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The international conference “Syntax meet Semantics 2019” (SYSMICS 2019) will
take place from 21 to 25 January 2019 at the University of Amsterdam, The Nether-
lands. This is the closing conference of the European Marie Sk lodowska-Curie Rise
project Syntax meets Semantics – Methods, Interactions, and Connections in Sub-
structural logics, which unites more than twenty universities from Europe, USA,
Brazil, Argentina, South Africa, Australia, Japan, and Singapore.

Substructural logics are formal reasoning systems that refine classical logic by
weakening structural rules in a Gentzen-style sequent calculus. Traditionally, non-
classical logics have been investigated using proof-theoretic and algebraic methods.
In recent years, combined approaches have started to emerge, thus establishing new
links with various branches of non-classical logic. The program of the SYSMICS
conference focuses on interactions between syntactic and semantic methods in
substructural and other non-classical logics. The scope of the conference includes
but is not limited to algebraic, proof-theoretic and relational approaches towards
the study of non-classical logics.

This booklet consists of the abstracts of SYSMICS 2019 invited lectures and
contributed talks. In addition, it also features the abstract of the SYSMICS 2019
Public Lecture, on the interaction of logic and artificial intelligence. We thank all
authors, members of the Programme and Organising Committees and reviewers of
SYSMICS 2019 for their contribution.

Apart from the generous financial support by the SYSMICS project, we would
like to acknowledge the sponsorship by the Evert Willem Beth Foundation and
the Association for Symbolic Logic. Finally, we are grateful for the support of the
Institute for Logic, Language and Computation of the University of Amsterdam,
which hosts this event.
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Tomasz Jarmużek and Mateusz Klonowski, From Tableaux to Axiomatic
Proofs. A Case of Relating Logic . . . . . . . . . . . . . . . . . . . 95

Dick de Jongh and Fatemeh Shirmohammadzadeh Maleki, Below Gödel-
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Benedikt Löwe, Robert Passmann and Sourav Tarafder, Constructing
illoyal algebra-valued models of set theory . . . . . . . . . . . . . . . 111

Tommaso Moraschini and Jamie J. Wannenburg, Epimorphisms in vari-
eties of Heyting algebras . . . . . . . . . . . . . . . . . . . . . . . . 115

Claudia Mureşan, Roberto Giuntini and Francesco Paoli, Generators and
Axiomatizations for Varietes of PBZ*-lattices . . . . . . . . . . . . 117
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An infinitary treatment of full mu-calculus

Bahareh Afshari

Computer Science and Engineering Department
University of Gothenburg

We explore the proof theory of the modal µ-calculus with converse, aka the ‘full µ-calculus’.
Building on nested sequent calculi for tense logics [2] and infinitary proof theory of fixed point
logics [1], a cut-free sound and complete proof system for full µ-calculus is proposed. As a
corollary of our framework, we also obtain a direct proof of the regular model property for the
logic [4]: every satisfiable formula has a tree model with finitely many distinct subtrees. To
obtain this result we appeal to the basic theory of well-quasi-orderings in the spirit of Kozen’s
proof of the finite model property for µ-calculus [3].
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delberg, 1998. Springer Berlin Heidelberg.
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Algebraic Functions

Miguel Campercholi

National University of Cordoba

Let A be an algebraic structure, and consider the system of equations

α(x̄, z̄) :=





t1(x1, . . . , xn, z1, . . . , zm) = s1(x1, . . . , xn, z1, . . . , zm)
...

...

tk(x1, . . . , xn, z1, . . . , zm) = sk(x1, . . . , xn, z1, . . . , zm)

where tj and sj are a terms for j ∈ {1, , . . . , k}. Suppose that for all ā ∈ An there is exactly
one ā ∈ Am such that α(ā, b̄) holds. Then the system α(x̄, z̄) defines m functions f1, . . . , fm :
An → A by

(f1(ā), . . . , fm(ā)) := unique b̄ such that α(ā, b̄).

A function is called algebraic on A if it is one of the functions defined by a system of equations
in the manner just described. For example, the complement function is algebraic on the two-
element bounded lattice, as witnessed by the system

α(x, z) :=

{
x ∧ z = 0

x ∨ z = 1.

Given an algebraic structure A, it is easy to see that every term-function of A is algebraic on
A, and that algebraic functions on A are closed under composition; that is, they a form a clone
on A. Algebraic functions can be seen as a natural generalization of term-functions, and share
some of their basic properties (e.g., they are preserved by endomorphisms and direct products).

Algebraic functions have been characterized for algebras in several well-known classes such
as: Boolean Algebras, Distributive Lattices, Vector Spaces and Abelian Groups, among others.
In our talk we will review these characterizations and discuss the main tools used to obtain
them. We will also show how algebraic functions can be used in the study of epimorphisms and
to describe intervals in the lattice of clones over a finite set.
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Free algebras endomorphisms:

Ruitenburg’s Theorem and Beyond

Silvio Ghilardi1 and Luigi Santocanale2

1 Dipartimento di Matematica, Università degli Studi di Milano
silvio.ghilardi@unimi.it

2 LIS, CNRS UMR 7020, Aix-Marseille Université
luigi.santocanale@lis-lab.fr

Ruitenburg’s Theorem says that every endomorphism f of a finitely generated free Heyting
algebra is ultimately periodic if f fixes all the generators but one. More precisely, there is N ≥ 0
such that fN+2 = fN , thus the period equals 2. We give a semantic proof of this theorem,
using duality techniques and bounded bisimulations ranks. By the same techniques, we tackle
investigation of arbitrary endomorphisms between free algebras. We show that they are not, in
general, ultimately periodic. Yet, when they are (e.g. in the case of locally finite subvarieties),
the period can be explicitly bounded as function of the cardinality of the set of generators.

Keywords. Ruitenburg’s Theorem, Sheaf Duality, Bounded Bisimulations, Endomorphisms
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Pro-aperiodic monoids via Stone duality

Sam van Gool

University of Amsterdam

This talk is about joint work with B. Steinberg, in which we apply Stone duality and model
theory to study free pro-aperiodic monoids.

The class of aperiodic monoids has long played a fundamental role in finite semigroup theory
and automata theory. The famous Schützenberger theorem proved that the aperiodic monoids
recognize precisely the star-free languages, which also coincides with the class of languages
recognizable by counter-free automata. The connection with logic comes from a later result,
which shows that the class is also exactly the class of languages definable in first order logic.

Algorithmic questions about aperiodic languages lead to challenges that the algebraic ap-
proach can often help resolve. Within this algebraic approach to aperiodic languages, free
pro-aperiodic monoids are a useful tool. The structure of free pro-aperiodic monoids has been
studied recently by several authors, but many difficult questions remain open. Existing results
about free pro-aperiodic monoids are often about the submonoid of elements definable by ω-
terms and rely on an ingenuous normal form algorithm due to McCammond, which solves the
word problem for ω-terms.

Stone duality and Schützenberger’s theorem together imply that elements of the free pro-
aperiodic monoid may be viewed as elementary equivalence classes of pseudofinite words. Con-
cretely, this means that one may ’compute’ with elements of the free pro-aperiodic monoid as
if they were finite words, in a way reminiscent of the methods of non-standard analysis. In par-
ticular, model theory provides us with saturated words in each class of pseudofinite words, i.e.,
words in which all possible factorizations are realized. We prove that such saturated words are
stable under algebraic operations. We give several applications of this new approach, including
a solution to the word problem for ω-terms that avoids using McCammonds normal forms,
as well as new proofs and extensions of other structural results concerning free pro-aperiodic
monoids.
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Inquisitive Intuitionistic Logic:

An Application of Nuclear Semantics

Wesley Holliday

University of California, Berkeley

Inquisitive logic is a research program seeking to expand the purview of logic beyond declar-
ative sentences to include the logic of questions. To this end, the system of inquisitive proposi-
tional logic extends classical propositional logic for declarative sentences with principles govern-
ing a new binary connective of inquisitive disjunction, which allows the formation of questions.
Recently inquisitive logicians have considered what happens if the logic of declarative sentences
is assumed to be intuitionistic rather than classical. In short, what should inquisitive intu-
itionistic logic be? This talk, based on joint work with Guram Bezhanishvili, will provide an
answer to the question from the perspective of nuclear semantics, an approach to classical and
intuitionistic semantics pursued in our previous work (A Semantic Hierarchy for Intuitionistic
Logic, forthcoming in Indagationes Mathematicae). In particular, we show how Beth semantics
for intuitionistic logic naturally extends to a semantics for inquisitive intuitionistic logic. In
addition, we show how an explicit view of inquisitive intuitionistic logic comes via a translation
into the system of propositional lax logic, whose completeness we prove with respect to Beth
semantics.
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Positive Subreducts in Finitely Generated Varieties

of MV-algebras

Leonardo M. Cabrer, Peter Jipsen1, and Tomáš Kroupa2

1 Chapman University, Orange, USA
jipsen@chapman.edu

2 The Czech Academy of Sciences, Prague, Czech Republic
kroupa@utia.cas.cz

Abstract

Positive MV-algebras are negation-free and implication-free subreducts of MV-algebras.
In this contribution we show that a finite axiomatic basis exists for the quasivariety of
positive MV-algebras coming from any finitely generated variety of MV-algebras.

1 Positive subreducts of MV-algebras

Let MV be the variety of MV-algebras [1] in the language containing all the usual definable
operations and constants. Using this signature we denote an MV-algebra M ∈ MV as

M = 〈M,⊕,⊙,∨,∧,→,¬, 0, 1〉.

An algebra

A = 〈A,⊕,⊙,∨,∧, 0, 1〉

is a positive subreduct of M if A is a subreduct of M.

Definition 1. Let F = {⊕,⊙,∨,∧, 0, 1} be a set of function symbols, where ⊕,⊙,∨,∧ are
interpreted as binary operations and 0, 1 as constants. An algebra P of type F is a positive
MV-algebra if it is isomorphic to a positive subreduct of some MV-algebra.

Clearly, every MV-algebra gives rise to a positive MV-algebra and every bounded distributive
lattice is a positive MV-algebra. In fact, positive MV-algebras are to MV-algebras as distribu-
tive lattices are to Boolean algebras.

Example 1 (Lower Chang algebra). Let C be Chang algebra and

RadC = {0, ε, 2ε, . . . }

be its radical, where the symbol ε denotes the least positive infinitesimal. Then the algebra Cl

having the universe RadC ∪ {1} is a positive subreduct of C.

Example 2 (Non-decreasing McNaughton functions). For each natural number n, the free n-
generated MV-algebra is isomorphic to the algebra Fn of McNaughton functions [0, 1]n → [0, 1].
Then the algebra F≤

n of nondecreasing McNaughton functions is a positive subreduct of Fn.

The class of all positive MV-algebras is denoted by P. Since P is a class of algebras
containing the trivial algebra and closed under isomorphisms, subalgebras, direct products and
ultraproducts, it is a quasivariety. The following example shows that P is not a variety.
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Example 3. Let θ be an equivalence relation on the algebra Cl from Example 1 with classes
{0}, {ε, 2ε, . . . }, and {1}. Then θ is a P-congruence on Cl. The quotient Cl/θ is isomorphic to
the three-element algebra {0̄, ε̄, 1̄} that satisfies the identities ε̄⊕ ε̄ = ε̄ and ε̄⊙ ε̄ = 0̄. However,
the two equations cannot hold simultaneously in any MV-algebra. Hence, Cl/θ is not a positive
MV-algebra.

It can be shown that the quasivariety P is generated by the positive reduct of the stan-
dard MV-algebra [0, 1]. Moreover, the free n-generated positive MV-algebra is isomorphic to
the positive subreduct F≤

n from Example 2.

2 Axiomatization

We define a class Q of algebras of type F = {⊕,⊙,∨,∧, 0, 1}. Specifically, an algebra A =
〈A,⊕,⊙,∨,∧, 0, 1〉 belongs to Q if A satisfies the following identities and quasi-identities:

1. 〈A,∨,∧, 0, 1〉 is a bounded distributive lattice

2. 〈A,⊕, 0〉 and 〈A,⊙, 1〉 are commutative monoids

3. x⊕ 1 = 1 and x⊙ 0 = 0

4. x⊕ (y ∧ z) = (x⊕ y) ∧ (x⊕ z) and x⊙ (y ∨ z) = (x⊙ y) ∨ (x⊙ z)

5. x⊕ (y ∨ z) = (x⊕ y) ∨ (x⊕ z) and x⊙ (y ∧ z) = (x⊙ y) ∧ (x⊙ z)

6. x⊕ y = (x⊕ y)⊕ (x⊙ y)

7. x⊕ y = (x ∨ y)⊕ (x ∧ y)

8. x⊙ y = (x⊙ y)⊙ (x⊕ y)

9. If x⊕ y = x, then z ⊕ y ≤ z ∨ x

10. If x⊕ y = x⊕ z and x⊙ y = x⊙ z, then y = z

Every positive MV-algebra is a member of Q since 1.–10. are valid for any MV-algebra.
The main open problem is to prove the opposite, that is, to show that any A ∈ Q is a positive
MV-algebra. We solve this problem for those A ∈ Q satisfying additional identities of a special
form. Namely let V be any finitely generated variety of MV-algebras. Di Nola and Lettieri
proved in [3] that there exists a finite set S of identities axiomatizing the variety V within MV,
and every identity in S uses only terms of the language {⊕,⊙,∨,∧, 0, 1}.

Theorem 1. The quasivariety of positive subreducts of V is axiomatized by the quasi-identities
1.–10. and the identities from S.

The essential ingredient of the proof of Theorem 1 is a certain non-trivial generalization of
the technique of good sequences, which was introduced by Mundici [2]. It remains an open
problem to extend this result beyond finitely generated varieties of MV-algebras, possibly using
an axiomatization different from 1.–10.

Positive Subreducts in Finitely Generated Varieties of MV-algebras
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A Dialectica Model of Relevant Type Theory

Valeria de Paiva

Nuance Communications

Relevant logics are a family of substructural logics, developed by Anderson-Belnap and
collaborators, whose basic tenant is that in logical implications antecedents and consequents
should be relevantly connected. Dialectica models are sophisticated categorical models of Gi-
rard’s Linear Logic, conceived as an internal description of Gödel’s Dialectica Interpretation.
Dialectica models (also called Dialectica spaces) have proved themselves precise (capable of dis-
tinguishing all the connectives proposed in the logic) and versatile (have been used in diverse
applications such as modelling Petri nets, modelling the Lambek calculus, explaining proofs
between cardinalities of the continuum, explaining compiler refinements, etc). In this talk we
want to show that Dialectica spaces can be used to model a version of relevant type theory and
its logic and discuss how well this modelling works.
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On the axiomatizability of modal many-valued logics

Amanda Vidal

Institute of Computer Science, Czech Academy of Sciences.
amanda@cs.cas.cz

Modal logic is one of the most developed and studied non-classical logics, yielding a beautiful
equilibrium between complexity and expressibility. The idea of enriching a Kripke frame with
an evaluation over an arbitrary algebra offers a generalization of the concepts of necessity and
possibility offer a rich setting to model and study graded and resource-sensitive notions from
many different areas, including proof-theory, temporal and epistemic concepts, workflow in
software applications, etc. While the first publications on modal many-valued logics can be
traced back to the 90s [5, 6], it has been only in the latter years when a more systematic work
has been developed, addressing the axiomatizability question over certain algebras of evaluation,
characterization and study of model-theoretic notions analogous to the ones from the classical
case, decidability and applicability issues, etc (see eg. [7], [3, 4], [1], [9], [8], [2]...).

An open problem was that of the axiomatization of the finitary companion of those deductive
systems, starting from their definition based on Kripke models evaluated over FLew-algebras.
In particular, they were not known axiomatizations for the modal logics arising from models
with a crisp accessibility and using both 2 and 3 modalities, and evaluated locally at the
standard Gödel, MV and product algebras. In this talk we will see that the global deduction
over those classes of Kripke models is not recursively enumerable, and so, they are not R.E
axiomatizable.

Moreover, it was also a question whether for any of the above logics, the global deduction
arises from the local one extended with the (unrestricted) necessity rule N2 : ϕ ` 2ϕ. We will
also see that this is not the case for a large family of algebras of evaluation, including the modal
expansions of  Lukasiewicz and Product Logics, in contrast to the modal logics studied up to
now in the literature.
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AI? That’s logical!

Frank van Harmelen

Vrije Universiteit Amsterdam

The history of AI has been a continuous swing of the pendulum between the extremes of
logical reasoning and statistical learning; or, as Judea Pearl has it: between Greek philosophers
and Babylonian curve fitters. In recent years, the pendulum has swung strongly towards the
statistical methods. We’ll take a close look at the history of AI, and we’ll identify the strong
and weak points of both schools of thought. This will lead to a set of challenges to be taken
up by logicians if they are interested in contributing to one of the most exciting intellectual
endeavours of our time.
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Combinatorial Proofs for the Modal Logic K

Matteo Acclavio and Lutz Straßburger

Inria

Proof theory is the area of theoretical computer science which studies proofs as mathe-
matical objects. However, unlike many other mathematical fields, proof theory is lacking a
representation for its basic objects able to capture the notion of identity. We are used to con-
sider proofs as expressions generated by sets of production rules we call proof systems; and
the main obstacle to understand when two proofs are the same is this syntactic representation
itself. Thus, depending on the chosen formalism, a proof can be represented by different syn-
tactic expressions. Moreover, even in the same proof system, there can not be a “natural way”
to identify a canonical representative. This condition makes it difficult to understand when two
proofs are the same object. As an example we show in Figure 1 a semantic tableau, a resolution
proof and a sequent calculus derivation for the same formula.

The standard approach to the question of proof identity is based on rule permutations. Two
proofs in the same proof system are considered the to be equal if they can be transformed into
each other by a series of simple rule permutation steps. However this can not be considered
as a solution since it relies on each specific syntax and, it is not suitable to compare proofs
presented in two different proof systems for the same logic.

Combinatorial proofs [6, 7] have been introduced by Hughes to address this problem in
classical logic. A combinatorial proof of a formula F consist of a skew fibration f : C ÞÑ GpF q
between a RB-cograph C [9] and the cograph GpF q representing the formula F . The notion
of cograph [4] and skew fibration [6, 10] are independent from the syntactic restrictions of
proof formalisms and are described by graph condition only. Moreover, the correctness of
combinatorial proofs can be checked in polynomial time on the size of a proof, i.e. they form a
proof system in the sense of Cook and Reckhow [3].

It has been shown in [7, 11, 1] how syntactic proofs in Gentzen sequent calculus, the deep
inference system SKS, semantic tableaux, and resolution can be translated into combinatorial
proofs. Figure 2 shows the combinatorial proof corresponding to the syntactic proofs in Figure 1.

In this talk we want to address the question whether the theory of combinatorial proofs can
be extended to modal logics.

In the literature, proof systems of various kinds have been defined for different modal logics
[2, 8, 12, 5]. However, the notion of proof equivalence in modal logic has never been studied.
Part of the problem of defining this notion is inheritance of the problem for proof equivalence
in classical logic.

We are presently working on the definition of the notion of proof equivalence for different
modal logics by means of combinatorial proof. The first step in this investigation is to give a
representation of proofs for the modal logic K, for which we show the sequent system LK-K in
Figure 3 and the deep infernce system KS-K in Figure 4.

We define a class of cograph, called RG-cograph, suitables to represent formulas with modal-
ities and similarly we extend the notion of RB-cograph which represent the linear part of a
classical proof, to the one of RGB-cographs.
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Figure 1: A semantic tableau, a resolution proof and a sequent calculus derivation of F �
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Figure 2: The combinatorial proof corresponing to the proof in Figure 1
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Figure 3: Sequent system LK-K (cut free) for modal logic K. The first six rules on the left form
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Figure 4: Deep sequent system KS-K

Below is the RG-cograph of 3pla_ p3pb^ cq ^lpd_ eqqq:

a b c
d e

l 3

l

3

(1)

For these graphs, we recover a correctness criterion similar to the one given for RB-cographs
[9] by means of æ-connectedness and æ-acyclicity (acyclic with respect of alternating paths).

