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Mission Statement

@ Meaning is information exchange potential

|

O

Information exchange is a dynamic
process of raising and resolving issues

Inquisitive meanings directly reflect this
They embody both information and issues

When the notion of meaning changes, so
does the logic that comes with it

In inquisitive logic the core notion is
licensing

Licensing is a notion of logical relatedness
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Overview

1. Syntax and semantics for a language of
Inquisitive propositional logic

2.Disjunction responsible for inquisitiveness
3.Conditional questions and other constructions
4.Inquisitive meanings and pictures of them
5.Inquisitive logic: the logical notion of licensing

6.Inquisitive semantics meets Grice on disjunction
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5.If e lLand P €L, then (p V P) € L

gives inquisitiveness
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Notation Conventions ? !

S 1P =def =P
S 2 =det (P V =)

@ Syntax allows for things like

@ (pvq)lpVvaq) pVaq)
@ (p — ?q), (?p Vv ?q), (?p A 29), (p A ?q)

@ -?p, 1?p, !!p, 2?p, (?p — q). (?p — ?q)
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Inquisitive Semantics
i and j valuations for p € PV, i(p) € {0,1}

. <i,j> E piffi(p)=1and j(p) =1
A e ) IR o j}zz-

if LE @, thenL = Y

. <i,j> E (p AY)iff <i,j> = @ and <i,j> = Y

L <i,j> E (V) iff <i,j> = @ or«i,j> E Y
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S @ is inquisitive iff for some i € I and j € I:
<i,i> E @ and <j,j> = @ and <i,j> ¥ ¢
S @ is informative iff for some i € I and j € I:

<i,i> E @ and <j,j> ¥ @

® @ is an assertion iff @ is not inquisitive
% pis an question iff @ is not informative

S @ is a hybrid iff @ is inquisitive and o is
informative
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Assertions

1. «i,j> = piffi(p) =1and j(p) =1
2. <i,J> F L

p and L are not inquisitive, p and L assertions

p is informative
1 is not informative

Next things fo show:
If Y is an assertion, then (¢(p — ) is an assertion
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Implication

3. <i,j> & (p = V) iff for all L € §i,j}> h

o

>

.

if L= @, then Ll E Y

If P is an assertion, then among {i,j}* only

<i,i> and <j,j> matter, hence:

<i,j> E ((p =) iff if <i,i> E @, then <i,i> E Y
and if <j,j> = @, then <j,j> = W

<i,j> E (=) iff <i,i> E ((p—Y)
and <j,j> E (@ —Y)
If Y is an assertion, then (¢p — ) is an assertion
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. <i,j> E piffi(p) =1and j(p) =1

. <L)> FE L

. <i.j> E (p = ) iff for all L € {i,j}>

if LE @, thenl = Y
. <i,j> E (p AY)iff <i,j> = @ and <i,j> = Y

If ¢ and Y assertions, then (p A ) is an

assertion
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~P =ges (p — 1)

<i,j> E =@ iff <i,i> ¥ @ and <j,j> ¥ ¢

For all ¢: - is an assertion

For all : ~-, and hence ! is an assertion
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Entailment

S @, ..., ©n = Piff forall Le I2;

if L= @, and ... ,and L = @, then L = Y

For U is an assertion, we obtain classical
logic

If @ is an assertion, then == = @, ! = @

If Qis an assertion, then @ = Y iff l¢p = Y






Inquisitive Semantics

. <i,j> E piffi(p) =1and j(p) =1

<iL,g> FE L

. <i,j> E (@ = ) iff for all L € {i,j}>

if LE @, thenl = Y

. <i,j> E (p AY) iff <i,j> = @ and <i,j> E P



AT

. <i,)>

. <1L,J>

. <i,)>

e

Inquisitive Semantics
= p iff i(p) =1 and j(p) = 1
el
= (p — W) iff for all L € §i,j}*:
if LE @, thenl = Y
= (pp A Q) iff <i,j> = @ and <i,j> E P

= (¢ VW) iff <i,j> E @ or <i,j> = Y
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(p V q) is inquisitive and informative
D Let i(p) =1,i(q) =0
D And j(p) = 0, j(q) =1

@ <i,i> = (p V q), because «i,i> E p
@ <j,j> E (p V q), because <j,j> E q

@ <i,j> ¥ (p V q), because <i,j> ¥ p and «i,j> ¥ q
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D And j(p) =0, jiq) =1

D

D

D

Disjunctions can be Hybrid

ﬁp V q) is inquisitive and inFormafiveJ

4 )
<i,i> = (p Vv q),

<j,i> E (p vV q),

<i.j> ¥ (p Vv q),

because <i,i> E p
because <j,j> F g

because «i,j> ¥ p and <i,j> ¥ q
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largest set of mutually
related worlds
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Picture of Meaning (p v q) and I(pvq)

(pvqg)E=pvaq)

(pvaq) # (pvq)
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Proper question:
inquisitive, not informative
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Why pairs of indices
@ With <i,j> & ?p you compare i(p) and j(p)
@ What the semantics does:

O <i,j> = ?p iff i(p) = j(p)

O Note that this means:
Relative to i and j ?p is not an issue

@ The remarkable thing is not that we need
pairs of indices, but that that is all we need!
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Conditional question (p — ?q)
@ <i,j> = (p — ?2q) iff for all L € {i,j}*:

if L= p, then L E ?q

O Since for all <i,i> it holds that <i,i> E ?q

The only L € §i,j}* that matters is <i,j>

> <i,j> E (p = ?q) iff if <i,j> & p, then «i,j> E ?q
iff if i(p) = j(p) = 1, then i(q) = j(q)
> <i,j> ¥ (p — 2q) iff i(p) = j(p) = 1 and i(q) # j(q)
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Conditional question (p — ?q)

