧ ψ) ∈ L

5.If φ ∈ L and ψ ∈ L, then (φ ∨ ψ) ∈ L 

¬φ =def (φ → ⊥)

PV set of propositional variables
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!φ =def ¬¬φ 

?φ =def (φ ∨ ¬φ)

Syntax allows for things like

(p ∨ q), !(p ∨ q), ?(p ∨ q)

(p → ?q), (?p ∨ ?q), (?p ∧ ?q), (p ∧ ?q)

¬?p, !?p, !!p, ??p, (?p → q), (?p → ?q)
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1. <i,j> ⊨ p iff i(p) = 1 and j(p) = 1

2. <i,j> ⊭ ⊥ 

3. <i,j> ⊨ (φ → ψ) iff for all ι ∈ {i,j}2: 

if ι ⊨ φ, then ι ⊨ ψ

4. <i,j> ⊨ (φ ∧ ψ) iff <i,j> ⊨ φ and <i,j> ⊨ ψ

5. <i,j> ⊨ (φ ∨ ψ) iff <i,j> ⊨ φ or <i,j> ⊨ ψ

i and j valuations for p ∈ PV, i(p) ∈ {0,1}

symmetry
<i,j> ⊨ φ iff <j,i> ⊨ φ

three pairs matter
<i,j> <i,i> <j,j>
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φ is inquisitive iff for some i ∈ I and j ∈ I:

    <i,i> ⊨ φ and <j,j> ⊨ φ and <i,j> ⊭ φ

φ is informative iff for some i ∈ I and j ∈ I:

     <i,i> ⊨ φ and <j,j> ⊭ φ

φ is an assertion iff φ is not inquisitive
φ is an question iff φ is not informative
φ is a hybrid iff φ is inquisitive and φ is 
informative
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Assertions
1. <i,j> ⊨ p iff i(p) = 1 and j(p) = 1

2. <i,j> ⊭ ⊥
p and ⊥ are not inquisitive, p and ⊥ assertions

p is informative
⊥ is not informative

Next things to show:
If ψ is an assertion, then (φ → ψ) is an assertion
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Implication
3. <i,j> ⊨ (φ → ψ) iff for all ι ∈ {i,j}2: 

if ι ⊨ φ, then ι ⊨ ψ
If ψ is an assertion, then among {i,j}2 only 
<i,i> and <j,j> matter, hence:
<i,j> ⊨ (φ → ψ) iff if <i,i> ⊨ φ, then <i,i> ⊨ ψ
                and if <j,j> ⊨ φ, then <j,j> ⊨ ψ
<i,i> ⊨ (φ → ψ) iff if <i,i> ⊨ φ, then <i,i> ⊨ ψ
<i,j> ⊨ (φ → ψ) iff <i,i> ⊨ (φ → ψ) 
                 and <j,j> ⊨ (φ → ψ)
If ψ is an assertion,

only <i,i> if i=j

then (φ → ψ) is an assertion

If ψ is an assertion
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1. <i,j> ⊨ p iff i(p) = 1 and j(p) = 1

2. <i,j> ⊭ ⊥ 

3. <i,j> ⊨ (φ → ψ) iff for all ι ∈ {i,j}2: 

if ι ⊨ φ, then ι ⊨ ψ

4. <i,j> ⊨ (φ ∧ ψ) iff <i,j> ⊨ φ and <i,j> ⊨ ψ 

If φ and ψ assertions, then (φ ∧ ψ) is an 

assertion
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Negation, Assertion

¬φ =def (φ → ⊥)

<i,j> ⊨ ¬φ iff <i,i> ⊭ φ and <j,j> ⊭ φ

For all φ: ¬φ is an assertion

For all φ: ¬¬φ, and hence !φ is an assertion
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Entailment

φ1, . . . , φn ⊨ ψ iff for all ι ∈ I2 : 

if ι ⊨ φ1, and . . .  , and ι ⊨ φn, then ι ⊨ ψ

For ψ is an assertion, we obtain classical 
logic

If φ is an assertion, then ¬¬φ ⊨ φ, !φ ⊨ φ

If ψ is an assertion, then φ ⊨ ψ iff !φ ⊨ ψ
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Disjunctions can be Hybrid

(p ∨ q) is inquisitive and informative

Let i(p) = 1, i(q) = 0

And j(p) = 0, j(q) = 1

<i,i> ⊨ (p ∨ q), because <i,i> ⊨ p

<j,j> ⊨ (p ∨ q), because <j,j> ⊨ q

<i,j> ⊭ (p ∨ q), because <i,j> ⊭ p and <i,j> ⊭ q

NEW!
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Proper question: 
inquisitive, not informative

⊭ (p v ¬p)

⊨ !(p v ¬p)

⊨ !?p

¬?p ⊨ ⊥
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Why pairs of indices

With <i,j> ⊨ ?p you compare i(p) and j(p)

What the semantics does:

<i,j> ⊨ ?p iff i(p) = j(p)

Note that this means: 
Relative to i and j ?p is not an issue

The remarkable thing is not that we need 
pairs of indices, but that that is all we need!
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Conditional question (p → ?q)
<i,j> ⊨ (p → ?q) iff for all ι ∈ {i,j}2: 

                              if ι ⊨ p, then ι ⊨ ?q

Since for all <i,i> it holds that <i,i> ⊨ ?q
The only ι ∈ {i,j}2 that matters is <i,j>