In fact, given a RGB-cograph GpF q we are able to define for each l-node m a set Pm
of modality-nodes by means of paths between “same-depth” nodes. Intuitively, each set Pm
corresponds to an application of a K-rule. Then we define a RB-cograph BpGpF qq from GpF q
by transforming each set Pm into a RB-cograph BpPmq and opportunely updating the edges
interacting with the nodes with Pm. Thus, a RGB-cograph GpF q corresponds to a correct
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Figure 5: The RGB-cograph GpF q of F � d̄_ ē_ pd^ pb̄^ c̄qq _ pe^3cq _3pb^lpa_ āqq
and its associated RB-cograph BpGpF qq.

derivation if the l-nodes induce a partition over all modality-nodes and if the RB-cograph
BpGpF qq is æ-connected and æ-acyclic.

Using some features of the calculus of structures, we are able to represent K proofs in the
deep sequent system KS-K pushing all weakening and contraction rules at the end of a derivation.
This allows us to define combinatorial proof by means of axiom-preserving RG-skew fibrations
f : C ÞÑ GpF q from a RGB-cograph C to the RG-cograph of F .

These results allow us to define a notion of equivalence for proofs in K and give a direct
translation of the classical sequent calculus LK-K into combinatorial proofs and vice versa.
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Intermediate Logic Proofs as Concurrent Programs

Federico Aschieri, Agata Ciabattoni, and Francesco A. Genco

TU Wien
Vienna, Austria

Building on ideas of Haskell Curry, in 1969 William Howard showed that constructing an
intuitionistic proof is not at all different from writing a program in λ-calculus [8]. He also
showed that the reduction of the proof to its normal form exactly corresponds to the evaluation
of the associated program. This relation between intuitionistic natural deduction and simply
typed λ-calculus is now called the Curry–Howard correspondence. In 1990 Griffin showed that
such a correspondence is not limited to intuitionistic logic but a similar relation holds between
classical logic and sequential extensions of simply typed λ-calculus featuring control operators [7].
One year later, in 1991, Avron noticed a connection between concurrent computation and
hypersequent calculus – a proof calculus well suited for capturing logics intermediate between
intuituionistic and classical logic, see [3]. He envisaged, in particular, the possibility of using
the intermediate logics that can be captured by hypersequent calculi “as bases for parallel
λ-calculi” [4].

The translation in [5] from hypersequent rules into higher-level natural deduction rules [9]
made it possible to define natural deduction calculi matching the parallel structure of hyperse-
quents. Building on this, we establish modular Curry–Howard correspondences for a family of
natural deduction calculi and we prove their normalization. These correspondences provide a
concurrent computational interpretation for intermediate logics that are naturally formalized as
hypersequent calculi. The calculi resulting from this computational interpretation are extensions
of the simply typed λ-calculus by a parallelism operator and communication channel variables.
We thus confirm Avron’s 1991 thesis for a rather general class of intermediate logics and present
some specific instances of particular proof-theoretical interest.

In particular, we first introduce the typed concurrent λ-calculi λCl [2] and λG [1]. These
calculi are defined extending simply typed λ-calculus by the type assignment rules

[a : ¬A]
....

s : B

[a : A]
....

t : B
s ‖a t : B

and

[a : A→ B]
....

s : C

[a : B → A]
....

t : C
s ‖a t : C

respectively. These rules logically correspond to the excluded middle law ¬A ∨ A and to the
linearity axiom (A→ B) ∨ (B → A), respectively, and hence allow us to provide a concurrent
interpretation of classical logic and Gödel–Dummett logic. The computational rôle of these rules
is to introduce the parallelism operator ‖a. The parallelism operator, in turn, acts as a binder
for the communication variables a occurring in s and in t. Thus, in the calculus λCl we can
compose processes in parallel and establish communication channels of the form

between them. The communication reduction rule (basic cross reduction) of λCl is

S[a¬A v] ‖a t 7→ t[v/a] for s = S[a¬Av] and v closed term

and can be intuitively represented as

23



This reduction rule enables us to use channels in one direction only: we can only transmit the
argument v of a¬A from s to t. On the other hand, in λG we can establish channels of the form

The corresponding basic reduction rules are two, one for transmitting messages from left to
right:

S[a v] ‖a T [aw] 7→ S[a v] ‖a T [v] for s = S[a v], t = T [aw] and v closed term

which we can represent as

and one for transmitting messages from right to left:

S[a v] ‖a T [aw] 7→ S[w] ‖a T [aw] for s = S[a v], t = T [aw] and w closed term

Thus in λG we can encode dialogues between processes during which messages are exchanged in
both directions.

Generalising the ideas used for λCl and λG, we then present a family of concurrent λ-calculi
which provide concurrent computational interpretations for all the intermediate logics that can
be defined extending intuitionistic logic by axioms of the form

(F1 → G1) ∨ . . . ∨ (Fn → Gn)

where for i ∈ {1, . . . , n} no Fi is repeated and if Fi 6= > then Fi = Gj for some j ∈ {1, . . . , n}.
The corresponding minimal communication topologies generalize those of λCl and λG and

include, for instance, cyclic graphs such as

. . .

Even though the rather simple communication reductions shown above – the basic cross reductions
– seem to cover in practice most of the expressiveness needs of concurrent programming, the
normalisation of the proof-systems on which the discussed concurrent λ-calculi are based induces
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much more general forms of communications. In order to obtain analytic proof-terms, we need
also to be able to transmit open processes that have bonds with their original environment.
We need thus, more importantly, to be able to restore the required dependencies after the
communication. The corresponding computational problem is often called the problem of the
transmission of closures, see for example [6], and is very well known in the context of code
mobility, which is the field of study precisely concerned with the issues related to the transmission
of functions between programs. Fortunately, our proof systems do not only require very general
reductions, but also provides a solution to the problems arising from them. This solution is
realized in the presented λ-calculi as the full cross reduction rules, which implement the required
term communication and establish a new communication channel on the fly in order to handle
the dependencies, or closure, of the transmitted term.

We prove a general normalization result for the introduced calculi, we show that they are
strictly more expressive than simply typed λ-calculus and discuss their computational features.
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Graded model theory is the generalized study, in mathematical fuzzy logic (MFL), of the
construction and classification of graded structures. The field was properly started in [8] and it
has received renewed attention in recent years [1,3–7]. Part of the programme of graded model
theory is to find non-classical analogues of results from classical model theory (e.g., [2, 9, 10]).
This will not only provide generalizations of classical theorems but will also provide insight into
what avenues of research are particular to classical first-order logic and do not make sense in a
broader setting.

On the other hand, classical model theory was developed together with the analysis of some
very relevant mathematical structures. In consequence, its principal results provided a logical
interpretation of such structures. Thus, if we want the model theory’s idiosyncratic interaction
with other disciplines to be preserved, the redefinition of the fundamental notions of graded
model theory cannot be obtained from directly fuzzifying every classical concept. Quite the
contrary, the experience acquired in the study of different structures, the results obtained using
specific classes of structures, and the potential overlaps with other areas should determine the
light the main concepts of graded model theory have to be defined in. It is in this way that
several fundamental concepts of the model theory of mathematical fuzzy logic have already
appeared in the literature.

The goal of this talk is to give syntactic characterizations of classes of graded structures;
more precisely, we want to study which kind of formulas can be used to axiomatize certain
classes of structures based on finite MTL-chains. Traditional examples of such sort of results
are preservation theorems in classical model theory, which, in general, can be obtained as
consequences of certain amalgamation properties (cf. [9]). We provide some amalgamation
results using the technique of diagrams which will allow us to establish analogues of the  Loś–
Tarski preservation theorem [9, Theorem 6.5.4] and the Chang– Loś–Suszko theorem [9, Theorem
6.5.9].

The formalism of first-order fuzzy logics uses classical syntax with a signature P = 〈P,F,ar〉
(predicate and functional symbols with their arities) and a many-valued semantics as in
Mostowski–Rasiowa–Hájek tradition in which models are pairs 〈A,M〉 where:

• A is an algebra of truth-values (for the propositional language)

∗Costa, Dellunde, and Noguera received funding from the European Union’s Horizon 2020 research and
innovation program under the Marie Curie grant agreement No 689176 (SYSMICS project). Badia is supported
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26



• M = 〈M, 〈PM〉P∈P , 〈FM〉F∈F〉, where

– M is a set

– PM is a function Mn → A, for each n-ary predicate symbol P ∈ P

– FM is a function Mn →M for each n-ary function symbol F ∈ F.

• An M-evaluation of the object variables is a mapping v : V →M

‖x‖Mv = v(x),

‖F (t1, . . . , tn)‖Mv = FM(‖t1‖Mv , . . . , ‖tn‖
M
v ),

‖P (t1, . . . , tn)‖Mv = PM(‖t1‖Mv , . . . , ‖tn‖
M
v ),

‖◦(ϕ1, . . . , ϕn)‖Mv = ◦A(‖ϕ1‖Mv , . . . , ‖ϕn‖
M
v ),

‖(∀x)ϕ‖Mv = inf≤A
{‖ϕ‖Mv[x→m] | m ∈M},

‖(∃x)ϕ‖Mv = sup≤A
{‖ϕ‖Mv[x→m] | m ∈M}.

In this talk, we will assume that the algebra A of truth values is an MTL-algebra. MTL-

algebras are algebraic structures of the form A = 〈A,∧A,∨A,&A,→A, 0
A
, 1

A〉 such that

• 〈A,∧A,∨A, 0A, 1A〉 is a bounded lattice,

• 〈A,&A, 1
A〉 is a commutative monoid,

• for each a, b, c ∈ A, we have:

a&A b ≤ c iff b ≤ a→A c, (residuation)

(a→A b) ∨A (b→A a) = 1
A

(prelinearity)

A is called an MTL-chain if its underlying lattice is linearly ordered.
Let us fix a finite non-trivial MTL-chain A. Finiteness ensures that the infima and suprema

used in the interpretation of quantifiers always exist. We will consider the expansion of a
signature, denoted PA, in which we add a propositional constant a for each element a of A.
Also, we assume signatures to have crisp equality. We write 〈A,M〉 |= ϕ[e] if ϕ(x) has a free

variable x and ‖ϕ‖〈A,M〉v = 1
A

for any evaluation v that maps x to e.

We will write 〈A,M2,
−→
d 〉 V∃n 〈A,M1,

−→
d 〉 if for any ∃n formula ϕ, 〈A,M2〉 |= ϕ[

−→
d ] only

if 〈A,M1〉 |= ϕ[
−→
d ]. Also, we need to speak about embeddability of one model into another;

see the usual definitions in e.g. [6].
In classical model theory amalgamation properties are often related in elegant ways to

preservation theorems (see e.g. [9]). We will try an analogous approach to obtain our desired
preservation result. The importance of this idea is that the problem of proving a preservation
result reduces then to finding a suitable amalgamation counterpart. This provides us with
proofs that have a neat common structure.

Proposition 1. (Existential amalgamation) Let 〈A,M1〉 and 〈A,M2〉 be two structures for

PA with a common part 〈A,M〉 with domain generated by a sequence of elements
−→
d . Moreover,

suppose that

〈A,M2,
−→
d 〉V∃1 〈A,M1,

−→
d 〉.

Preservation theorems in graded model theory
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Then there is a structure 〈A,N〉 into which 〈A,M2〉 can be strongly embedded by 〈f, g〉 while
〈A,M1〉 is PA-elementarily strongly embedded (taking isomorphic copies, we may assume that
〈A,M1〉 is just a PA-elementary substructure). The situation is described by the following
picture:

〈A,N〉

〈A,M〉

〈A,M2,
−→
d 〉 〈A,M1,

−→
d 〉

〈f, g〉 4
V∃1

⊆⊆

Moreover, the result is also true when 〈A,M1〉 and 〈A,M2〉 have no common part.

Proposition 2. (∃2 amalgamation) Let 〈A,M1〉 and 〈A,M2〉 be two structures for PA with a

common part 〈A,M〉 with domain generated by a sequence of elements
−→
d . Moreover, suppose

that
〈A,M2,

−→
d 〉V∃2 〈A,M1,

−→
d 〉.

Then there is a structure 〈A,N〉 into which 〈A,M2〉 can be strongly embedded by 〈f, g〉 pre-
serving all ∀1 formulas, while 〈A,M1〉 is PA-elementarily strongly embedded (taking isomorphic
copies, we may assume that 〈A,M1〉 is just a PA-elementary substructure). The situation is
described by the following picture:

〈A,N〉

〈A,M〉

〈A,M2,
−→
d 〉 〈A,M1,

−→
d 〉

〈f, g〉 4
V∃2

⊆⊆

Moreover, the result is also true when 〈A,M1〉 and 〈A,M2〉 have no common part.

These amalgamation properties let us prove analogues of the classical preservation theorems
listed below. For their formulation we use the following notation: given a theory T and two
sets of formulas Φ and Ψ, we denote by T ` Φ⇒ Ψ the fact that for every model 〈A,M〉 of T ,
if 〈A,M〉 is a model of Φ, then 〈A,M〉 is also a model of Ψ.

Theorem 3. ( Loś–Tarski preservation theorem) Let T be a theory and Φ(−→x ) a set of formulas
in PA. Then the following are equivalent:

(i) For any models of T, 〈A,M〉 ⊆ 〈A,N〉, we have:
if 〈A,N〉 |= Φ, then 〈A,M〉 |= Φ.

(ii) There is a set of ∀1-formulas Θ(−→x ) such that:
T ` Φ⇒ Θ and T ` Θ⇒ Φ.

Guillermo Badia, Vicent Costa, Pilar Dellunde and Carles Noguera
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Theorem 4. Let K be a class of structures. Then the following are equivalent:

(i) K is closed under isomorphisms, substructures, and ultraproducts.

(ii) K is axiomatized by a set of universal PA-sentences.

By a ∀∗2-formula we will mean any formula which is either ∀2 or of the form

(∃−→x )(∀−→y )ϕ(−→x ,−→y ,−→z )→ a,

for ϕ quantifier-free and a the immediate predecessor of 1
A

.

Theorem 5. (Chang– Loś–Suszko preservation theorem) Let T be a theory and Φ(−→x ) a set of
formulas in PA. Then the following are equivalent:

(i) Φ(−→x ) is preserved under unions of chains of models of T .

(ii) There is a set of ∀∗2-formulas Θ(−→x ) such that: T ` Φ⇒ Θ and T ` Θ⇒ Φ.
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1 Introduction

Coalgebraic modal logic, as in [9, 6], is a framework in which modal logics for specifying coalgebras
can be developed parametric in the signature of the modal language and the coalgebra type
functor T . Given a base logic (usually classical propositional logic), modalities are interpreted
via so-called predicate liftings for the functor T . These are natural transformations that turn a
predicate over the state space X into a predicate over TX. Given that T -coalgebras come with
general notions of T -bisimilarity [11] and behavioral equivalence [7], coalgebraic modal logics
are designed to respect those. In particular, if two states are behaviourally equivalent then they
satisfy the same formulas. If the converse holds, then the logic is said to be expressive. and
we have a generalisation of the classic Hennessy-Milner theorem [5] which states that over the
class of image-finite Kripke models, two states are Kripke bisimilar if and only if they satisfy
the same formulas in Hennessy-Milner logic.

General conditions for when an expressive coalgebraic modal logic for T -coalgebras exists
have been identified in [10, 2, 12]. A condition that ensures that a coalgebraic logic is expressive is
when the set of predicate liftings chosen to interpret the modalities is separating [10]. Informally,
a collection of predicate liftings is separating if they are able to distinguish non-identical elements
from TX. This line of research in coalgebraic modal logic has thus taken as starting point the
semantic equivalence notion of behavioral equivalence (or T -bisimilarity), and provided results
for how to obtain an expressive logic. However, for some applications, modal logics that are
not expressive are of independent interest. Such an example is given by contingency logic (see
e.g. [3, 8]). We can now turn the question of expressiveness around and ask, given a modal
language, what is a suitable notion of semantic equivalence?

This abstract is a modest extension of [1] in which the first two authors proposed a notion
of Λ-bisimulation which is parametric in a collection Λ of predicate liftings, and therefore
tailored to the expressiveness of a given coalgebraic modal logic. The main result was a finitary
Hennessy-Milner theorem (which does not assume Λ is separating): If T is finitary, then two
states are Λ-bisimilar if and only if they satisfy the same modal Λ-formulas. The definition
of Λ-bisimulation was formulated in terms of so-called Z-coherent pairs, where Z is the Λ-
bisimulation relation. It was later observed by the third author that Λ-bisimulations can be
characterised as the relations Z between T -coalgebras for which the dual relation (consisting of
so-called Z-coherent pairs) is a congruence between the complex algebras. Here we collect those
results.

∗Zeinab Bakthiari was funded by ERC grant EPS 313360.
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2 Syntax and semantics of coalgebraic modal logic.

Due to lack of space, we assume the reader is familiar with the basic theory of coalgebras and
algebras for a functor, and with coalgebraic modal logic. Here we only introduce a few basic
concepts and fix notation. We refer to [6, 11] for more details.

A similarity type Λ is a set of modal operators with finite arities. Given such a Λ, the set LΛ

of modal formulas is defined in the usual inductive manner.
We denote by Q the contravariant powerset functor on Set. A T -coalgebraic semantics

of LΛ-formulas is given by providing a Λ-structure (T, ([[♥]])♥∈Λ) where T is a functor on
Set, and for each n-ary ♥ ∈ Λ, [[♥]] is an n-ary predicate lifting, i.e., [[♥]] : Qn ⇒ QT is a
natural transformation. Different choices of predicate liftings yield different Λ-structures and
consequently different logics.

Given a Λ-structure (T, ([[♥]])♥∈Λ), and a T -coalgebra X = (X, γ : X → TX), the truth of
LΛ-formulas in X is defined inductively in the usual manner for atoms (i.e., > and ⊥) and Boolean
connectives, and for modalities: (X, υ), x |= ♥(ϕ1, . . . , ϕn) iff γ(x) ∈ [[♥]]X([[ϕ1]]X, . . . , [[ϕn]]X).
(Atomic propositions can be included in the usual way via a valuation.)

In the remainder, we let T be a fixed but arbitrary endofunctor on the category Set of sets
and functions, and X = (X, γ) and Y = (Y, δ) are T -coalgebras. We write X, x ≡Λ Y, y, if X, x
and Y, y satisfy the same LΛ-formulas,

3 Λ-bisimulations

Let R ⊆ X × Y be a relation with projections πl : R→ X and πr : R→ Y , and let U ⊆ X and
V ⊆ Y . The pair (U, V ) is R-coherent if R[U ] ⊆ V and R−1[V ] ⊆ U . One easily verifies that
(U, V ) is R-coherent iff (U, V ) is in the pullback of Qπl and Qπr.

Definition 3.1 (Λ-bisimulation )
A relation Z ⊆ X × Y is a Λ-bisimulation between X and Y, if whenever (x, y) ∈ Z, then

for all ♥ ∈ Λ, n-ary, and all Z-coherent pairs (U1, V1), . . . , (Un, Vn), we have that

γ(x) ∈ [[♥]]X(U1, . . . , Un) iff δ(y) ∈ [[♥]]Y (V1, . . . , Vn). (Coherence)

We write X, x ∼Λ Y, y, if there is a Λ-bisimulation between X and Y that contains (x, y). A
Λ-bisimulation on a T -coalgebra X is a Λ-bisimulation between X and X.

We have the following basic properties.

Lemma 3.2

1. The set of Λ-bisimulations between two T -coalgebras forms a complete lattice.

2. On a single T-coalgebra, the largest Λ-bisimulation is an equivalence relation.

3. Λ-bisimulations are closed under converse, but not composition.