Questioned condifional
“p = q)

Question: inquisitive (p—q) = (p~ ?q)
not informative 2Ap—q) = (p— ?q)
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Interplay disjunction and implication

@ ((p Vv q) — ?r) is a conditional question:
The semantics predicts it has 4 answers:
((pVvag)—r)
((p vV q) =)
(p=>nA(g—An)
(p=>-MAl@—n
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Alternative question ?(p v q)

Choice question (?p v ?q)

Questions: inquisitive, not
informative
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S The meaning of @: (P! ={L| L€ I* & L F ¢}

()1 is a symmetric and reflexive relation

on a subset of the set of all indices

For all ¢, for all i and j:

1. <i,j> = @ iff <j,i> = @

2. If <i,j> E @ then «i,i> = @ and <j,j> E @
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Possibilities and Pictures

@ Let {(@)! be the meaning of @

1. Pis a possibility for ¢ iff

(i) PSIand foralli, jeP:«<ij e (p)?

(i) There is /0P B ¢ R aridi i holds, for P*
2. mi(p) is a picture of @ iff m(wp) is the set

of possibilities for ¢ -
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@ Logical notion of licensing
O A notion of contextual relatedness

O Judges whether a sentence fits the
context

O Information and issues the sentence
embodies should be logically related to
the contextual issues
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Licensing

S A stimulus P licenses a response @, P < @ iff

every possibility in the picture of ¢
is the union of some possibilities in the
picture of 2y

D Note: licensing considers the question behind
the stimulus

@ The notion of licensing intends to
characterize when a sentence @ is logically
related to a sentence Y
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Licensing allows critical responses
Top of the iceberg!

@ Licensing allows for assertions to be
confirmed, denied, doubted, and accepted

lp licenses !, =, ?'p, and T (silence)
D and up to equivalence nothing else

To show that T corresponds to
acceptance requires some Gricean
reasoning
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@ The possibility in the picture of !¢
is the union of some possibilities in the
picture of ?y
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Classical licensing and entailment
If ¢ and Y are classical, then -
e s -

[0 For classical ?¥ and 2
2P F 2 means: ?@ is a subquestion of ?Y

For classical ?y and !

?Y E ?lp means ! is a partial answer
to 2Q |
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B (p—qg)and (p = -q) are answers to (p = ?q)

@ However: (p = ?q) ¥ ?p — Qq), (the other way around!)

For non-classical sentences
P o< @ iff 2P = 2 does not always hold

1 2P = ?'@ no longer means that ! is a
(partial) answer to 2@
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Licensing and atomic questions

@ Not:?p x (@ —7?) and Not: ?p o (?p v ?q)

D ?p is an “atomic’ question and has no
subquestions

@ Bub?p E(@Q@—?%) and ?%p = (?p v ?q)
For non-classical sentences
P o< @ iff 2P = 2 does not always hold

?Y E ?@ no longer means that ?¢ is a
subquestion of ?Y
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Conclusion

@ Inquisitive semantics gives rise tfo a new
inquisitive logic

@ Entailment no longer suffices
@ Licensing is the new crucial notion

@ It embodies a notion of logical relatedness
which rules the logical coherence of dialogue

@ Unlike entailment, licensing is concerned with
the communicative function of language






Grice on Disjunction
In ‘Indicative Conditionals’, Grice (1989:68), as cited in Simons (2000)

A standard (if not the standard) employment of
“or” is in the specification of possibilities (one
of which is supposed by the speaker to be
realized, although he does not know which
one), each of which is relevant in the same way
to a given topic. ‘A or B’ is characteristically
employed fo give a partial answer fo some
[wh]-question, to which each disjunct, if
assertible, would give a fuller, more specific,
more satisfactory answer.



Grice on Disjunction
In ‘Indicative Conditionals’, Grice (1989:68), as cited in Simons (2000)

A standard (if not the standard) employment of
“or” is in the specification of possibilities (one
of which is supposed by the speaker to be
realized, although he does not know which
one), each of which is relevant in the same way
to a given topic. ‘A or B is characteristically
employed fo give a partial answer fo some
[wh]-question, to which each disjunct, if
assertible, would give a fuller, more specific,
more satisfactory answer.



Grice on Disjunction
In ‘Indicative Conditionals’, Grice (1989:68), as cited in Simons (2000)

A standard (if not the standard) employment of
“or” is in the specification of possibilities (one
realized, alth

one), each of which is relevant in the same way
to a given topic. ‘A or B’ is characteristically
employed fo give a partial answer fo some
[wh]-question, to which each disjunct, if

assertible, would give a fuller, more specific,
more satisfactory answer.




Grice on Disjunction
In ‘Indicative Conditionals’, Grice (1989:68), as cited in Simons (2000)

A standard (if not the standard) employment of
“or” is in the specification of possibilities (one
realized, alth

one), each of which is relevant in the same way
to a given topic. ‘A or B’ is characteristically
employed fo give a partial answer fo some
[wh]-question, to which each disjunct, if

assertible, would give a fuller, more specific,
more satisfactory answer.




Grice on Disjunction
In ‘Indicative Conditionals’, Grice (1989:68), as cited in Simons (2000)

A standard (if not the standard) employment of
“or” is in the specification of possibilities (one
realized, alth

one), each of which is relevant in the same way
to a given topic. mally
employed to give me
[wh]-question, to which each disjunct, if

assertible, would give a fuller, more specific,
more satisfactory answer.




Grice on Disjunction _
In ‘Indicative Conditionals’, Grice (1989:68), as cited in Simons (2000)

specification of possibilities

each relevant