<i,j> ⊨ (p → ?q) iff if <i,j> ⊨ p, then <i,j> ⊨ ?q

iff  if i(p) = j(p) = 1, then i(q) = j(q)

<i,j> ⊭ (p → ?q) iff i(p) = j(p) = 1 and i(q) ≠ j(q)
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(p → q) ⊨ (p → ?q) 
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 ((p ∨ q) → ?r) is a conditional question: 

The semantics predicts it has 4 answers:

((p ∨ q) → r) 
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Meanings
Reflexive Closure of Symmetric Relation

The meaning of φ:〈φ〉I     = {ι | ι ∈ I2 & ι ⊨ φ} 

〈φ〉I     is a symmetric and reflexive relation

         on a subset of the set of all indices 

For all φ, for all i and j:
1. <i,j> ⊨ φ iff <j,i> ⊨ φ
2. If <i,j> ⊨ φ then <i,i> ⊨ φ and <j,j> ⊨ φ

Note: for assertions this runs in both directions

φ ⊨ ψ iff〈 φ〉I    ⊆〈 ψ〉I   
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Data and Issues

The meaning of φ is a symmetric and reflexive 
relation on a subset of the set of indices I

Which subset of I is determined by the 
data provided by φ

The relation determines the issues raised 
by φ

When i and j are not related in the 
meaning of φ, some difference between 
them matters, according to φ

of indifference
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Let〈φ〉I     be the meaning of φ
So,〈φ〉I     is a reflexive and symmetric relation on some 
subset of I

1. P is a possibility for φ iff

(i) P ⊆ I and for all i, j ∈ P : <i,j> ∈〈φ〉I    

(ii) There is no P’: P ⊂ P’ and (i) holds for P’
2. π(φ) is a picture of φ iff π(φ) is the set 

of possibilities for φ

Possibilities and Pictures

Set of propositions

φ ⊨ ψ iff every P ∈ π(φ) there is some P’ ∈ π(ψ) 
such that P ⊆ P’

Largest set of worlds which are all 
related to each other
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Overlapping Possibilities

φ is classical iff no two possibilities in the 
picture of φ overlap

By definition a possibility for φ cannot be 
included in another possibility

But two different possibilities may overlap

If no two possibilities for φ overlap,
π(φ) is a partition of a subset of I
and〈φ〉I     is an equivalence relation on a 
subset of I

NEW!
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Inquisitive Logic

Logical notion of licensing

A notion of contextual relatedness

Judges whether a sentence fits the 
context

Information and issues the sentence 
embodies should be logically related to 
the contextual issues
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Licensing

A stimulus ψ licenses a response φ, ψ ∝ φ iff

every possibility in the picture of φ 
is the union of some possibilities in the 
picture of ?ψ

Note: licensing considers the question behind 
the stimulus 

The notion of licensing intends to 
characterize when a sentence φ is logically 
related to a sentence ψ
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Licensing allows critical responses
Top of the iceberg!

Licensing allows for assertions to be 
confirmed, denied, doubted, and accepted

!φ licenses !φ, ¬φ, ?!φ, and ⊤ (silence)

and up to equivalence nothing else

To show that ⊤ corresponds to 
acceptance requires some Gricean 
reasoning
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Licensing and partial answerhood

Partial answerhood to a question is a clear 
case of logical relatedness

?ψ ∝ !φ corresponds to partial answerhood

Every possibility in the picture of !φ 
is the union of some possibilities in the 
picture of ??ψ     (is what the definition tells us)

The possibility in the picture of !φ 
is the union of some possibilities in the 
picture of ?ψ
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Classical licensing and entailment

If φ and ψ are classical, then
           ψ ∝ φ iff ?ψ ⊨ ?φ

For classical ?ψ and ?φ
?ψ ⊨ ?φ means: ?φ is a subquestion of ?ψ

For classical ?ψ and !φ
?ψ ⊨ ?!φ means !φ is a partial answer 
to ?ψ

Licensing reducable 
to entailment

Does  not hold for 
non-classical case
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(p → ?q) ∝ (p → q)   and   (p → ?q) ∝ (p → ¬q)

(p → q) and (p → ¬q)  are answers to (p → ?q)

However:  (p → ?q) ⊭ ?(p → q), (the other way around!)

For non-classical sentences 
ψ ∝ φ iff ?ψ ⊨ ?φ does not always hold

?ψ ⊨ ?!φ no longer means that !φ is a 
(partial) answer to ?ψ
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Licensing and atomic questions

Not: ?p ∝ (q → ?p)     and    Not:  ?p ∝ (?p v ?q)

?p is an ̀ atomic’ question and has no 
subquestions

But: ?p ⊨ (q → ?p)      and          ?p ⊨ (?p v ?q)
For non-classical sentences 
ψ ∝ φ iff ?ψ ⊨ ?φ does not always hold

?ψ ⊨ ?φ no longer means that ?φ is a 
subquestion of ?ψ

(?p v ?q) ∝ ?p
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Conclusion
Inquisitive semantics gives rise to a new 
inquisitive logic

Entailment no longer suffices

Licensing is the new crucial notion

It embodies a notion of logical relatedness 
which rules the logical coherence of dialogue

Unlike entailment, licensing is concerned with 
the communicative function of language
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Grice on Disjunction
In ‘Indicative Conditionals’, Grice (1989:68), as cited in Simons (2000)

specification of possibilities

relevant
to a given topic

each

inquisitive semantics of “or”

required by licensing

met by inquisitive semantics