The following proposition compares Λ-bisimulations with the coalgebraic notions of T -
bisimulations [11] and the weaker notion of precocongruences [4]. Briefly stated, a relation is a
precocongruence of its pushout is a behavioural equivalence [7]).

Proposition 3.3 Let X = (X, γ) and Y = (Y, δ) be T -coalgebras, and Z be a relation between
X and Y .

1. If Z is a T -bisimulation then Z is a Λ-bisimulation.
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2. If Z is a precocongruence then Z is a Λ-bisimulation.

3. If Λ is separating then Z is a Λ-bisimulation iff Z is a precocongruence.

It was shown in [4, Proposition 3.10] that, in general, T -bisimilarity implies precocongruence
equivalence which in turn implies behavioural equivalence [7]. This fact together with Proposi-
tion 3.3 tells us that Λ-bisimilarity implies behavioural equivalence, whenever Λ is separating.
Moreover, it is well known [11] that if T preserves weak pulbacks, then T -bisimilarity coincides
with behavioural equivalence. Hence in this case, by Proposition 3.3, it follows that Λ-bisimilarity
coincides with T -bisimilarity and behavioural equivalence.

The main result in [1] is the following.

Theorem 3.4 (Finitary Hennessy-Milner theorem) If T is a finitary functor, then

1. For all states x, x′ ∈ X: X, x ≡Λ X, x′ iff X, x ∼Λ X, x.′

2. For all x ∈ X and y ∈ Y : X, x ≡Λ Y, y iff X + Y, inl(x) ∼Λ X + Y, inr(y).

where inl, inr are the injections into the coproduct/disjoint union.

4 Λ-Bisimulations as duals of congruences

We now use the fact that the contravariant powerset functor Q can be viewed as one part of the
duality between Set and CABA, the category of complete atomic Boolean algebras and their
homomorphisms. By duality, Q turns a pushout in Set into a pullback in CABA. So given a
relation Z ⊆ X × Y with projections πl, πr (forming a span in Set), and letting (P, pl, pr) be its
pushout, we have that (QP,Qpl, Qpr) ∼= (pb(Qπl, Qπr), Qπl, Qπr).

In the context of coalgebraic modal logic, we define complex algebras as follows. This
definition coincides with the classic one.

Definition 4.1 (Complex algebras)

• Let L : CABA→ CABA be the functor L(A) =
∐
♥∈ΛA

ar(♥), and let σ : LQ =⇒ QT be the
bundling up of [[Λ]] into one natural transformation. For example, if Λ consists of one unary
modality and one binary modality, then L(A) = A+A2 and σX : QX + (QX)2 =⇒ QTX.

• The complex algebra of X = (X, γ : X → TX) is the L-algebra X∗ = (QX, γ∗) where

γ∗ = LQX
σX //QTX

Qγ
//QX .

We can now reformulate the definition of Λ-bisimilarity in terms of the complex algebras
associated with the coalgebras (by using (QP,Qpl, Qpr) ∼= (pb(Qπl, Qπr), Qπl, Qπr)).

Lemma 4.2 Z is Λ-bisimulation if and only if the following diagram commutes:

LQPLQX LQY

QX QZ QY

LQpl LQpr

γ∗ δ∗

Qπl Qπr
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Proposition 4.3 Z is Λ-bisimulation between X and Y iff the dual of its pushout is a congruence
between the complex algebras X∗ and Y∗ (i.e. a span in the category of L-algebras and L-algebra
homomorphisms).

Proof. (⇒) Since (QP,Qpl, Qpr) is a pullback of (QZ,Qπl, Qπr), we get a map h : LQP → QP
such that (QP,Qpl, Qpr) is a congruence:

LQPLQX LQY

QX QZ QY

QP

LQpl LQpr

γ∗ δ∗

Qπl Qπr

Qpl Qpr

(⇐) Follows from commutativity of pullback square.
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1 Introduction

In [BBÖS16] a topological semantics for evidence-based belief and knowledge is introduced,
where epistemic sentences are built in a language L∀KB��0

, which includes modalities allowing
us to talk about defeasible knowledge (K), infallible knowledge ([∀]), belief (B), basic evidence
(�0) and combined evidence (�).

Definition 1 (The dense interior semantics). Sentences of L∀KB��0
are read on topological

evidence models (topo-e-models), which are tuples (X, τ,E0, V ) where (X, τ) is a topological
space, E0 is a subbasis of τ and V : Prop→ 2X is a valuation.

The semantics of a formula φ is as follows: ‖p‖ = V (p); ‖φ∧ψ‖ = ‖φ‖∩‖ψ‖; ‖¬φ‖ = X\‖φ‖;
‖�φ‖ = Int ‖φ‖; x ∈ ‖Kφ‖ iff x ∈ Int ‖φ‖ and Int ‖φ‖ is dense1; x ∈ ‖Bφ‖ iff Int ‖φ‖ is dense;
x ∈ ‖[∀]φ‖ iff ‖φ‖ = X; x ∈ ‖�0φ‖ iff there is e ∈ E0 with x ∈ e ⊆ ‖φ‖; x ∈ ‖�φ‖ iff
x ∈ Int ‖φ‖.

Crucially, using topological spaces to model epistemic sentences grants us an evidential per-
spective of knowledge and belief. Indeed, we can see the opens in the topology as the pieces of
evidence the agent has (and thus our modality �, which encodes “having evidence”, becomes
the topological interior operator). For some proposition φ to constitute (defeasible) knowledge,
we demand that the agent has a factive justification for φ, i.e. a piece of evidence that cannot be
contradicted by any other evidence the agent has. In topological terms, a justification amounts
to a dense piece of evidence. Having a (not necessarily factive) justification constitues belief.
The set X encodes all the possible worlds which are consistent with the agent’s information,
thus for the agent to know φ infallibly ([∀]φ), φ needs to hold throughout X.

The fragment of this language that only contains the Booleans and the K modality, LK ,
has S4.2 as its logic.

The framework introduced in [BBÖS16] is single-agent. A multi-agent generalisation is
presented in this text, along with some “generic models” and a notion of group knowledge.
Our proposal differs conceptually from previous multi-agent approaches to the dense interior
semantics [Ö17, Ram15].

2 Going Multi-Agent

For clarity of presentation we work in a two-agent system.2 Our language now contains modali-
ties Ki, Bi, [∀]i,�i,�0

i for i = 1, 2, each encoding the same notion as in the single-agent system.

∗This paper compiles the results contained in Chapters 3 to 5 of Saúl Fernández González’s Master’s thesis
[FG18]. The authors wish to thank Guram Bezhanishvili for his input.

1A set U ⊆ X is dense whenever ClU = X, or equivalently when it has nonempty intersection with every
nonempty open set.

2Extending these results to n ≥ 2 agents is straightforward, see [FG18, Section 6.1].
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The Problem of Density. The first issue one comes across when defining a multi-agent
semantics is that of accounting for the notion of defeasibility, which, as we have seen, is closely
tied to density. A first (naive) approach would be to consider two topologies and a valuation
defined on a common space, (X, τ1, τ2, V ) and simply have: x ∈ ‖Kiφ‖ iff there exists some
τi-dense open set such that x ∈ U ⊆ ‖φ‖. This does not work, neither conceptually (for we
are assuming that the set of worlds compatible with each agent’s information is the same for
both agents) nor logically (adopting this semantics gives us highly undesirable theorems such
as ¬K1¬K1p → K2¬K1¬K1p). Seeing as each agent’s knowledge is an S4.2 modality and no
interaction between the agents is being assumed, one would expect the two-agent logic to simply
combine the S4.2 axioms for each of the agents.

Simply defining two topologies on the whole space is not the right move. Instead, we want
to make explicit, at each world x ∈ X, which subsets of worlds in X are compatible with each
agent’s information. A straightforward way to do this is via the use of partitions.

Topological-partitional models.

Definition 2. A topological-partitional model is a tuple (X, τ1, τ2,Π1,Π2, V ) where X is a set,
τ1 and τ2 are topologies defined on X, Π1 and Π2 are partitions and V is a valuation.

For U ⊆ X we write Πi[U ] := {π ∈ Πi : U ∩ π 6= ∅}. For i = 1, 2 and π ∈ Πi[U ] we say U is
i-locally dense in π whenever U ∩ π is dense in the subspace topology (π, τi|π); we simply say
U is i-locally dense if it is locally dense in every π ∈ Πi[U ].

For the remainder of this text, we limit ourselves to the fragment of the language including the
K1 and K2 modalities.

Definition 3 (Semantics). We read x ∈ ‖Kiφ‖ iff there exists an i-locally dense τi-open set U
with x ∈ U ⊆ ‖φ‖.

This definition generalises one-agent models, appears to hold water conceptually and, moreover,
gives us the logic one would expectedly extrapolate from the one-agent case.

Lemma 4. If (X,≤1,≤2) is a birelational frame where each ≤i is reflexive, transitive and
weakly directed (i.e. x ≤i y, z implies there exists some t ≥i y, z), then the collection τi of
≤i-upsets and the set Πi of ≤i-connected components give us a topological-partitional model
(X, τ1, τ2,Π1,Π2) in which the semantics of Def. 2 and the Kripke semantics coincide.

Now, the Kripke logic of such frames is the fusion S4.2K1
+ S4.2K2

, i.e. the least normal modal
logic containing the S4.2 axioms for each Ki. As an immediate consequence:

Corollary 5. S4.2K1 + S4.2K2 is the LK1K2-logic of topological-partitional models.

3 Generic Models

[FG18] is partially concerned with finding generic models for topological evidence logics, i.e.
single topological spaces whose logic (relative to a certain fragment L) is precisely the sound
and complete L-logic of topo-e-models. Let us showcase two examples of two-agent generic
models for the LK1K2 fragment. These are particular topological-partitional models whose
logic is precisely S4.2K1 + S4.2K2 .
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The Quaternary Tree T2,2. The quaternary tree T2,2 is the full infinite tree with two rela-
tions R1 and R2 where every node has exactly four successors: a left Ri-successor and a right
Ri-successor for i = 1, 2. Let ≤i be the reflexive and transitive closure of Ri.

We can, as we did before, define two topologies τi and two partitions Πi on T2,2 in a very
natural way, namely by taking, respectively, the set of ≤i-upsets and the set of ≤i-connected
components. And we get:

Theorem 6. S4.2K1 + S4.2K2 is sound and complete with respect to (T2,2, τ1,2,Π1,2).

The completeness proof uses the fact that S4.2K1 + S4.2K2 is complete with respect to finite
rooted birelational Kripke frames in which both relations are reflexive, transitive and weakly
directed, plus the fact proven in [vBBtCS06] that, given a preordered birelational finite frame
W , there is an onto map f : T2,2 →W which is continuous and open in both topologies.

The result then follows immediately from:

Lemma 7. Given an S4.2 + S4.2 frame W and a map f as described above, plus a valuation
V on W , we have that W,V, fx � φ under the Kripke semantics if and only if T2,2, V

f , x � φ
under the semantics of Def. 2, where V f (p) = {x ∈ T2,2 : fx ∈ V (p)}.

Proof sketch. The proof of this lemma is an induction on formulas. The right to left direction
for the induction step corresponding to Ki uses the fact that, if U is a connected i-upset in W
with fx ∈ U , then U ′ = {z : z ≥i y for some y ∈ [x]Πi

with fy ∈ U} is an i-locally dense open
set in T2,2 with x ∈ U ⊆ [x]Πi

. �

The rational plane Q×Q. We can define two topologies on Q by “lifting” the open sets in
the rational line horizontally or vertically. Formally, the horizontal topology τH is the topology
generated by {U × {y} : U is open, y ∈ Q}. Similarly, the vertical topology τV is generated by
the sets {y} × U . We have the following result:

Proposition 8. There exist partitions ΠH and ΠV such that (Q × Q, τH,V ,ΠH,V ) is a
topological-partitional model whose logic is S4.2K1

+ S4.2K2
.

Proof sketch. It is shown in [vBBtCS06] that there exists a surjective map g : Q × Q → T2,2

which is open and continuous in both topologies. Given such a map and a valuation V on
T2,2, we can define a valuation V g on Q × Q as above and two equivalence relations: x ∼H y
iff [gx]Π1 = [gy]Π1 , and x ∼V y iff [gx]Π2 = [gy]Π2 . As we did before, we can prove that
(Q×Q, τH , τV ,ΠH ,ΠV ), V g, x � φ iff T2,2, V, gx � φ, whence completeness follows. �

4 Distributed Knowledge

Once a multi-agent framework is defined, the obvious next step is to account for some notion of
knowledge of the group. We will focus on distributed or implicit knowledge, i.e., a modality that
accounts for that which the group of agents knows implicitly, or what would become known if
the agents were to share their information.

One way to do this is to follow the evidence-based spirit inherent to the dense interior
semantics. On this account, we would code distributed knowledge as the knowledge modality
which corresponds to a fictional agent who has all the pieces of evidence the agents have (we can
code this via the join topology τ1∨τ2, which is the smallest topology containing τ1 and τ2), and
only considers a world compatible with x when all agents in the group do (the partition of this
agent being {π1 ∩ π2 : πi ∈ Πi}). Coding distributed knowledge like this gives us some rather
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strange results: unlike more standard notions, it can obtain that an agent knows a proposition
but, due to the density condition on this new topology, the group does not (for an example, see
[FG18, Example 5.2.3]).

Our proposal differs from this. Here we follow [HM92] when they refer to this notion as “that
which a fictitious ‘wise man’ (one who knows exactly which each individual agent knows) would
know”. Instead of conglomerating the evidence of all the agents, we account exclusively for what
they know, and we treat this information as indefeasible. Thus, our account of distributed
knowledge, which is not strictly evidence-based, interacts with the Ki modalities in a more
standard way, much like in relational semantics.

Definition 9 (Semantics for distributed knowledge). Our language includes the operators
K1, K2 and an operator D for distributed knowledge. In a topological-partitional model
(X, τ1, τ2,Π1,Π2, V ), we read x ∈ ‖Dφ‖ iff for i = 1, 2 there exist i-locally dense sets Ui ∈ τi
such that x ∈ U1 ∩ U2 ⊆ ‖φ‖.

That is to say, φ constitutes distributed knowledge whenever the agents have indefeasible
pieces of evidence which, when put together, entail φ.

As mentioned above, the logic of distributed knowledge is unsurprising:

Definition 10. LogicK1K2D is the least set of formulas containing the S4.2 axioms and rules
for K1 and K2, the S4 axioms and rules for D plus the axiom Kiφ→ Dφ for i = 1, 2.

Theorem 11. LogicK1K2D is sound and complete with respect to topological-partitional models.
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1 Introduction

Epistemic logics (i.e. the family of modal logics concerned with that which an epistemic agent
believes or knows) found a modelisation in [Hin62] in the form of Kripke frames. [Hin62]
reasonably claims that the accessibility relation encoding knowledge must be minimally reflexive
and transitive, which on the syntactic level translates to the corresponding logic of knowledge
containing the axioms of S4. This, paired with the fact (proven by [MT44]) that S4 is the logic
of topological spaces under the interior semantics, lays the ground for a topological treatment
of knowledge. Moreover, treating the K modality as the topological interior operator, and the
open sets as “pieces of evidence” adds an evidential dimension to the notion of knowledge that
one cannot get within the framework of Kripke frames.

Reading epistemic sentences using the interior semantics might be too simplistic: it equates
“knowing” and “having evidence”, plus attempts to bring a notion of belief into this framework
have not been very felicitous.

Following the precepts of [Sta06], a logic that allows us to talk about knowledge, belief and
the relation thereof, about evidence (both basic and combined) and justification is introduced
in [BBÖS16]. This is the framework of topological evidence models and this paper builds on it.

1.1 The Interior Semantics: the McKinsey-Tarski Theorem

Let Prop be a countable set of propositional variables and let us consider a modal language L�
defined as follows: φ ::= p |φ ∧ φ | ¬φ |�φ, with p ∈ Prop.

A topological model is a topological space (X, τ) along with a valuation V : Prop → 2X .
The semantics of a formula φ is defined recursively as follows: ‖p‖ = V (p); ‖φ ∧ ψ‖ = ‖φ‖ ∩
‖ψ‖, ‖¬φ‖ = X\‖φ‖, ‖�φ‖ = Int ‖φ‖.

Theorem 1 ([MT44]). The logic of topological spaces under the interior semantics is S4.

As mentioned above, reading epistemic sentences via the interior semantics has some issues
For details, see Section 1.2 of [FG18], and Chapters 3 and 4 of [Ö17]. A new semantics devoid
of these issues is proposed in [BBÖS16]: the dense interior semantics.

1.2 The Dense Interior Semantics

Our language is now L∀KB��0
, which includes the modalities K (knowledge), B (belief), [∀]

(infallible knowledge), �0 (basic evidence), � (combined evidence).

∗This paper compiles the results contained in the first two chapters of Saúl Fernández González’s Master’s
thesis [FG18]. The authors wish to thank Guram Bezhanishvili for his input.
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Definition 2 (The dense interior semantics). We read sentences on topological evidence models
(i.e. tuples (X, τ,E0, V ) where (X, τ, V ) is a topological model and E0 is a designated subbasis)
as follows: x ∈ ‖Kφ‖ iff x ∈ Int ‖φ‖ and Int ‖φ‖ is dense1; x ∈ ‖Bφ‖ iff Int ‖φ‖ is dense;
x ∈ ‖[∀]φ‖ iff ‖φ‖ = X; x ∈ ‖�0φ‖ iff there is e ∈ E0 with x ∈ e ⊆ ‖φ‖; x ∈ ‖�φ‖ iff
x ∈ Int ‖φ‖. Validity is defined in the standard way.

Fragments of the logic. The following logics are obtained by considering certain fragments
of the language (i.e. certain subsets of the modalities above).

“K-only”, LK S4.2.
“Knowledge”, L∀K S5 axioms and rules for [∀], plus S4.2 for K, plus axioms

[∀]φ→ Kφ and ¬[∀]¬Kφ→ [∀]¬K¬φ.
“Combined evidence”, L∀� S5 for [∀], S4 for �, plus [∀]φ→ �φ.
“Evidence”, L∀��0

S5 for [∀], S4 for �, plus the axioms
�0φ→ �0�0φ, [∀]φ→ �0φ, �0φ→ �φ,
(�0φ ∧ [∀]ψ)→ �0(φ ∧ [∀]ψ).

K and B are definable in the evidence fragments, thus we can think of the logic of L∀��0
as

the “full logic”.

2 Generic Models

McKinsey and Tarski also proved the following:

Theorem 3 ([MT44]). The logic of a single dense-in-itself metrisable space2 under the interior
semantics is S4.

Within the framework of the interior semantics, this tells us that there exist “natural” spaces,
such as the real line, which are “generic” enough to capture the logic of the whole class of
topological spaces. The main aim of this paper is to translate this idea to the framework of
topological evidence models, i.e., finding topo-e-models which are “generic”. Formally:

Definition 4 (Generic models). Let L be a language and (X, τ) a topological space. We will
say that (X, τ) is a generic model for L if the sound and complete L-logic over the class of all
topological evidence models is sound and complete with respect to the family

{(X, τ,E0) : E0 is a subbasis of τ}.

If �0 is not in the language, then a generic model is simply a topological space for which
the corresponding L-logic is sound and complete.

2.1 The K-only Fragment

Recall that the logic of the “K-only” fragment of our language is S4.2. The following is our
main result:

Theorem 5. S4.2 is the logic of any d-i-i metrisable space under the dense interior semantics.

1A set U ⊆ X is dense whenever ClU = X.
2A space is dense-in-itself (d-i-i) if it has no open singletons and metrisable if there is a metric d generating

the topology. The real line R, the rational line Q, and the Cantor space are examples of d-i-i metrisable spaces.

The McKinsey-Tarski Theorem for Topological Evidence Models
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Proof sketch. Let (X, τ) be such a space. The proof of completeness relies on the following:
Lemma. S4.2 is sound and complete with respect to finite cofinal rooted preorders. Each of
these can be written as a disjoint union W = A∪B, where B is a finite rooted preorder and A
is a final cluster (i.e. x ≤ y for all x ∈W, y ∈ A).
Partition lemma [BBLBvM18]. Any d-i-i metrisable space admits a partition {G,U1, ..., Un},
where G is a d-i-i subspace with dense complement and each Ui is open, for every n ≥ 1.
Theorem [BBLBvM18]. Given a rooted preorder B, and a d-i-i metrisable space G, there
exists a continuous, open and surjective map f : G→ B.

Now, let W = A ∪ B be a finite cofinal rooted preorder, with A = {a1, ..., an} its final
cluster. We partition X into {G,U1, ..., Un} as per the partition lemma and we extend the
open, continuous and surjective map f : G→ B to a map f̄ : X →W by mapping each x ∈ Ui
to ai. We can see that under f̄ : (i) the image of a dense open set is an upset (f̄ is dense-open);
(ii) the preimage of an upset is a dense open set (f̄ is dense-continuous).

Moreover, we have:
Lemma. Given a dense-open and dense-continous onto map f̄ : X →W , and given a formula φ
and a valuation V such that W,V, f̄x 2 φ under the Kripke semantics, we have that X,V f , x 2 φ
under the dense interior semantics, where V f (p) = {x ∈ X : f̄x ∈ V (p)}.

Completeness follows. �

Corollary 6. R, Q and the Cantor space are generic models for the knowledge fragment LK .

2.2 Universal Modality and the Logic of Q
As a connected space, R is not a generic model for the fragments L∀K , L∀� and L∀��0

. We
can however see that there are d-i-i, metrisable yet disconnected spaces (such as Q) which are
generic models for these fragments.

Theorem 7. Q is a generic model for L∀K and L∀�.

Proof sketch for L∀K . We use: (i) the logic of the L∀K fragment is sound and complete with
respect to finite cofinal preorders under the Kripke semantics; (ii) any finite cofinal preorder W
is a p-morphic image via a dense-open dense-continuous p-morphism of a disjoint finite union
of finite rooted cofinal preorders, p : W1 ] ... ]Wn →W .

Take a1 < ... < an−1 ∈ R\Q and let A1 = (−∞, a1), An = (an−1,∞) and Ai = (ai−1, ai)
for 1 < i < n. We have that {A1, ..., An} partitions Q in n open sets each isomorphic to Q. As
per Theorem 5, there exists a dense-open dense-continuous onto map fi : Ai →Wi. By taking
f = f1 ∪ ...∪ fn and composing it with p above we obtain a dense-open, dense-continuous onto
map Q→W . Completeness then follows as in Theorem 5. �

Theorem 8. Q is a generic model for L∀��0
.

Proof sketch. This proof uses the fact that the logic is complete with respect to quasi-models
of the form (X,≤, E0, V ), where ≤ is a preorder and E0 is a collection of ≤-upsets. Given a
continuous, open and surjective map f : Q → (X,≤), we can define a valuation V f (p) = {x ∈
Q : fx ∈ V (p)} and a subbasis of Q, Ef0 = {e ⊆ Q : f [e] ∈ E0} such that

(Q, Ef0 , V
f ), x � φ iff (X,≤, E0, V ), fx � φ,

whence the result follows. �
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Completeness with respect to a single topo-e-model. The logic of the fragment L∀��0

is sound and complete with respect to the class of topo-e-models based on Q with arbitrary
subbases. Could we get completeness with respect to a designated subbasis? An obvious
candidate would be perhaps the most paradigmatic case of subbasis-which-isn’t-a-basis, namely
S = {(−∞, a), (b,∞) : a, b ∈ Q}. As it turns out, the logic is not complete with respect to the
class of topo-e-models based on (Q, τQ,S). Let Prop = {p1, p2, p3} and consider the formula

γ =
∧

i=1,2,3

(�0pi ∧ ¬[∀]¬�0¬pi)
∧

i 6=j∈{1,2,3}
¬[∀]¬(�0pi ∧ ¬�0pj).

as it turns out, γ is consistent in the logic yet (Q, τQ,S) � ¬γ.

Generalising the results. We finish by outlining a class of generic models for all the frag-
ments we are working with. The only part in the previous proofs that makes Q a generic model
for these fragments but not other d-i-i metrisable spaces like R is the possibility to partition Q
in n open sets which are homeomorphic to Q itself. A topological space can be partitioned in
this way if and only if it is idempotent.

Definition 9. A topological space (X, τ) is idempotent if it is homeomorphic to the disjoint
union (X, τ)⊕ (X, τ).

And thus:

Theorem 10. Any dense-in-itself, metrisable and idempotent space (such as Q or the Cantor
space) is a generic model for the fragments LK ,LKB ,L∀K ,L∀� and L∀��0

.
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1 Introduction

Topological semantics of modal logic has a long history. It was shown by McKinsey and Tarski
[11] that if we interpret 2 as interior and hence 3 as closure, then S4 is the modal logic of
all topological spaces. Many topological completeness results have been obtained since the
inception of topological semantics. We list some relevant results: (1) S4 is the logic of any
crowded metric space [11, 13] (this result is often referred to as the McKinsey-Tarski theorem);
(2) Grz is the logic of any ordinal space α ≥ ωω [1, 8]; (3) Grzn (for nonzero n ∈ ω) is the logic
of any ordinal space α satisfying ωn−1 + 1 ≤ α ≤ ωn [1] (see also [7, Sec. 6]); (4) S4.1 is the
logic of the Pe lczyński compactification of the discrete space ω (that is, the compactification of
ω whose remainder is homeomorphic to the Cantor space) [6, Cor. 3.19]. If in (2) we restrict to
a countable α, then all the above completeness results concern metric spaces. In fact, as was
shown in [3], the above logics are the only logics arising from metric spaces.

The McKinsey-Tarski theorem yields that S4 is the logic of the Cantor space. An alternative
proof of this result was given in [12] (see also [2]), where the infinite binary tree was utilized.
Kremer [10] used the infinite binary tree with limits to prove that S4 is strongly complete for
any crowded metric space. Further utility of trees with limits is demonstrated in [4].

Herein we summarize a general technique of topologizing trees which allows us to provide
a uniform approach to topological completeness results for zero-dimensional Hausdorff spaces.
It also allows us to obtain new topological completeness results with respect to non-metrizable
spaces. Embedding these spaces into well-known extremally disconnected spaces (ED-spaces for
short) then yields new completeness results for the logics above S4.2 indicated in Figure 1.

It was proved in [5] that S4.1.2 is the logic of the Čech-Stone compactification βω of the
discrete space ω, and this result was utilized in [6] to show that S4.2 is the logic of the Gleason
cover of the real unit interval [0, 1]. However, these results require a set-theoretic axiom beyond
ZFC, and it remains an open problem whether these results are true in ZFC. In contrast, all
our results are obtained within ZFC.

We briefly outline some of the techniques employed to obtain the indicated completeness
results. A unified way of obtaining a zero-dimensional topology on an infinite tree with limits,
say T , is by designating a particular Boolean algebra of subsets of T as a basis. If T has
countable branching, then the topology ends up being metrizable. If the branching is 1, then
the obtained space is homeomorphic to the ordinal space ω + 1; if the branching is ≥ 2 but
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Figure 1: Some well-known extensions of S4.

finite, then it is homeomorphic to the Pe lczyński compactification of ω; and if the branching
is countably infinite, then there are subspaces homeomorphic to the space of rational numbers,
the Baire space, as well as to the ordinal spaces ωn + 1.

For uncountable branching, it is required to designate a Boolean σ-algebra as a basis for the
topology. This leads to topological completeness results for S4,S4.1,Grz, and Grzn with respect
to non-metrizable zero-dimensional Hausdorff spaces.

To obtain topological completeness results for logics extending S4.2, we select a dense sub-
space of either the Čech-Stone compactification βD of a discrete space D with large cardinality
or the Gleason cover E of a large enough power of [0, 1]. This selection is realized by embedding
a subspace of an uncountable branching tree with limits into either βD or E. The latter gives
rise to S4.2, while the former yields the other logics of interest extending S4.2. We point out
that these constructions can be done in ZFC.

2 Topologizing trees and topological completeness results

Let κ be a nonzero cardinal. The κ-ary tree with limits is Tκ = (Tκ,≤) where Tκ is the set of
all sequences, both finite and infinite, in κ and ≤ is the initial segment partial ordering of Tκ.
For any σ ∈ Tκ, let ↑σ = {ς ∈ Tκ | σ ≤ ς}. The following table presents some topologies on Tκ;
τ is a spectral topology, π is the patch topology of τ , and we introduce the σ-patch topology Π
of τ .

Topology Generated by

τ the set S := {↑σ|σ ∈ Tκ is a finite sequence}
π the least Boolean algebra B containing S
Π the least Boolean σ-algebra A containing S

2.1 The patch topology π

Here we are concerned with the space Tκ := (Tκ, π) and its subspaces T∞κ , Tωκ , and Tnκ (n ∈
ω) whose underlying sets are T∞κ = {σ ∈ Tκ | σ is an infinite sequence}, Tωκ = {σ ∈ Tκ |
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σ is a finite sequence}, and Tnκ = {σ ∈ Tκ | σ is a finite sequence of length n}, respectively. It
ends up that Tκ is metrizable iff κ is countable. The following table for 1 ≤ κ ≤ ω indicates a
subspace X of Tκ and a well known space Y that are homeomorphic.

X Y

T1 the ordinal space ω + 1
T∞κ (2 ≤ κ < ω) the Cantor discontinuum
Tκ (2 ≤ κ < ω) the Pe lczyński compactification of the countable discrete space ω
T∞ω the Baire space
T∞ω the space of irrational numbers
Tωω the space of rational numbers
Tnω (n ∈ ω) the ordinal space ωn + 1

Assuming familiarity with S4, for n ≥ 1, we recall the formulas bd1 := 32p1 → p1 and
bdn+1 := 3(2pn+1 ∧ ¬bdn) → pn+1 as well as the logics S4.1 := S4 + 23p → 32p, Grz :=
S4 + 2(2(p → 2p) → p) → p, and Grzn := Grz + bdn. In the following table, the indicated
subspace X of Tκ satisfies the properties defined by the logic L and every finite rooted L-frame
is an interior image of X, giving the logic of X is L. In conjunction with the above table, this
yields new proofs for many known topological completeness results.

L X

S4 Tωω, T
∞
ω , and T∞κ (2 ≤ κ < ω)

S4.1 Tκ (2 ≤ κ < ω)
Grz

⊕
n∈ω T

n
ω

Grzn+1 Tnω (n ∈ ω)

2.2 The σ-patch topology Π

We now fucus on the space Tκ := (Tκ,Π) and its subspaces T∞κ , Tωκ , and Tnκ (n ∈ ω) whose
underlying sets are T∞κ , Tωκ , and Tnκ , respectively. It turns out that Tκ is a P -space; that is, a
Tychonoff space such that every Gδ-set is open, and Tκ is discrete iff κ is countable. Thus, we
consider only uncountable κ. In the following table, just as we had for the patch topology, the
logic of the indicated subspace X of Tκ is L since X satisfies the properties defined by the logic
L and every finite rooted L-frame is an interior image of X. Hence, we obtain completeness for
the same logics as in the previous section but for non-metrizable spaces.

L X

S4 Tωκ
S4.1 Tκ
Grz

⊕
n∈ω Tnκ

Grzn+1 Tnκ (n ∈ ω)

2.3 Moving to the ED setting

Finally, we transfer these results into the setting of ED-spaces. By an unpublished result of van
Douwen, see [9], the space Tωκ embeds into the (remainder of the) Čech-Stone compactification
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β(2κ) of the discrete space 2κ. Consider Xω
κ := Tωκ ∪ 2κ and Xn

κ := Tnκ ∪ 2κ as subspaces of
β(2κ) where we identify both Tωκ and 2κ with their image in β(2κ). Then Xω

κ and Xn
κ are ED.

Moreover, β(2κ), and hence Tωκ , can be embedded into a closed nowhere dense subspace F of

the Gleason cover E of [0, 1]2
2κ

, where [0, 1] denotes the real unit interval. Identify Tωκ with its
image in E. Then the subspace Xκ := Tωκ ∪ (E \ F ) is ED.

We recall that S4.2, S4.1.2, Grz.2, and Grz.2n are obtained respectively from S4, S4.1, Grz,
and Grzn by postulating the formula 32p → 23p, which expresses that a space is ED. As
previously, in the following table the space X satisfies the properties defined by the logic L and
every finite rooted L-frame is an interior image of X, giving the logic of X is L.

L X

S4.2 Xκ

S4.1.2 Xω
κ

Grz.2
⊕

n∈ωX
n
κ

Grz.2n+2 Xn
κ (n ∈ ω)
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Priestley duality [3, 4] provides a dual equivalence between the category Dist of bounded
distributive lattices and the category Pries of Priestley spaces; and Esakia duality [1] provides a
dual equivalence between the category Heyt of Heyting algebras and the category Esa of Esakia
spaces. A Priestley space is a compact space X with a partial order ≤ such that x 6≤ y implies
there is a clopen upset U with x ∈ U and y /∈ U . An Esakia space is a Priestley space in which
↓U is clopen for each clopen U .

The three spaces Z1, Z2, and Z3 depicted in Figure 1 are probably the simplest examples
of Priestley spaces that are not Esakia spaces. Topologically each of the three spaces is home-
omorphic to the one-point compactification of the countable discrete space {y} ∪ {zn | n ∈ ω},
with x being the limit point of {zn | n ∈ ω}. For each of the three spaces, it is straightforward
to check that with the partial order whose Hasse diagram is depicted in Figure 1, the space is
a Pristley space. On the other hand, neither of the three spaces is an Esakia space because {y}
is clopen, but ↓y = {x, y} is no longer open.

x

y

z2
z1

z0

Z1

x

y

z2

z1

z0

Z2

x

y

z2 z1 z0

Z3

Figure 1: The three Priestley spaces Z1, Z2, and Z3.

We show that a metrizable Priestley space is not an Esakia space exactly when one of
these three spaces can be embedded in it. The embeddings we consider are special in that the
point y plays a special role. We show that this condition on the embeddings, as well as the
metrizability condition, cannot be dropped by presenting some counterexamples. An advantage
of our characterization lies in the fact that when a metrizable Priestley space X is presented
by a Hasse diagram, it is easy to verify whether or not X contains one of the three “forbidden
configurations”.

∗An expanded version of this abstract, containing the proofs of all reported results, has been submitted for
publication.

46



Definition 1. Let X be a Priestley space. We say that Zi (i = 1, 2, 3) is a forbidden configura-
tion for X if there are a topological and order embedding e : Zi → X and an open neighborhood
U of e(y) such that e−1(↓U) = {x, y}.

Theorem 2 (Main Theorem). A metrizable Priestley space X is not an Esakia space iff one
of Z1, Z2, Z3 is a forbidden configuration for X.

To give the dual statement of Theorem 2, let L1, L2, and L3 be the dual lattices of Z1, Z2,
and Z3, respectively. They can be depicted as shown in Figure 2.

c

L1

Pfin(ω)

L2

Pfin(ω)× {0}

Pfin(ω)× {1}

Pcofin(ω)× {1}

L3

Figure 2: The lattices L1, L2 and L3.

We have that L2 is isomorphic to the lattice of finite subsets of ω together with a top
element, and L3 is isomorphic to the sublattice of CF(ω)×2 given by the elements of the form
(A,n) where A is finite or n = 1. Here CF(ω) is the Boolean algebra of finite and cofinite
subsets of ω and 2 is the two-element Boolean algebra.

Neither of L1, L2, L3 is a Heyting algebra: L1 is not a Heyting algebra because ¬c does not
exist; L2 is not a Heyting algebra because ¬F does not exist for any finite subset F of ω; and
L3 is not a Heyting algebra because ¬(F, 1) does not exist for any finite F .

Definition 3. Let L ∈ Dist and let a, b ∈ L. Define

Ia→b := {c ∈ L | c ∧ a ≤ b}

It is easy to check that Ia→b is an ideal, and that Ia→b is principal iff a → b exists in L, in
which case Ia→b = ↓(a→ b).

Observe that if L is a bounded distributive lattice and X is the Priestley space of L, then
X is metrizable iff L is countable. Thus, the following dual statement of Theorem 2 yields a
characterization of countable Heyting algebras.

Theorem 4. Let L be a countable bounded distributive lattice. Then L is not a Heyting algebra
iff one of Li (i = 1, 2, 3) is a homomorphic image of L such that the homomorphism hi : L→ Li
satisfies the following property: There are a, b ∈ L such that hi[Ia→b] = Ici→0, where c1 = c,
c2 = {0}, or c3 = (∅, 1).
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This characterization easily generalizes to countable p-algebras (=pseudocomplemented dis-
tributive lattices). Priestley duality for p-algebras was developed in [5]. We call a Priestley
space X a p-space provided the downset of each clopen upset is clopen. Then a bounded
distributive lattice L is a p-algebra iff its dual Priestley space X is a p-space.

Definition 5. Let X be a Priestley space. We say that Zi (i = 1, 2, 3) is a p-configuration for
X if Zi is a forbidden configuration for X and in addition the open neighborhood U of e(y) is
an upset.

We point out that neither of the bounded distributive lattices L1, L2, L3 that are dual to
Z1, Z2, Z3 is a p-algebra. The next result is a direct generalization of Theorems 2 and 4:

Corollary 6. Let L be a countable bounded distributive lattice, and let X be its Priestley space,
which is then a metrizable space.

1. X is not a p-space iff one of Z1, Z2, Z3 is a p-configuration for X.

2. L is not a p-algebra iff one of Li (i = 1, 2, 3) is a homomorphic image of L such that
the homomorphism hi : L→ Li satisfies the following property: There is a ∈ L such that
hi[Ia→0] = Ici→0, where c1 = c, c2 = {0}, or c3 = (∅, 1).

We recall that co-Heyting algebras are order-duals of Heyting algebras. The Priestley spaces
dual to co-Heyting algebras are the ones with the property that the upset of each clopen is
clopen [2]. Let Z∗1 , Z

∗
2 , Z

∗
3 be the Priestley spaces obtained by reversing the order in Z1, Z2, Z3,

respectively. Then dualizing Theorem 2 yields:

Corollary 7. A metrizable Priestley space X is not the dual of a co-Heyting algebra iff there are
a topological and order embedding e from one of Z∗1 , Z

∗
2 , Z

∗
3 into X and an open neighborhood

U of e(y) such that e−1(↑U) = {x, y}.
We recall that bi-Heyting algebras are the lattices which are both Heyting algebras and

co-Heyting algebras. Priestley spaces dual to bi-Heyting algebras are the ones in which the
upset and downset of each clopen is clopen. Putting together the results for Heyting algebras
and co-Heyting algebras yields:

Corollary 8. A metrizable Priestley space X is not dual to a bi-Heyting algebra iff one of
Z1, Z2, Z3 is a forbidden configuration for X or there are a topological and order embedding e
from one of Z∗1 , Z

∗
2 , Z

∗
3 into X and an open neighborhood U of e(y) such that e−1(↑U) = {x, y}.

We conclude by two examples showing that Theorem 2 is false without the metrizability
assumption, and that in Definition 1 the condition on the open neighborhood U of e(y) cannot
be dropped.

Example 9. Let ω1 be the first uncountable ordinal, and let X be the poset obtained by taking
the dual order of ω1 + 1. Endow X with the interval topology. Consider the space Z given by
the disjoint union of a singleton space {y} and X with the partial order as depicted in Figure 3.
Since ↓{y} is not clopen, Z is not an Esakia space. On the other hand, there is no sequence in
X \ {ω1} converging to ω1. Thus, Z does not contain the three forbidden configurations.

Example 10. Let X be the disjoint union of two copies of the one-point compactification of
the discrete space ω, and let the order on X be defined as in Figure 4. It is straightforward to
check that X is a metrizable Esakia space, and yet there is a topological and order embedding
of Z1 into X, described by the white dots in the figure.

Analogous examples can be found for all three forbidden configurations.

Guram Bezhanishvili and Luca Carai
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ω1

y

X

Figure 3: The space Z of Example 9.

Figure 4: The space X of Example 10. The white dots represent the image of Z1 under the
embedding of Z1 into X.

References

[1] L. Esakia. Topological Kripke models. Soviet Math. Dokl., 15:147–151, 1974.

[2] L. Esakia. The problem of dualism in the intuitionistic logic and Browerian lattices. In V Inter.
Congress of Logic, Methodology and Philosophy of Science, pages 7–8. Canada, 1975.

[3] H. A. Priestley. Representation of distributive lattices by means of ordered Stone spaces. Bull.
London Math. Soc., 2:186–190, 1970.

[4] H. A. Priestley. Ordered topological spaces and the representation of distributive lattices. Proc.
London Math. Soc., 24:507–530, 1972.

[5] H. A. Priestley. The construction of spaces dual to pseudocomplemented distributive lattices. Quart.
J. Math. Oxford Ser. (2), 26(102):215–228, 1975.

Characterization of metrizable Esakia spaces via some forbidden configurations

49



The One-Variable Fragment of Corsi Logic

Xavier Caicedo1, George Metcalfe2, Ricardo Rodŕıguez3, and Olim Tuyt2
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It is well-known that the one-variable fragments of first-order classical logic and intuitionistic
logic can be understood as notational variants of the modal logic S5 and the intuitionistic modal
logic MIPC, respectively. Similarly, the one-variable fragment of first-order Gödel logic may be
viewed as a notational variant of the many-valued Gödel modal logic S5(G)C, axiomatized
in [4] as an extension of MIPC with the prelinearity axiom (ϕ → ψ) ∨ (ψ → ϕ) and the
constant domains axiom 2(2ϕ ∨ ψ) → (2ϕ ∨ 2ψ). Further results and general methods for
establishing correspondences between one-variable fragments of first-order intermediate logics
and intermediate modal logics have been obtained in, e.g., [7, 1].

In this work, we establish such a correspondence for a weaker extension of propositional
Gödel logic: the first-order logic of totally ordered intuitionistic Kripke models with increasing
domains QLC, axiomatized by Corsi in [5] as an extension of first-order intuitionistic logic
with the prelinearity axiom, and often referred to as “Corsi logic”. We show that its one-
variable fragment QLC1 corresponds both to the Gödel modal logic S5(G), axiomatized in [4]
as an extension of MIPC with the prelinearity axiom, and also to a one-variable fragment of
a “Scott logic” studied in, e.g., [6]. Since S5(G) enjoys an algebraic finite model property
(see [1]), validity in both this logic and QLC1 are decidable, and indeed — as can be shown
using methods from [3] — co-NP-complete.

Let us first recall the Kripke semantics for Corsi logic, restricted for convenience to its
one-variable fragment. A QLC1-model is a 4-tuple M = 〈W,�, D, I〉 such that

• W is a non-empty set;

• � is a total order on W ;

• for all w ∈ W , Dw is a non-empty set called the domain of w, and Dw ⊆ Dv whenever
w � v;

• for all w ∈W , Iw maps each unary predicate P to some Iw(P ) ⊆ Dw, and Iw(P ) ⊆ Iv(P )
whenever w � v.

We define inductively for w ∈W and a ∈ Dw:

M, w |=a ⊥ ⇔ never

M, w |=a > ⇔ always

M, w |=a P (x) ⇔ a ∈ Iw(P )

M, w |=a ϕ ∧ ψ ⇔ M, w |=a ϕ and M, w |=a ψ

M, w |=a ϕ ∨ ψ ⇔ M, w |=a ϕ or M, w |=a ψ

M, w |=a ϕ→ ψ ⇔ M, v |=a ϕ implies M, v |=a ψ for all v � w
M, w |=a (∀x)ϕ ⇔ M, v |=b ϕ for all v � w and b ∈ Dv

M, w |=a (∃x)ϕ ⇔ M, w |=b ϕ for some b ∈ Dw.
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We write M � ϕ if M, w �a ϕ for all w ∈ W , and a ∈ Dw. We say that a one-variable
first-order formula ϕ is QLC1-valid if M � ϕ for all QLC1-models M. As mentioned above, it
follows from results of Corsi [5] that ϕ is QLC1-valid if and only if it is derivable in first-order
intuitionistic logic extended with the prelinearity axiom.

The semantics for the modal logic S5(G) is defined for a set of formulas Fm built as usual
over the language of intuitionistic logic extended with 2 and 3 and a countably infinite set
of variables Var, where G denotes the standard Gödel algebra 〈[0, 1],∧,∨,→, 0, 1〉. An S5(G)-
model M = 〈W,R, V 〉 consists of a non-empty set of worlds W , a [0, 1]-accessibility relation
R : W ×W → [0, 1] satisfying for all u, v, w ∈W ,

Rww = 1, Rwv = Rvw, and Ruv ∧Rvw ≤ Ruw,

and a valuation map V : Var×W → [0, 1]. The valuation map is extended to V : Fm×W → [0, 1]
by V (⊥, w) = 0, V (>, w) = 1, V (ϕ1 ? ϕ2, w) = V (ϕ1, w) ? V (ϕ2, w) for ? ∈ {∧,∨,→}, and

V (2ϕ,w) =
∧
{Rwv → V (ϕ, v) | v ∈W}

V (3ϕ,w) =
∨
{Rwv ∧ V (ϕ, v) | v ∈W}.

We say that ϕ ∈ Fm is S5(G)-valid if V (ϕ,w) = 1 for all S5(G)-models 〈W,R, V 〉 and w ∈W .
Let us make the correspondence between one-variable fragments and modal logics explicit,

recalling the following standard translations (−)∗ and (−)◦ between the propositional language
of S5(G) and the one-variable first-order language of QLC1, assuming ? ∈ {∧,∨,→}:

⊥∗ = ⊥ ⊥◦ = ⊥
>∗ = > >◦ = >

(P (x))∗ = p p◦ = P (x)

(ϕ ? ψ)∗ = ϕ∗ ? ψ∗ (ϕ ? ψ)◦ = ϕ◦ ? ψ◦

((∀x)ϕ)∗ = 2ϕ∗ (2ϕ)◦ = (∀x)ϕ◦

((∃x)ϕ)∗ = 3ϕ∗ (3ϕ)◦ = (∃x)ϕ◦.

Note that the composition of (−)◦ and (−)∗ is the identity map. Therefore to show that S5(G)
corresponds to the one-variable fragment of QLC, it suffices to show that ϕ ∈ Fm is S5(G)-
valid if and only if ϕ◦ is QLC1-valid. It is easily shown that the translations under (−)◦ of
the axioms and rules of the axiomatization of S5(G) given in [4] are QLC1-valid and preserve
QLC1-validity, respectively. Hence if ϕ is S5(G)-valid, then ϕ◦ is QLC1-valid. To prove the
converse, we proceed contrapositively and show that if ϕ ∈ Fm fails in some S5(G)-model, then
ϕ◦ fails in some QLC1-model.

Let us say that an S5(G)-modelM = 〈W,R, V 〉 is irrational if V (ϕ,w) is irrational, 0, or 1
for all ϕ ∈ Fm and w ∈W . We first prove the following useful lemma.

Lemma 1. For any countable S5(G)-model M = 〈W,R, V 〉, there exists an irrational S5(G)-
model M′ = 〈W,R′, V ′〉 such that V (ϕ,w) < V (ψ,w) if and only if V ′(ϕ,w) < V ′(ψ,w) for all
ϕ,ψ ∈ Fm and w ∈W .

Next we consider any irrational S5(G)-model M = 〈W,R, V 〉 and fix w0 ∈ W . We let (0, 1)Q
denote (0, 1) ∩Q and define a corresponding one-variable Corsi model

M◦ = 〈(0, 1)Q,≥, D, I〉

such that for all α ∈ (0, 1)Q,

The One-Variable Fragment of Corsi Logic
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• Dα = {v ∈W | Rw0v ≥ α};

• Iα(P ) = {v ∈W | V (p, v) ≥ α} ∩Dα for each unary predicate P .

We are then able to prove the following lemma by induction on the complexity of ϕ ∈ Fm. The
fact thatM is irrational ensures that V (ϕ,w) ≥ α if and only if V (ϕ,w) > α for all α ∈ (0, 1)Q,
which is particularly important when considering the case for ϕ = 3ψ.

Lemma 2. For any ϕ ∈ Fm, α ∈ (0, 1)Q, and w ∈ Dα,

M◦, α |=w ϕ◦ ⇐⇒ V (ϕ,w) ≥ α.

Hence, if ϕ ∈ Fm is not S5(G)-valid, there exists, by Lemma 1, an irrational S5(G)-model
M = 〈W,R, V 〉 and w ∈ W such that V (ϕ,w) < α < 1 for some α ∈ (0, 1), and then, by
Lemma 2, a QLC1-model M◦ = 〈(0, 1)Q,≥, D, I〉 such that M◦, α 6|=w ϕ◦. That is, ϕ◦ is not
QLC1-valid, and we obtain the following result.

Theorem 1. A formula ϕ ∈ Fm is S5(G)-valid if and only if ϕ◦ is QLC1-valid.

We have also established a correspondence between S5(G) and the one-variable fragment
of a “Scott logic” studied in, e.g., [6], that is closely related to the semantics of a many-valued
possibilistic logic defined in [2]. Let us call a SL1-model a triple M = 〈D,π, I〉 such that

• D is a non-empty set;

• π : D → [0, 1] is a map satisfying π(a) = 1 for some a ∈ D;

• for each unary predicate P , I(P ) is a map assigning to any a ∈ D some Ia(P ) ∈ [0, 1].

The interpretation Ia is extended to formulas by the clauses Ia(⊥) = 0, Ia(>) = 1, Ia(ϕ ?ψ) =
Ia(ϕ) ? Ia(ψ) for ? ∈ {∧,∨,→}, and

Ia((∀x)ϕ) =
∧
{π(b)→ Ib(ϕ) | b ∈ D}

Ia((∃x)ϕ) =
∨
{π(b) ∧ Ib(ϕ) | b ∈ D}.

We say that a one-variable first-order formula ϕ is SL1-valid if Ia(ϕ) = 1 for all SL1-models
〈D,π, I〉 and a ∈ D. Using Theorem 1 and a result from [6] relating Scott logics to first-order
logics of totally ordered intuitionistic Kripke models, we obtain the following correspondence

Theorem 2. A formula ϕ ∈ Fm is S5(G)-valid if and only if (2ϕ)◦ is SL1-valid.

Let us mention finally that S5(G) enjoys an algebraic finite model property (see [1]), and
hence validity in this logic and QLC1 are decidable. Moreover, using a version of the non-
standard semantics developed in [3] to obtain a polynomial bound on the size of the algebras
to be checked, we are able to obtain the following sharpened result.

Theorem 3. The validity problem for S5(G) is co-NP-complete.
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[4] X. Caicedo and R. Rodŕıguez. Bi-modal Gödel logic over [0,1]-valued Kripke frames. Journal
of Logic and Computation, 25(1):37–55, 2015.

[5] G. Corsi. Completeness theorem for Dummett’s LC quantified. Studia Logica, 51:317–335,
1992.

[6] R. Iemhoff. A note on linear Kripke models. Journal of Logic and Computation, 15(4):489–
506, 2005.

[7] H. Ono and N. Suzuki. Relations between intuitionistic modal logics and intermediate
predicate logics. Reports on Mathematical Logic, 22:65–87, 1988.

The One-Variable Fragment of Corsi Logic

53



Universal Objects for Orders on Groups,
and their Dual Spaces

Almudena Colacito∗

Mathematical Institute, University of Bern, Sidlerstrasse 5, 3012 Bern, Switzerland
almudena.colacito@math.unibe.ch

Following on from the success of scheme theory in algebraic geometry, Keimel in 1971 introduced
in his doctoral dissertation [10] a notion of spectral space associated to Abelian lattice-ordered groups
(cf. [2, Chapter 10]). For an Abelian lattice-ordered group H , the `-spectrum is defined as the set of its
prime `-ideals with the spectral topology. The notion of `-spectrum is not limited to the commutative
setting, and can also be defined for an arbitrary lattice-ordered group (see, e.g., [6] and [7, Chapter 9]).

A lattice-ordered group (briefly, `-group) H is a group with a lattice structure compatible with the
group operation, i.e., the group operation distributes over the lattice operations. We call an `-group
representable if it is a subdirect product of chains, and Abelian if its underlying group is Abelian. The
`-spectrum SpecH of an `-group H is the root system of all its prime convex `-subgroups ordered by
inclusion. Here, a convex `-subgroup ofH is an order-convex sublattice subgroup ofH , while an `-ideal
is a convex `-subgroup which is also normal, i.e., closed under conjugation. For any convex `-subgroup
K, the quotient H/K is lattice-ordered by: Kx 6H/K Ky if, and only if, there exists t ∈ K such that
x 6 ty. A convex `-subgroup P is prime when the quotient H/P is non-trivial and totally ordered. A
prime convex `-subgroup of H is minimal if it is inclusion-minimal in SpecH . By an application of
Zorn’s Lemma, any prime convex `-subgroup of H contains a minimal prime convex `-subgroup. We
write MinH for the set of minimal prime convex `-subgroups of H . Given an `-group H , we consider
the following hull-kernel (or spectral, or Stone, or Zariski) topology on SpecH . The basic open sets are

Sx = {P ∈ SpecH | x 6∈ P}, for x ∈ H

and we refer to Sx as the support of x ∈ H . We also endow MinH with the subspace topology. It can
be proved that MinH is Hausdorff [7, Proposition 49.8].

We adopt the standard notation x ⊥ y—read ‘x and y are orthogonal’—to denote |x| ∧ |y| = e for
x, y ∈ H , where |x| = x ∨ x−1 is the absolute value of x, and ‘e’ is the group identity. For T ⊆ H , set

T⊥ = {x ∈ H | x ⊥ y for all y ∈ T},

and call those subsets polars. We write PolH for the Boolean algebra of polars of H , and PolpH for
its sublattice of principal polars, namely those of the form {x}⊥⊥ for some x ∈ H .

The spectral space of an `-group H provides—in the case in which H is representable—a tool for
employing sheaf-theoretic methods in the study of `-groups.

Example. A representable `-groupH can be embedded into a Hausdorff sheaf of `-groups on the Stone
space associated with the complete Boolean algebra PolH of polars [7, Proposition 49.21].

Furthermore, topological properties of the `-spectrum SpecH can have important consequences on the
structure of the `-group H .

Example. The space MinH is compact if, and only if, PolpH is a Boolean algebra [6].1

∗Based on joint work with Vincenzo Marra (University of Milano, Italy).
1Further striking examples—although not relevant for the present abstract—are the following: SpecH is Hausdorff if, and

only if, H is hyperarchimedean [6, 1.2]; SpecH is compact if, and only if, H has a strong order unit [6, 1.3].
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In 2004, Sikora’s paper ‘Topology on the spaces of orderings of groups’ [13] pioneered a different
perspective on the study of the interplay between topology and ordered groups, that has led to applica-
tions to both orderable groups and algebraic topology (see, e.g., [3]). The basic construction in Sikora’s
paper is the definition of a topology on the set of right orders on a given right orderable group.

A binary relation R on a group G is right-invariant (resp. left-invariant) if for all a, b, t ∈ G, when-
ever aRb then atRbt (resp. taRtb). We call a binary relation 6 on a set S a (total) order if it is reflex-
ive, transitive, antisymmetric, and total. A right order on G is just a right-invariant order on G, and G
is right orderable if there exists a right order on G. A submonoid C ⊆ G is a (total) right cone for G
if G = C ∪ C−1 and {e} = C ∩ C−1. We set R(G) to be the set of right cones for G. It is elemen-
tary that R(G) is in bijection with the right orders on G via the map that associates to C ∈ R(G) the
relation: a 6C b if, and only if, ba−1 ∈ C. Hence, we refer toR(G) as ‘the set of right orders on G’.

For a right orderable group G, Sikora endowedR(G) with the subspace topology inherited from the
power set 2G with the Tychonoff topology. A subbasis of clopens forR(G) is given by the sets

Ra = {C ∈ R(G) | a ∈ C}, for a ∈ G.

The subspace R(G) can be proved to be closed in 2G, and is therefore a compact totally disconnected
Hausdorff space, i.e., it is a Stone space.

The theory of `-groups and the theory of right orderable groups have been proved to be deeply re-
lated, and examples of this interdependence can be found almost everywhere in the literature of either
field (see, e.g., [9, 11, 8, 4]). For this reason, the question whether a relation can be found between the
topological space of right orders on a right orderable group G, and the `-spectrum of some `-group H
arises naturally. In this work, we provide a positive answer to this question. In order to give a satisfying
result that intrinsically relates the two topological spaces, we employ a fully general and natural con-
struction, involving all the varieties of `-groups. We focus here on the particular result, and only briefly
sketch how the latter fits into the general framework.

For a group G, we write F (G) for the free `-group over G (as a group), and ηG : G→ F (G) for the
group homomorphism characterized by the following universal property: for each group homomorphism
p : G → H , with H an `-group, there is exactly one `-homomorphism h : F (G) → H such that
h ◦ ηG = p, i.e., such that the following diagram

G F (G)

H

p

ηG

h!

commutes. As it turns out, F (G) is the `-group that we were looking for.

Theorem 1. Given a right orderable group G, the space R(G) of right orders on G is homeomorphic
to the minimal layer MinF (G) of the `-spectrum SpecF (G). As a consequence, the lattice Polp F (G)
of principal polars is a Boolean algebra andR(G) is its dual Stone space.

We obtain Theorem 1 as a consequence of a result involving the whole of SpecF (G). For this, it is
necessary to consider the broader notion of right pre-order. A binary relation 4 on a set S is a (total)
pre-order if it is reflexive, transitive, and total. A right pre-order on G is a right-invariant pre-order on
G. A submonoid C ⊂ G is a (total) right pre-cone for G if G = C ∪ C−1. We set P(G) to be the
root system of total right pre-cones for G ordered by inclusion. It is again elementary that P(G) is in
bijection with the right pre-orders on G via the map that associates to C ∈ P(G) the relation: a 4C b
if, and only if, ba−1 ∈ C. Note that if the group G is right orderable, then Sikora’s R(G) is a subset of
P(G). More precisely, ifR(G) 6= ∅, it can be proved to coincide with the minimal layer of P(G).

Universal Objects for Orders on Groups, and their Dual Spaces
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For any group G, we set

Pa = {C ∈ P(G) | a ∈ C and a 6∈ C−1}, for a ∈ G
and endow P(G) with the smallest topology for which all sets Pa are open. Thus, any open set in this
topology is the union of sets of the form Pa1 ∩ . . . ∩ Pan . If G is right orderable, the subspace topology
onR(G) amounts to Sikora’s topology, and hence, the minimal layer of P(G) is compact.

Observe that there is a natural way to obtain an `-group from a right pre-cone C for G. In fact, the
set G≷ = C ∩ C−1 is a subgroup of G, and the quotient G/G≷ can be totally ordered by: [a] 6 [b]
if, and only if, a 4C b; if ΩC is the resulting chain, we can consider the `-subgroup HC of Aut(ΩC)
generated by the image of G through the group homomorphism πC : G→ Aut(ΩC) defined by

a 7→ (πC(a)[b] = [ba]).

Note that the `-group HC allows us to exploit the universal property of ηG : G → F (G), inducing the
existence of the surjective `-group homomorphism hC , making the following diagram

G F (G)

HC

πC

ηG

hC!

commute. We then make use of hC to conclude the following result.

Proposition 1. The topological spaces P(G) and SpecF (G) are homeomorphic.

We would like to point out that a correspondence between the two root systems from Proposition 1 for
the particular case in which G is a free group can essentially be found in [12].

The proof of Proposition 1 is self-contained, and only uses basic facts about (lattice-)ordered groups.
An order-isomorphism between the underlying root systems is built explicitly, and then proved to be
a homeomorphism between the corresponding topological spaces. Besides Theorem 1, a further con-
sequence of Proposition 1 is an alternative proof of a fundamental representation theorem for free
`-groups, originally proved by Conrad [5]. As already remarked, Proposition 1 is an instance of a much
more general result associating a family of right pre-orders to each variety V of `-groups: given a group
G, the right pre-orders on G associated with the variety V are exactly those for which HC ∈ V.

Without going into details, we conclude by stating a further consequence of the above-mentioned
general result. Given a group G, we write F (G)R for the free representable `-group over the group G
and ηG : G → F (G)R for the corresponding universal morphism (i.e., characterized by the universal
property with respect to the variety R of representable `-groups). An order on G is just a left-invariant
right order on G, and G is orderable if there exists an order on G. As in the case of right orders, the set
O(G) of orders on a group G can be identified with a set of subsets of G, namely those right cones that
are closed under conjugation. Sikora’s topological space on O(G) can then be defined as the smallest
topology containing the sets {C ∈ O(G) | a ∈ C}, for a ∈ G.

Theorem 2. Given an orderable group G, the space O(G) of orders on G is homeomorphic to the
minimal layer MinF (G)R of the `-spectrum SpecF (G)R. As a consequence, the lattice Polp F (G)R of
principal polars is a Boolean algebra and O(G) is its dual Stone space.

Theorem 2 is, similarly to Theorem 1, a consequence of the existence of a homeomorphism between
the space of representable right pre-orders on G, namely those for which HC ∈ R, and the `-spectrum
SpecF (G)R. Its main significance lies in the fact that it provides a new perspective on some open
problems in the theory of orderable groups (e.g., it is still unknown whether the equational theory of R
is decidable; it is also unknown whether the space O(G), for G free of finite rank n ≥ 2, is Cantor [1]).

Almudena Colacito
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1 Introduction
A variety V of semilinear residuated lattices is called densifiable if it is generated as a quasivariety by
its dense chains, or, equivalently, each chain in V embeds into a dense chain in V (see [1, 10, 6, 3]).
Establishing that some variety is densifiable is a fundamental problem of mathematical fuzzy logic,
corresponding to a key intermediate step in proving that a given axiom system is “standard complete”:
that is, complete with respect to a class of algebras with lattice reduct [0, 1] (see, e.g., [7, 8, 2]).

Densifiability may be established using representation theorems or by providing explicit embeddings
of countable chains into dense countable chains of the variety. The latter approach, introduced in [7],
has been used to establish densifiability for varieties of integral semilinear residuated lattices, but can
be difficult to apply in the non-integral setting. An alternative proof-theoretic method, used in [8, 2] to
establish densifiability for a range of integral and non-integral varieties, circumvents the need to give
explicit embeddings. Instead, the elimination of a certain density rule for a hypersequent calculus is
used to prove that the variety satisfies a property that guarantees densifiability. Remarkably, this method
has also been reinterpreted algebraically to obtain explicit embeddings of chains into dense chains [6, 1].

The methods described above are suitable for varieties of semilinear residuated lattices that admit
either a useful representation theorem (e.g., via ordered groups) or an analytic hypersequent calculus. In
this work, we introduce a method for establishing densifiability for varieties that may not satisfy either of
these conditions, but admit instead a “theorem of alternatives” relating validity of equations in the variety
to validity of equations in its residuated monoid reduct. Although the scope of this method is fairly
narrow — applying so far only to varieties of involutive commutative semilinear residuated lattices — it
yields both new and familiar (e.g., abelian `-groups and odd Sugihara monoids) examples of densifiable
varieties, and provides perhaps a first step towards addressing the open standard completeness problem
for involutive uninorm logic posed in [8].

2 Theorems of Alternatives
Theorems of alternatives can be understood as duality principles stating that either one or another linear
system has a solution over the real numbers, but not both (see, e.g., [5]). In particular, the following
variant of Gordan’s theorem (replacing real numbers with integers) states that

for any M ∈ Zm×n, either yTM > 0 for some y ∈ Zm or Mx = 0 for some x ∈ Nn\{0}.

This theorem is established in [4] by considering partial orders on free abelian groups and reformulated
as the following correspondence between validity in the variety LA of abelian `-groups of inequations
0 ≤ t1 ∨ . . . ∨ tn, where t1, . . . , tn are group terms, and equations in the variety A of abelian groups:

LA |= 0 ≤ t1 ∨ . . . ∨ tn ⇐⇒ A |= 0 ≈ λ1t1 + · · ·+ λntn for some λ1, . . . , λn ∈ N not all 0.
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This result may also be understood as generating a one-sided variant of the hypersequent calculus for
abelian `-groups introduced in [9].

In this work, we consider how far such theorems of alternatives can be extended to other classes
of algebras and corresponding non-classical logics. Let Lg be the language of abelian groups with
connectives +, −, 0, defining also a→ b := −a+ b, a · b := −(−a+−b), 1 := −0, and, inductively,
for n ∈ N, 0a := 0, a0 := 1, (n+ 1)a = na+ a, and an+1 = an · a. We take as our starting point the
following axiomatization of Multiplicative Linear Logic (MLL):

(B) (s→ t)→ ((t→ u)→ (s→ u)) (1 L) s→ (1→ s)
(C) (s→ (t→ u))→ (t→ (s→ u)) (1 R) 1
( I ) s→ s (−L) −s→ (s→ 0)

(INV) ((s→ 0)→ 0)→ s (−R) (s→ 0)→ −s
(·L) (s→ (t→ u))→ ((s · t)→ u) (+L) (s+ t)→ −(−s · −t)
(·R) s→ (t→ (s · t)) (+R) −(−s · −t)→ (s+ t)

s s→ t
t

(mp)

We also define MLL0=1 to be the extension of MLL0 with the axioms 0→ 1 and 1→ 0.
Algebraic semantics for MLL and its extensions are provided by involutive commutative residuated

pomonoids: algebras 〈A,+,−, 0,≤〉 satisfying (i) 〈A,+, 0〉 is a commutative monoid, (ii) − is an
involution on 〈A,≤〉, (iii) ≤ is a partial order on 〈A,+, 0〉, and (iv) a · b ≤ c ⇐⇒ a ≤ b → c for
all a, b, c ∈ A. For any axiomatic extension L of MLL, let VL be the class of involutive commutative
residuated pomonoids satisfying 1 ≤ s whenever `L s. Then for any set of Lg-terms Σ ∪ {s},

Σ `L s ⇐⇒ {1 ≤ t | t ∈ Σ} |=VL 1 ≤ s.

Let L` be the logic defined over the language L with connectives +,−, 0,∧,∨ obtained by extending
the axiomatization of L with the following axiom schema and rule:

(∧1) (s ∧ t)→ s (∨1) s→ (s ∨ t)
(∧2) (s ∧ t)→ t (∨2) t→ (s ∨ t)
(∧3) ((s→ t) ∧ (s→ u))→ (s→ (t ∧ u)) (∨3) ((s→ u) ∧ (t→ u))→ ((s ∨ t)→ u)

(PRL) (s→ t) ∨ (t→ s) (DIS) ((s ∧ (t ∨ u))→ ((s ∧ t) ∨ (s ∧ u))

s t
s ∧ t (adj)

In particular, MLL` is involutive uninorm logic IUL formulated without the constants⊥ and> (see [8]).
Let V`L be the variety generated by the totally ordered members of VL equipped with the binary meet

and join operations ∧ and ∨. Then for any set of L-terms Σ ∪ {s},

Σ `L` s ⇐⇒ {1 ≤ t | t ∈ Σ} |=V`
L

1 ≤ s.

Note that if VL is axiomatized over the class of involutive commutative residuated pomonoids by a set
of equations E, then V`L is axiomatized by E over the variety of involutive commutative semilinear
residuated lattices.

We say that an axiomatic extension L of MLL admits a theorem of alternatives if for any set of
Lg-terms Σ ∪ {t1, . . . , tn},

Σ `L` t1 ∨ . . . ∨ tn ⇐⇒ Σ `L λ1t1 + · · ·+ λntn for some λ1, . . . , λn ∈ N not all 0.

This property can also be reformulated as a conservative extension property for L` over L.
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Proposition 2.1. An axiomatic extension L of MLL admits a theorem of alternatives if and only if
`L` x ∨ −x and for any set of Lg-terms Σ ∪ {t},

Σ `L` t ⇐⇒ Σ `L λt for some λ ∈ N\{0}.

Note that the condition `L` x∨−x is immediate when L is an axiomatic extension of MLL0=1, and we
will therefore assume this in what follows (even when more general results can be formulated).

The next result provides characterizations of logics admitting theorems of alternatives in terms of
both consequences and valid formulas.

Theorem 2.2. An axiomatic extension L of MLL0=1 admits a theorem of alternatives if and only if for
all n ∈ N\{0},

{nx, n(−x)} `L xn + (−x)n,

or, equivalently, if for all n ∈ N, there exist m ∈ N\{0}, k ∈ N such that `L (nx)k → mxn.

In particular, any axiomatic extension L of the logic obtained by extending MLL0=1 with the axiom
schema nx→ xn (n ∈ N\{0}) admits a theorem of alternatives. Moreover, the corresponding varieties
V`L of semilinear residuated lattices are exactly those axiomatized by group equations over the variety
of involutive commutative semilinear residuated lattices satisfying 0 ≈ 1 and nx ≈ xn (n ∈ N\{0}).
These include the varieties of abelian `-groups and odd Sugihara monoids.

3 Densifiability
We make use of the following lemma, originating in [8] (see also [2, 1, 10, 6, 3]).

Lemma 3.1. A variety V of commutative semilinear residuated lattices is densifiable if and only if for
any Lg-terms s, t, u1, . . . , un not containing the variable x,

V |= 1 ≤ (s→ x) ∨ (x→ t) ∨ u1 ∨ . . . ∨ un =⇒ V |= 1 ≤ (s→ t) ∨ u1 ∨ . . . ∨ un.

Consider any axiomatic extension L of MLL0=1 that admits a theorem of alternatives. Suppose that
V`L |= 1 ≤ (s → x) ∨ (x → t) ∨ u1 ∨ . . . ∨ un where s, t, u1, . . . , un are Lg-terms not containing the
variable x. Since L admits a theorem of alternatives, there exist λ, µ, γ1, . . . , γn ∈ N not all 0 such that

V`L |= 1 ≤ λ(s→ x) + µ(x→ t) + γ1u1 + . . .+ γnun.

Substituting, on the one hand x with 0, and on the other, all other variables with 0, yields

V`L |= 1 ≤ λ(−s) + µt+ γ1u1 + . . .+ γnun and V`L |= 1 ≤ λx+ µ(−x).

Substituting x with sλ in the second inequation and rewriting both inequations then yields

V`L |= λ(sλ) ≤ λµt+ λγ1u1 + . . .+ λγnun and V`L |= sλµ ≤ λ(sλ).

By transitivity, we obtan V`L |= sλµ ≤ λµt+ λγ1u1 + . . .+ λγnun, which can be rewritten as

V`L |= 1 ≤ λµ(s→ t) + λγ1u1 + . . .+ λγnun.

But then, by the theorem of alternatives,

V`L |= 1 ≤ (s→ t) ∨ u1 ∨ . . . ∨ un.

Hence, by the lemma, we obtain our main result.
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Theorem 3.2. Let L be any axiomatic extension of MLL0=1 that admits a theorem of alternatives. Then
the variety V`L is densifiable.

In particular, any variety V`L axiomatized by group equations over the variety of involutive commutative
semilinear residuated lattices satisfying 0 ≈ 1 and nx ≈ xn (n ∈ N\{0}) is densifiable, including (as
is already well-known) the varieties of abelian `-groups and odd Sugihara monoids.
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Abstract

In this paper we present an adequate semantics for the first-order paraconsistent logic
QmbC. That semantics is based on multialgebras known as swap structures.

1 The logic QmbC

The class of paraconsistent logics known as Logics of Formal Inconsistency (LFIs, for short) was
introduced by W. Carnielli and J. Marcos in [3] and studied in [2] and [1]. LFIs are characterized
for having a (primitive or derived) consistency connective ◦ which allows to recover the explosion
law in a controlled way. The logic mbC is the weakest system in the hierarchy of LFIs and
the system QmbC is the extension of mbC to first-order languages. The goal of this paper is
to introduce an algebraic-like semantics for QmbC based on multialgebraic structures called
swap structures (see [1]), which naturally induce non-deterministic matrices. The semantical
framework for QmbC we present here can be seen as a generalization of the standard semantics
approach for classical first-order logic, in which a logical matrix induced by a Boolean algebra
is replaced by a non-deterministic matrix induced by a Boolean algebra.

The logic mbC (see [2, 1]) is defined over the propositional signature Σ = {∧,∨,→,¬, ◦}
by adding to CPL+ (positive classical propositional logic) the following axiom schemas:

(Ax10) α ∨ ¬α and (Ax11) ◦α→ (α→ (¬α→ β)).
Recall that a multialgebra (or hyperalgebra) over a signature Σ′ is a pair A = 〈A, σA〉 such

that A is a nonempty set (the support of A) and σA is a mapping assigning to each n-ary # in
Σ′, a function (called multioperation or hyperoperation) #A : An → (P(A)−{∅}). In particular,
∅ 6= #A ⊆ A if # is a constant in Σ′. A non-deterministic matrix (or Nmatrix) over Σ′ is a
pair M = 〈A, D〉 such that A is a multialgebra over Σ′ with support A, and D is a subset of
A. The elements in D are called designated elements.

Let A = (A,∧,∨,→, 0, 1) be a complete Boolean algebra, and BA = {z ∈ A3 : z1 ∨ z2 =
1 and z1 ∧ z2 ∧ z3 = 0}, where zi denote the ith-projection of z. A swap structure for mbC
over A is any multialgebra B = (B, ∧̃, ∨̃, →̃, ¬̃, ◦̃) over Σ, such that B ⊆ BA and, for every z
and w in B:

(i) ∅ 6= z#̃w ⊆ {u ∈ B : u1 = z1#w1}, for each # ∈ {∧,∨,→};
(ii) ∅ 6= ¬̃z ⊆ {u ∈ B : u1 = z2};
(iii) ∅ 6= ◦̃z ⊆ {u ∈ B : u1 = z3}.

∗Coniglio was financially supported by an individual research grant from CNPq, Brazil (308524/2014-4).
†Figallo-Orellano was financially supported by a post-doctoral grant from Fapesp, Brazil (2016/21928-0)
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doctoral grant from CNPq, Brazil (150064/2018-7).
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The support B will be also denoted by |B|. The full swap structure for mbC over A, denoted
by BA, is the unique swap structure for mbC over A with domain BA, in which ‘⊆’ is replaced
by ‘=’ in items (i)-(iii) above.

Definition 1.1 ([1], Definition 7.1.5). Let Θ be a first-order signature. The logic QmbC over
Θ is obtained from the Hilbert calculus mbC by adding the following axioms and rules:

(Ax12) ϕ[x/t]→ ∃xϕ, if t is a term free for x in ϕ

(Ax13) ∀xϕ→ ϕ[x/t], if t is a term free for x in ϕ

(Ax14) α→ β, whenever α is a variant1 of β

(∃-In)
ϕ→ ψ

∃xϕ→ ψ
, where x does not occur free in ψ

(∀-In)
ϕ→ ψ

ϕ→ ∀xψ , where x does not occur free in ϕ

If Θ is a first-order signature then For(Θ), Sen(Θ) and CTer(Θ) will denote the set of formulas,
closed formulas and closed terms over Θ. V ar is the set of individual variables. The consequence
relation of QmbC will be denoted by `QmbC. If Γ ∪ {ϕ} ⊆ For(Θ), then Γ `QmbC ϕ will
denote that there exists a derivation in QmbC of ϕ from Γ.

2 First-Order Swap Structures: Soundness

Given a swap structure B for mbC, the non-deterministic matrix induced by B is M(B) =
(B, D) such that D = {z ∈ |B| : z1 = 1}. The logic mbC is sound and complete w.r.t. swap
structures semantics, see [1], Chapter 6.

A (first-order) structure over M(B) and Θ is a pair A = 〈U, IA〉 such that U is a nonempty
set (the domain of the structure) and IA is an interpretation mapping which assigns to each
individual constant c ∈ C, an element cA of U ; to each function symbol f of arity n, a function
fA : Un → U ; and to each predicate symbol P of arity n, a function PA : Un → |B|.

Let A be a structure over M(B) and Θ. A function µ : V ar → U is called an assignment
over A. Let A be a structure and let µ : V ar → U be an assignment. For each term t, we define
||t||Aµ ∈ U such that: ||c||Aµ = cA if c is an individual constant; ||x||Aµ = µ(x) if x is a variable;

||f(t1, . . . , tn)||Aµ = fA(||t1||Aµ , . . . , ||tn||Aµ ) if f is a function symbol of arity n and t1, . . . , tn are

terms. If t is closed (i.e., has no variables) we will simply write ||t||A, since µ plays no role.
Given a structure A over Θ, the signature ΘU is obtained from A by adding to Θ a new

individual constant ā for any a ∈ U . The expansion Â of A to ΘU is defined by interpreting ā
as a. Any assignment µ : V ar → U induces a function µ̂ : For(ΘU )→ Sen(ΘU ) such that µ̂(ϕ)
is the sentence obtained from ϕ by replacing any free variable x by the constant µ(x).

Definition 2.1 (QmbC-valuations). Let M(B) = (B, D) be the non-deterministic matrix
induced by a swap structure B for mbC, and let A be a structure over Θ and M(B). A
mapping v : Sen(ΘU )→ |B| is a QmbC-valuation over A andM(B), if it satisfies the following
clauses:
(i) v(P (t1, . . . , tn)) = P Â(||t1||Â, . . . , ||tn||Â), if P (t1, . . . , tn) is atomic;
(ii) v(#ϕ) ∈ #̃v(ϕ), for every # ∈ {¬, ◦};

1That is, ϕ can be obtained from ψ by means of addition or deletion of void quantifiers, or by renaming
bound variables (keeping the same free variables in the same places).
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(iii) v(ϕ#ψ) ∈ v(ϕ)#̃v(ψ), for every # ∈ {∧,∨,→};
(iv) v(∀xϕ) ∈ {z ∈ |B| : z1 =

∧{v(ϕ[x/ā]) : a ∈ U}};
(v) v(∃xϕ) ∈ {z ∈ |B| : z1 =

∨{v(ϕ[x/ā]) : a ∈ U}};
(vi) Let t be free for z in ϕ and ψ, µ an assignment and b = ||t||Âµ . Then:

(vi.1) if v(µ̂(ϕ[z/t])) = v(µ̂(ϕ[z/b̄])), then v(µ̂(#ϕ[z/t])) = v(µ̂(#ϕ[z/b̄])), for # ∈ {¬, ◦};
(vi.2) if v(µ̂(ϕ[z/t])) = v(µ̂(ϕ[z/b̄])) and v(µ̂(ψ[z/t])) = v(µ̂(ψ[z/b̄])), then v(µ̂(ϕ#ψ[z/t]))
= v(µ̂(ϕ#ψ[z/b̄])), for # ∈ {∧,∨,→};
(vi.3) let x be such that x 6= z and x does not occur in t, and let µxa such that µxa(y) = µ(y),
if y 6= x and µxa(y) = a, if y = x. If v(µ̂xa(ϕ[z/t])) = v(µ̂xa(ϕ[z/b̄])), for every a ∈ U , then
v(µ̂((Qxϕ)[z/t])) = v(µ̂((Qxϕ)[z/b̄])), for Q ∈ {∀,∃};
(vii) If α and α′ are variant, then v(α) = v(α′).

Given µ and v let vµ : For(ΘU )→ |B| such that vµ(ϕ) = v(µ̂(ϕ)) for every ϕ.

Theorem 2.2 (Substitution Lemma). Given M(B), A, a QmbC-valuation v and an assign-

ment µ, if t is free for z in ϕ and b = ||t||Âµ , then: vµ(ϕ[z/t]) = vµ(ϕ[z/b̄]).

Definition 2.3. Given M(B) and A, let Γ ∪ {ϕ} ⊆ For(ΘU ). Then ϕ is a semantical con-
sequence of Γ over (A,M(B)), denoted by Γ |=(A,M(B)) ϕ, if the following holds: for every
QmbC-valuation v over (A,M(B)), if vµ(γ) ∈ D, for every γ ∈ Γ and every µ, then vµ(ϕ) ∈ D,
for every µ. And ϕ is said to be a semantical consequence of Γ in QmbC w.r.t. first-order
swap structures, denoted by Γ |=QmbC ϕ, if Γ |=(A,M(B)) ϕ for every (A,M(B)).

Theorem 2.4 (Soundness of QmbC w.r.t. first-order swap structures). For every set Γ∪{ϕ} ⊆
For(Θ): if Γ `QmbC ϕ, then Γ |=QmbC ϕ.

3 First-Order Swap Structures: Completeness

Let ∆ ⊆ Sen(Θ) and let C be a nonempty set of constants of the signature Θ. Then, ∆ is called
a C-Henkin theory in QmbC if it satisfies the following: for every sentence of the form ∃xϕ in
Sen(Θ), there exists a constant c in C such that if ∆ `QmbC ∃xϕ then ∆ `QmbC ϕ[x/c].

Let ΘC be the signature obtained from Θ by adding a set C of new individual constants.
The consequence relation `CQmbC is the consequence relation of QmbC over the signature ΘC .

Recall that, given a Tarskian and finitary logic L = 〈For,`〉 (where For is the set of
formulas of L), and given a set Γ ∪ {ϕ} ⊆ For, the set Γ is said to be maximally non-trivial
with respect to ϕ in L if the following holds: (i) Γ 0 ϕ, and (ii) Γ, ψ ` ϕ for every ψ /∈ Γ.

Proposition 3.1 ([1], Corollary 7.5.4). Let Γ ∪ {ϕ} ⊆ Sen(Θ) such that Γ 0QmbC ϕ. Then,
there exists a set of sentences ∆ ⊆ Sen(Θ) which is maximally non-trivial with respect to ϕ in
QmbC (by restricting `QmbC to sentences) and such that Γ ⊆ ∆.

Definition 3.2. Let ∆ ⊆ Sen(Θ) be a C-Henkin and non-trivial theory in QmbC. Let ≡∆ ⊆
Sen(Θ)2 be the relation in Sen(Θ) defined as follows: α ≡∆ β iff ∆ `QmbC α → β and
∆ `QmbC β → α.

Clearly ≡∆ is an equivalence relation. In the quotient set A∆
def
= Sen(Θ)/≡∆

define ∧, ∨,→ as

follows: [α]∆#[β]∆
def
= [α#β]∆ for any # ∈ {∧,∨,→}, where [α]∆ is the equivalence class of α

w.r.t. ∆. Then, A∆
def
= 〈A∆,∧,∨,→, 0∆, 1∆〉 is a Boolean algebra with 0∆

def
= [ϕ∧¬ϕ∧◦ϕ]∆

and 1∆
def
= [ϕ ∨ ¬ϕ]∆, for any ϕ. Moreover, for every formula ψ(x) with at most x occurring

free, [∀xψ]∆ =
∧
A∆
{[ψ[x/t]∆ : t ∈ CTer(Θ)}, and [∃xψ]∆ =

∨
A∆
{[ψ[x/t]∆ : t ∈ CTer(Θ)}.
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Let CA∆ be the MacNeille-Tarski completion of A∆ and let ∗ : A∆ → CA∆ be the associ-
ated monomorphism. Let B∆ be the full swap structure over CA∆ with associated Nmatrix

M(B∆)
def
= (B∆, D∆). Note that (([α]∆)∗, ([β]∆)∗, ([γ]∆)∗) ∈ D∆ iff ∆ `QmbC α.

Definition 3.3. Let ∆ ⊆ Sen(Θ) be C-Henkin and non-trivial in QmbC, let M(B∆) be as
above, and let U = CTer(Θ). The canonical structure induced by ∆ is the structure A∆ =
〈U, IA∆

〉 over M(B∆) and Θ such that: cA∆ = c for each constant c; fA∆ : Un → U is such
that fA∆(t1, . . . , tn) = f(t1, . . . , tn) for each n-ary function symbol f ; and PA∆(t1, . . . , tn) =
(([ϕ]∆)∗, ([¬ϕ]∆)∗, ([◦ϕ]∆)∗) where ϕ = P (t1, . . . , tn), for each n-ary predicate symbol P .

Let (·). : Ter(ΘU ) → Ter(Θ) be the mapping such that (t). is the term obtained from t by

substituting every occurrence of a constant s̄ by the term s itself. Observe that (t). = ||t||Â∆ for
every t ∈ CTer(ΘU ). This mapping can be naturally extended to a mapping (·). : For(ΘU )→
For(Θ) such that (ϕ). is the formula in For(Θ) obtained from ϕ ∈ For(ΘU ) by substituting
every occurrence of a constant t̄ by the term t itself.

Definition 3.4. Let ∆ ⊆ Sen(Θ) be a C-Henkin theory in QmbC for a nonempty set C of
individual constants of Θ, such that ∆ is maximally non-trivial with respect to ϕ in QmbC,
for some sentence ϕ. The canonical QmbC-valuation induced by ∆ over A∆ and M(B∆) is the
mapping v∆ : Sen(ΘU )→ |B∆| such that v∆(ψ) = (([(ψ).]∆)∗, ([¬(ψ).]∆)∗, ([◦(ψ).]∆)∗).

Remark 3.5. Note that v∆(ψ) ∈ D∆ iff ∆ `QmbC ψ, for every sentence ψ ∈ Sen(Θ).

Theorem 3.6. The canonical QmbC-valuation v∆ is a QmbC-valuation over A∆ andM(B∆).

Theorem 3.7 (Completeness for sentences of QmbC w.r.t. first-order swap structures). Let
Γ ∪ {ϕ} ⊆ Sen(Θ). If Γ �QmbC ϕ then Γ `QmbC ϕ.

Proof. Suppose that Γ 0QmbC ϕ. Then, there exists a C-Henkin theory ∆H over ΘC in QmbC
for a nonempty set C of new individual constants such that Γ ⊆ ∆H and, for every α ∈ Sen(Θ):
Γ `QmbC α iff ∆H `CQmbC α. Hence, ∆H 0CQmbC ϕ and so, by Proposition 3.1, there exists a

set of sentences ∆H in ΘC extending ∆H which is maximally non-trivial with respect to ϕ in
QmbC, such that ∆H is a C-Henkin theory over ΘC in QmbC. Now, let M(B

∆H ), A
∆H and

v
∆H as above. Then, v

∆H (α) ∈ D
∆H iff ∆H `CQmbC α, for every α in Sent(ΘC). From this,

v
∆H [Γ] ⊆ D

∆H and v
∆H (ϕ) /∈ D

∆H . Finally, let A and v be the restriction to Θ of A
∆H and

v
∆H , respectively. Then, A is a structure over M(B

∆H ), and v is a valuation for QmbC over
A and M(B

∆H ) such that v[Γ] ⊆ D
∆H but v(ϕ) /∈ D

∆H . This shows that Γ 2QmbC ϕ.

It is easy to extend QmbC by adding a standard equality predicate ≈ such that (a ≈A b) ∈ D
iff a = b. On the other hand, the extension of QmbC to other first-order LFIs based on well-
known axiomatic extensions of mbC is straightforward, both syntactically and semantically.
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Abstract

Let  Ln+1 be the MV-chain on the n+ 1 elements set  Ln+1 = {0, 1/n, 2/n, . . . , (n− 1)/n, 1}
in the algebraic language {→,¬} [3]. As usual, further operations on  Ln+1 are definable by
the following stipulations: 1 = x → x, 0 = ¬1, x ⊕ y = ¬x → y, x � y = ¬(¬x ⊕ ¬y),
x ∧ y = x � (x → y), x ∨ y = ¬(¬x ∧ ¬y). Moreover, we will pay special attention to the also
definable unary operator ∗x = x� x.

In fact, the aim of this paper is to continue the study initiated in [4] of the {∗,¬,∨}-
reducts of the MV-chains  Ln+1, denoted  L∗n+1. In fact  L∗n+1 is the algebra on  Ln+1 obtained
by replacing the implication operator → by the unary operation ∗ which represents the square
operator ∗x = x � x and which has been recently used in [5] to provide, among other things,
an alternative axiomatization for the four-valued matrix logic J4 = 〈 L4, {1/3, 2/3, 1}〉. In this
contribution we make a step further in studying the expressive power of the ∗ operation, in
particular our main result provides a full characterization of those prime numbers n for which
the structures  Ln+1 and  L∗n+1 are term-equivalent. In other words, we characterize for which
n the  Lukasiewicz implication → is definable in  L∗n+1, or equivalenty, for which n  L∗n+1 is in
fact an MV-algebra. We also recall that, in any case, the matrix logics 〈 L∗n+1, F 〉, where F is
an order filter, are algebraizable.

Term-equivalence between  Ln+1 and  L∗
n+1

Let X be a subset of  Ln+1. We denote by 〈X〉∗ the subalgebra of  L∗n+1 generated by X (in
the reduced language {∗,¬,∨}). For n ≥ 1 define recursively (∗)nx as follows: (∗)1x = ∗x, and
(∗)i+1x = ∗((∗)ix), for i ≥ 1.

A nice feature of the  L∗n+1 algebras is that we can always define terms characterising the
principal order filters Fa = {b ∈  Ln+1 | a ≤ b}, for every a ∈  Ln+1. A proof of the following
result can be found in [4].

Proposition 1. For each a ∈  Ln+1, the unary operation ∆a defined as

∆a(x) =

{
1 if x ∈ Fa
0 otherwise.

is definable in  L∗n+1. Therefore, for every a ∈  Ln+1, the operation χa, i.e., the characteristic
function of a (i.e. χa(x) = 1 if x = a and χa(x) = 0 otherwise) is definable as well.

It is now almost immediate to check that the following implication-like operation is definable
in every  L∗n+1: x⇒ y = 1 if x ≤ y and 0 otherwise. Indeed, ⇒ can be defined as

x⇒ y =
∨

0≤i≤j≤n
(χi/n(x) ∧ χj/n(y)).
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Actually, one can also define Gödel implication on  L∗n+1 by putting x⇒G y = (x⇒ y) ∨ y.
It readily follows from Proposition 1 that all the  L∗n+1 algebras are simple as, if a > b ∈  Ln+1

would be congruent, then ∆a(a) = 1 and ∆a(b) = 0 should be so. Recall that an algebra is
called strictly simple if it is simple and does not contain proper subalgebras. It is clear that if
 Ln+1 and  L∗n+1 are strictly simple, then {0, 1} is their only proper subalgebra.

Remark 2. It is well-known that  Ln+1 is strictly simple iff n is prime. Note that, for every n,
if B = (B,¬,→) is an MV-subalgebra of  Ln+1, then B∗ = (B,∨,¬, ∗) is a subalgebra of  L∗n+1

as well. Thus, if  Ln+1 is not strictly simple, then  L∗n+1 is not strictly simple as well. Therefore,
if n is not prime,  L∗n+1 is not strictly simple. However, in contrast with the case of  Ln+1, n
being prime is not a sufficient condition for  L∗n+1 being strictly simple.

We now introduce the following procedure P: given n and an element a ∈  L∗n+1 \ {0, 1}, it
iteratively computes a sequence [a1, . . . , ak, . . .] where a1 = a and for every k ≥ 1,

ak+1 =

{∗(ak), if ak > 1/2

¬(ak), otherwise (i.e, if ak < 1/2)

until it finds an element ai such that ai = aj for some j < i, and then it stops. Since  L∗n+1 is
finite, this procedure always stops and produces a finite sequence [a1, a2, . . . , am], where a1 = a
and am is such that P stops at am+1. In the following, we will denote this sequence by P(n, a).

Lemma 3. For each odd number n, let a1 = (n − 1)/n. Then the procedure P stops after
reaching 1/n, that is, if P(n, a1) = [a1, a2, . . . , am] then am = 1/n.

Furthermore, for any a ∈  L∗n+1 \ {0, 1}, the set A1 of elements reached by P(n, a), i.e.
A1 = {b ∈  L∗n+1 | b appears in P(n, a)}, together with the set A2 of their negations, 0 and 1,
define the domain of a subalgebra of  L∗n+1.

Lemma 4.  L∗n+1 is strictly simple iff 〈(n− 1)/n〉∗ =  L∗n+1.

Proof. (Sketch) The ‘if’ direction is trivial. As for the other direction, call a1 = (n− 1)/n and
assume that 〈a1〉∗ =  L∗n+1. Launch the procedure P(n, a1) and let A be the subalgebra of  L∗n+1

whose universe is A1 ∪ A2 ∪ {0, 1} defined as above. Clearly a1 ∈ A, hence 〈a1〉∗ ⊆ A. But
A ⊆ 〈a1〉∗, by construction. Therefore A = 〈a1〉∗ =  L∗n+1.

Fact: Under the current hypothesis (namely, 〈a1〉∗ =  L∗n+1) if n is even, then n = 2 or n = 4.

Thus, assume n is odd, and hence Lemma 3 shows that 1/n ∈ A1. Now, let c ∈  L∗n+1 \ {0, 1}
such that c 6= a1. If c ∈ A1 then the process of generation of A from c will produce the same
set A1 and so A =  L∗n+1, showing that 〈c〉∗ =  L∗n+1. Otherwise, if c ∈ A2 then ¬c ∈ A1 and,
by the same argument as above, it follows that 〈c〉∗ =  L∗n+1. This shows that  L∗n+1 is strictly
simple.

Lemma 5 ([4]). If  Ln+1 is term-equivalent to  L∗n+1 then:
(i)  L∗n+1 is strictly simple.
(ii) n is prime

Theorem 6.  Ln+1 is term-equivalent to  L∗n+1 iff  L∗n+1 is strictly simple.

Proof. The ‘only if’ part is (i) of Lemma 5. For the ‘if’ part, since  L∗n+1 is strictly simple then,
for each a, b ∈  Ln+1 where a /∈ {0, 1} there is a definable term ta,b(x) such that ta,b(a) = b.
Otherwise, if for some a /∈ {0, 1} and b ∈  Ln+1 there is no such term then A = 〈a〉∗ would be a
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proper subalgebra of  L∗n+1 (since b 6∈ A) different from {0, 1}, a contradiction. By Proposition 1
the operations χa(x) are definable for each a ∈  Ln+1, then in  L∗n+1 we can define  Lukasiewicz
implication → as follows:

x→ y = (x⇒ y) ∨


 ∨

n>i>j≥0
χi/n(x) ∧ χj/n(y) ∧ ti/n,aij (x)


 ∨


 ∨

n>j≥0
χ1(x) ∧ χj/n(y) ∧ y




where aij = 1− i/n+ j/n.

We have seen that n being prime is a necessary condition for  Ln+1 and  L∗n+1 being term-
equivalent. But this is not a sufficient condition: in fact, there are prime numbers n for which
 Ln+1 and  L∗n+1 are not term-equivalent and this is the case, for instance, of n = 17.

Definition 7. Let Π be the set of odd primes n such that 2m is not congruent with ±1 mod
n for all m such that 0 < m < (n− 1)/2.

Since, for every odd prime n, 2m is congruent with ±1 mod n for m = (n− 1)/2 then n is
in Π iff n is an odd prime such that (n−1)/2 is the least 0 < m such that 2m is congruent with
±1 mod n.

The following is our main result and it characterizes the class of prime numbers for which
the  Lukasiewicz implication is definable in  L∗n+1.

Theorem 8. For every prime number n > 5, n ∈ Π iff  Ln+1 and  L∗n+1 are term-equivalent.

The proof of theorem above makes use of the procedure P defined above. Let a1 = (n−1)/n
and let P(n, a1) = [a1, . . . , al]. By the definition of the procedure P, the sequence [a1, . . . , al]
is the concatenation of a number r of subsequences [a11, . . . , a

1
l1

], [a21, . . . , a
2
l2

], . . . , [ar1, . . . , a
r
lr

],

with a11 = a1 and arlr = al, where for each subsequence 1 ≤ j ≤ r, only the last element aili is
below 1/2, while the rest of elements are above 1/2.

Now, by the very definition of ∗, it follows that the last elements ajlj of every subsequence
are of the form

ajlj =





kn−2m
n , if j is odd

2m−kn
n , otherwise, i.e. if j is even

for some m, k > 0, where in particular m is the number of strictly positive elements of  Ln+1

which are obtained by the procedure before getting ajlj .

Now, Lemma 3 shows that if n is odd then 1/n is reached by P, i.e. al = arlr = 1/n. Thus,




kn− 2m = 1, if r is odd (i.e., 2m ≡ −1 (mod n) if r is odd)

2m − kn = 1, otherwise (i.e., 2m ≡ 1 (mod n) if r is even)
.

where m is now the number of strictly positive elements in the list P(n, a1), i.e. that are reached
by the procedure.

Therefore 2m is congruent with ±1 mod n. If n is a prime such that  L∗n+1 is strictly simple,
the integer m must be exactly (n − 1)/2, for otherwise 〈a1〉∗ would be a proper subalgebra of
 L∗n+1 which is absurd. Moreover, for no m′ < m one has that 2m

′
is congruent with ±1 mod n

because, in this case, the algorithm would stop producing a proper subalgebra of  L∗n+1. This
result, together with Theorem 6, shows the right-to-left direction of Theorem 8.
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68



In order to show the other direction assume, by Theorem 6, that  L∗n+1 is not strictly simple.
Thus, by Lemma 4, 〈a1〉∗ is a proper subalgebra of  L∗n+1 and hence the algorithm above stops,
in 1/n, after reaching m < (n− 1)/2 strictly positive elements of  L∗n+1. Thus, 2m is congruent
with ±1 (depending on whether r is even or odd, where r is the number of subsequences in the
list P(n, a1) as described above) mod n, showing that n 6∈ Π.

Algebraizability of 〈 L∗
n+1, Fi/n〉

Given the algebra  L∗n+1, it is possible to consider, for every 1 ≤ i ≤ n, the matrix logic  L∗i,n+1 =
〈 L∗n+1, Fi/n〉. In this section we recall from [4] that all the  L∗i,n+1 logics are algebraizable in the
sense of Blok-Pigozzi [1], and that, for every i, j, the quasivarieties associated to  L∗i,n+1 and
 L∗j,n+1 are the same.

Observe that the operation x ≈ y = 1 if x = y and x ≈ y = 0 otherwise is definable
in  L∗n+1. Indeed, it can be defined as x ≈ y = (x ⇒ y) ∧ (y ⇒ x). Also observe that
x ≈ y = ∆1((x⇒G y) ∧ (y ⇒G x)) as well.

Lemma 9. For every n, the logic  L∗n+1 :=  L∗n,n+1 = 〈 L∗n+1, {1}〉 is algebraizable.

Proof. It is immediate to see that the set of formulas ∆(p, q) = {p ≈ q} and the set of pairs of
formulas E(p, q) = {〈p,∆0(p)〉} satisfy the requirements of algebraizability.

Blok and Pigozzi [2] introduce the following notion of equivalent deductive systems. Two
propositional deductive systems S1 and S2 in the same language are equivalent if there are
translations τi : Si → Sj for i 6= j such that: Γ `Si

ϕ iff τi(Γ) `Sj
τi(ϕ), and ϕ a`Si

τj(τi(ϕ)).
From very general results in [2] it follows that two equivalent logic systems are indistinguishable
from the algebraic point of view, namely: if one of the systems is algebraizable then the other
will be also algebraizable w.r.t. the same quasivariety. This can be applied to  L∗i,n+1.

Lemma 10. For every n and every 1 ≤ i ≤ n− 1, the logics  L∗n+1 and  L∗i,n+1 are equivalent.

Indeed, it is enough to consider the translation mappings τ1 :  L∗n+1 →  L∗i,n+1, τ1(ϕ) = ∆1(ϕ),
and τi,2 :  L∗i,n+1 →  L∗n+1, τi,2(ϕ) = ∆i/n(ϕ). Therefore, as a direct consequence of Lemma 9,
Lemma 10 and the observations above, it follows the algebraizability of  L∗i,n+1.

Theorem 11. For every n and for every 1 ≤ i ≤ n, the logic  L∗i,n+1 is algebraizable.

Therefore, for each logic  L∗i,n+1 there is a quasivarietyQ(i, n) which is its equivalent algebraic
semantics. Moreover, by Lemma 10 and by Blok and Pigozzi’s results, Q(i, n) and Q(j, n)
coincide, for every i, j. The question of axiomatizing Q(i, n) is left for future work.

References

[1] W.J. Blok, D. Pigozzi. Algebraizable Logics Mem. Amer. Math. Soc., vol. 396, Amer. Math. Soc.,
Providence, 1989.

[2] W.J. Blok, D. Pigozzi. Abstract algebraic logic and the deduction theorem, manuscript, 1997. (See
http://orion.math.iastate.edu/dpigozzi/ for the updated version, 2001).

[3] R. Cignoli, I.M.L. D’Ottaviano, D. Mundici. Algebraic Foundations of Many-valued Reasoning.
Kluwer, Dordrecht, 2000.

[4] M. E. Coniglio, F. Esteva, T. Flaminio, L. Godo. On an implication-free reduct of MVn chains.
Proceedings of LATD2018 - Logic, Algebra and Truth Degrees. Bern, Switzerland, 2018.

[5] M. E. Coniglio, F. Esteva, J. Gispert, L. Godo. Maximality in finite-valued  Lukasiewicz logics
defined by order filters. Journal of Logic and Computation (accepted).

Prime numbers and implication free reducts of MVn-chains

69



Infinitary connectives and Borel functions in  Lukasiewicz

logic

Antonio Di Nola1, Serafina Lapenta1, and Ioana Leuştean2
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Riesz Spaces are lattice-ordered linear spaces over the field of real numbers R [3]. They have
had a predominant rôle in the development of functional analysis over ordered structures, due
to the simple remark that most of the spaces of functions one can think of are indeed Riesz
Spaces. Such spaces are also related to expansions of  Lukasiewicz infinite-valued logic.

In particular, one can consider MV-algebras – the variety of algebras that model  Lukasiewicz
logic – and endow them with a scalar multiplication, where scalars are elements of the standard
MV-algebra [0, 1]. Such MV-algebras with scalar multiplication form a variety and they are
known in literature with the name of Riesz MV-algebras [1]. Moreover, Riesz MV-algebras are
categorical equivalent with Riesz Spaces with a strong unit.

In this talk will exploit the connection between Riesz Spaces and MV-algebras as a bridge
between algebras of Borel-measurable functions and  Lukasiewicz logic. To do so we will define
the infinitary logical systems IRL, whose models are algebras of [0, 1]-valued continuous func-
tions defined over some basically-disconnected compact Hausdorff space X. We will further
discuss completeness of IRL with respect to σ-complete Riesz MV-algebras and characterize
the Lindenbaum-Tarski algebra of it by means of Borel-measurable functions.

The logical system IRL is obtained in [2] starting from an expansion of  Lukasiewicz logic
introduced in [1], namely RL, and by adding an infinitary operator that models a countable
disjunction. In more details, we can consider a countable set of propositional variables and the
connectives ¬, →, {∇α}α∈[0,1],

∨
. The connectives ¬, →, {∇α}α∈[0,1] are inherited from the

logic RL, while the latter is a connective of arity less or equal to ω, i.e. it is defined for any set
of formulas which is at most countable. Consider now the following set of axioms:

(L1) ϕ→ (ψ → ϕ)
(L2) (ϕ→ ψ)→ ((ψ → χ)→ (ϕ→ χ))
(L3) ((ϕ→ ψ)→ ψ)→ ((ψ → ϕ)→ ϕ)
(L4) (¬ψ → ¬ϕ)→ (ϕ→ ψ)
(R1) ∇r(ϕ→ ψ)↔ (∇rϕ→ ∇rψ)
(R2) ∇(r�q∗)ϕ↔ (∇qϕ→ ∇rϕ)
(R3) ∇r(∇qϕ)↔ ∇r·qϕ
(R4) ∇1ϕ↔ ϕ
(S1) ϕk →

∨
n∈N ϕn, for any k ∈ N.

The logic IRL is obtained from these axioms, Modus Ponens and the following deduction
rule.

(SUP)
(ϕ1 → ψ), . . . , (ϕk → ψ) . . .∨

n∈N ϕn → ψ

Axioms (L1)-(L4) are the axioms of  Lukasiewicz logic, axioms (R1)-(R4) make the connec-
tives {∇r}r∈[0,1] into the “de Morgan dual” of a scalar multiplication (that is, ¬∇r¬ behaves
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like a scalar multiplication in the sense of Riesz MV-algebras), axioms (S1) and (SUP) ensure
that the new connective behaves as a least upper bound for a given sequence.

The new system has σ-complete Riesz MV-algebras as models and the following results hold.

Theorem 1. [2] (1) IRL, the Lindenbaum-Tarski algebra of IRL, is a σ-complete Riesz MV-
algebra and it is the smallest σ-complete algebra that contains the Lindenbaum-Tarski algebra
of RL.

(2) IRL is complete with respect to all algebras in RMVσ, the class of σ-complete Riesz
MV-algebras;

A functional description of the Linbenbaum-Tarski algebra IRL is possible by recalling that
any σ-complete Riesz MV-algebra is semisimple. Kakutani’s duality, a result by Nakano and
the duality between Riesz MV-algebras and vector lattices entail the following theorem.

Theorem 2. Let A be a Dedekind σ-complete Riesz MV-algebra. There exists a basically
disconnected compact Hausdorff space (i.e. it has a base of open Fσ sets) X such that A ' C(X),
where C(X) is the algebra of [0, 1]-valued and continuous functions defined over X.

In particular, IRL ' C(X) for some basically disconnected compact Hausdorff space X.

The above theorem, as strong as it is, does not allow for a more concrete description of the
algebra IRL in the spirit of functional representation that holds for  Lukasiewicz logic. Indeed,
the Linbenbaum-Tarski algebras of  Lukasiewicz logic and of the logic RL have both a clear-cut
description: they are the algebras of all piecewise linear functions (in the first case, with integer
coefficient) over some unit cube [0, 1]µ. Having this in mind, to obtain a description of IRL as
an appropriate subalgebra of [0, 1][0,1]

µ

, we need to develop the algebraic theory of σ-complete
Riesz MV-algebras.

To this end, one can consider the work of S lomiński on infinitary algebras. It turns out that
σ-complete Riesz MV-algebras are a proper class of infinitary algebras in the sense of [4] and
we can prove the following results.

Theorem 3. [2] The following hold.
(1) The ω-generated free algebra in the class of σ-complete Riesz MV-algebras exists and it

is isomorphic with IRL.
(2) Consider the algebra of term functions of RVMσ in n variables, denoted by RT n. If

we consider the elements of RT n as functions from [0, 1]n to [0, 1], RT n becomes a Riesz
MV-algebras closed to pointwise defined countable suprema.

(3) The algebra RT n is isomorphic with the Lindenbaum-Tarski algebra of IRL build upon
n-propositional variables.

Finally, using the previous results, we can prove the following.

Theorem 4. RT n is isomorphic with the algebra of [0, 1]-valued Borel-measurable functions
defined over [0, 1]n. Whence, IRL is isomorphic to the algebra of all Borel measurable functions
from [0, 1]n to [0, 1].

Moreover, the Loomis-Sikorski theorem holds for Riesz MV-algebras.

Theorem 5. [2] Let A ⊆ C(X) be a σ-complete Riesz MV-algebra, where X = Max(A), and
let T ⊆ [0, 1]X be the set of functions f that are essentially equal to some function of A. Then
T is a Riesz tribe, each f ∈ T is essentially equal to a unique f∗ ∈ A and the map f 7→ f∗ is
a σ-homomorphism of T onto A.

As a consequence, RMVσ is an infinitary variety and the logic IRL is standard complete.
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Theorem 6. [2] RMVσ is the infinitary variety generated by [0, 1].

For the reader convenience, we summarize the main results of this abstract.

1. we introduce an infinitary logic starting from the logic of Riesz MV-algebras,

2. we discuss its models looking at them as infinitary algebras and via Kakutani’s duality
with compact Hausdorff spaces,

3. we use notions from infinitary universal algebra to obtain a characterization of the
Linbenbaum-Tarski algebra of the infinitary logic as algebra of Borel-measurable func-
tions,

4. via the Loomis-Sikorski theorem for Riesz MV-algebras, we prove that σ-complete Riesz
MV-algebras are the infinitary variety generated by [0, 1] and we infer the standard com-
pleteness of IRL.
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1 Introduction

Markov Decision Processes (MDPs) [11] are a family of probabilistic, state-based models used in
planning under uncertainty and reinforcement learning. Informally, an MDP models a situation
in which an agent (the decision maker) makes choices at each state of a process, and each choice
leads to some reward and a probabilistic transition to a next state. The aim of the agent is to
find an optimal policy, i.e., a way of choosing actions that maximizes future expected rewards.

The classic theory of MDPs with discounting is well-developed (see [11, Chapter 6]), and
indeed we do not prove any new results about MDPs as such. Our work is inspired by Bellman’s
principle of optimality, which states the following: “An optimal policy has the property that
whatever the initial state and initial decision are, the remaining decisions must constitute an
optimal policy with regard to the state resulting from the first decision” [2, Chapter III.3]. This
principle has clear coinductive overtones, and our aim is to situate it in a body of mathematics
that is also concerned with infinite behavior and coinductive proof principles, i.e., in coalgebra.

Probabilistic systems of similar type have been studied extensively, also coalgebraically, in
the area of program semantics (see for instance [5, 6, 14, 15]). Our focus is not so much on
the observable behavior of MDPs viewed as computations, but on their role in solving optimal
planning problems.

This abstract is based on [7] to which we refer for a more detailed account.

2 Markov Decision Processes

We briefly introduce the relevant basic concepts from the classic theory MDPs[11]. Letting ∆S
denote the set of probability distributions with finite support on the set S, we define MDPs1

and policies as follows.

Definition 2.1 (MDP, Policy) Let Act be a finite set of actions. A Markov decision process
(MDP) m = 〈S, u, t〉 consists of a finite set S of states, a reward function u : S → R, and a
probabilistic transition structure t : S → (∆S)Act . A policy is a function σ : S → Act.

That is, in state s when the agent chooses action a, there is a probability distribution t(s)(a)
over states. Furthermore, in each state s, the agent collects a reward (or utility) specified by a
real number u(s).

We shall often leave S implicit and simply write m = 〈u, t〉. Given a probabilistic transition
structure t : S → (∆S)Act and a policy σ ∈ ActS , we write tσ : S → ∆S for the map defined by
tσ(s) = t(s)(σ(s)), and ta when σ is constant equal to a.

1Our simple type of MDPs is known as time-homogeneous, infinite-horizon MDPs with finite state and action
spaces, and our policies as stationary, memoryless deterministic policies.
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There are several criteria for evaluating the long-term rewards expected by following a given
policy. A classic criterion uses discounting. The idea is that rewards collected tomorrow are
worth less than rewards collected today.

Definition 2.2 Let γ be a fixed real number with 0 ≤ γ < 1. Such a γ is called a discount
factor. Let an MDP m = 〈u, t〉 be given. The long-term value of a policy σ (for m) according to
the discounted sum criterion is the function LTVσ : S → R defined as follows:

LTVσ(s) = rσ0 (s) + γ · rσ1 (s) + · · ·+ γn · rσn(s) + · · · (1)

where rσn(s) is the expected reward at time step n.

Note that rσ0 (s) = u(s) for all s ∈ S, and since S is finite, maxs r
σ
0 (s) <∞. This boundedness

property entails that the infinite sum in (1) is convergent.
It will be convenient to work with the map `σ that takes the expected value of LTVσ relative

to some distribution. Formally, `σ : ∆S → R is defined for all ϕ ∈ ∆S by

`σ(ϕ) =
∑

s∈S
ϕ(s) · LTVσ(s). (2)

Observe that for each state s, LTVσ(s) is equal to the immediate rewards plus the discounted
future expected rewards. Seen this way, (1) may be re-written to the corecursive equation

LTVσ(s) = u(s) + γ ·
(∑

s′∈S
tσ(s)(s′) · LTVσ(s′)

)
= u(s) + γ · `σ(tσ(s)). (3)

Viewing LTVσ as a column vector in RS and tσ as a column-stochastic matrix Pσ, the
equation in (3) shows that LTVσ is a fixpoint of the (linear) operator

Ψσ : RS → RS Ψσ(v) = u+ γPσv. (4)

By the Banach Fixpoint Theorem, this fixpoint unique, since Ψσ is contractive (due to 0 ≤ γ < 1),
and RS is a complete metric space. The long-term value induces a preorder on policies: σ ≤ τ if
LTVσ ≤ LTVτ in the pointwise order on RS . A policy σ is optimal if for all policies τ , we have
τ ≤ σ.

Given an MDP m, the optimal value of m is the map V ∗ : S → R that for each state gives
the best long-term value that can be obtained for any policy [11]:

V ∗(s) = max
σ∈ActS

{LTVσ(s)}.

It is an important classic result that V ∗ is the unique (bounded) map that satisfies Bellman’s
optimality equation [2, 11]:

V ∗(s) = u(s) + γ · max
a∈Act

{∑

s′∈S
ta(s)(s′) · V ∗(s′)

}
.

3 Main Contributions

3.1 Policy Improvement via Contraction Coinduction

For our simple model of MDPs with discounting, it is known that the simple type of policies that
we consider here, are sufficient. In other words, an optimal policy can always be found among
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stationary, memoryless, deterministic policies [11, Theorem 6.2.7]. This result together with
the optimality equation forms the basis for an effective algorithm for finding optimal policies,
known as policy iteration [8]. The algorithm starts from any policy σ ∈ ActS , and iteratively
improves σ to some τ such that σ ≤ τ . This leads to an increasing sequence of policies in the
preorder of all policies (SAct ,≤). Since this preorder is finite, this process will at some point
stabilize. The correctness of policy iteration follows from the following theorem.

Theorem 3.1 (Policy Improvement) Let an MDP be given by t : S → (∆S)Act and
u : S → R. Let σ and τ be policies. If `σ ◦ tτ ≥ `σ ◦ tσ, then LTVτ ≥ LTVσ. Similarly, if
`σ ◦ tτ ≤ `σ ◦ tσ, then LTVτ ≤ LTVσ.

We present a coinductive proof of the Policy Improvement theorem. This leads us to formulate
a coinductive proof principle that we have named contraction (co)induction. The contraction
coinduction principle is a variation of the classic Banach Fixpoint Theorem, asserting that any
contractive mapping on a complete metric space has a unique fixpoint. We need a version of
this theorem which, in addition to a complete metric, also has an order.

Definition 3.2 An ordered metric space is a structure (M,d,≤) such that d is a metric on
M and ≤ is a partial order on M , satisfying the extra property that for all y ∈M , {z | z ≤ y}
and {z | y ≤ z} are closed sets in the metric topology. This space is said to be complete if it is
complete as a metric space.

Theorem 3.3 (Contraction (Co)Induction) Let M be a non-empty, complete ordered
metric space. If f : M →M is both contractive and order-preserving, then the fixpoint x∗ of f
is a least pre-fixpoint (if f(x) ≤ x, then x∗ ≤ x), and also a greatest post-fixpoint (if x ≤ f(x),
then x ≤ x∗).

Theorem 3.3 follows from the Metric Coinduction Principle [10, 12]. Our aim is not the
highest level of generality. Rather, we see contraction (co)induction as a particular instance
of Metric Coinduction that suffices to prove interesting results about MDPs. We also believe
contraction (co)induction should have applications far beyond the topic of MDPs.

3.2 Long-Term Values via b-Corecursive Algebras

We now take a coalgebraic perspective on MDPs and long-term value functions. Let ∆ be
the Set-monad of finitely supported probability distributions, and let H be the Set-functor
H = R× Id. A leading observation of this paper is that we can re-express (3) by saying that
LTVσ : S → R makes the following diagram commute:

S
mσ //

LTVσ

��

R×∆S

R×∆(LTVσ)

��
R R× R

αγ
oo R×∆R

R×E
oo

(5)

Here, E: ∆R→ R is the expected value function and αγ : R× R→ R is the H-algebra

αγ : HR→ R αγ(x, y) = x+ γ · y. (6)

This means that LTVσ is an H∆-coalgebra-to-algebra map. We naturally wonder whether
the H∆-algebra at the bottom of the diagram is a corecursive algebra [4]: for every coalgebra
f : X → H∆X (where X is possibly infinite), is there a unique map f† : S → R making the
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diagram commute? This turns out not to be the case for arbitrary state spaces, as problems
can arise when reward values are unbounded. To remedy this, we introduce the notions of
b-categories and b-corecursive algebras with which we aim to give a sparse categorification of
boundedness. Combining these with techniques from coinductive specification ([3]) and trace
sematics [1, 9], we can show that αγ ◦ (R× E) is a b-corecursive algebra, and thereby obtain
LTVσ from its universal property. The optimal value function V ∗ can be characterised in a
similar way via a b-corecursive algebra.

This categorical approach emphasizes compositional reasoning about functions and functors.
The classical theory of MDPs does not do this; it directly proves properties (such as boundedness)
of composites viewed as monolithic entities, instead of deriving them from preservation properties
of their constituents. So it neither needs nor uses the extra information that we obtained by
working in a categorical setting. Indeed, most of our work is devoted to this extra information,
and we hope that it will be useful in settings beyond MDPs. We have some pilot results in this
direction for stochastic games [13].
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Abstract

MV-algebras are semantic for  Lukasiewicz logic and MV-algebras generated for finite
chain are Heyting algebras where the Gödel implication can be written in terms of De
Morgan and Moisil’s modal operators. In our work, a fragment of  Lukasiewicz logic
is studied in the trivalent case. The propositional and first order logic is presented.
The maximal consistent theories is studied as Monteiro’s maximal deductive system
of the Lindenbaum-Tarski algebra, in both cases. Consequently, the strong adequacy
theorem with respect to the suitable algebraic structures is proven. Our algebraic
strong completeness theorem does not need a negation in the language, in this sense
Rasiowa’s work is improved. The techniques presented in this work are adaptable to the
other algebrizable logics where the variety of algebras from these logics is semisimple.

1 Trivalent modal Hilbert algebras with supremum

In this section, we shall introduce and study {→,∨,4, 1}-reduct of 3-valued MV-algebra.

Definition 1 An algebra 〈A,→,∨,4, 1〉 is trivalent modal Hilbert algebra with supremum

(for short, H∨,4
3 -algebra) if the following properties hold:

(1) the reduct 〈A,∨, 1〉 is a join-semilattice with greatest element 1, and the conditions (a)
x→ (x ∨ y) = 1 and (b) (x→ y) → ((x ∨ y) → y) = 1 hold.

(2) The reduct 〈A,→, 1〉 is a Hilbert algebra that verifies: ((x → y) → z) → ((z → x) →
z) → z = 1, and the operator 4 verifiy the following identities: (M1) 4x → x = 1,
(M2) ((y → 4y) → (x → 44x)) → 4(x → y) = 4x → 44y, and (M3) (4x →
4y) → 4x = 4x.

Theorem 2 The variety of H∨,4
3 -algebras is semisimple. The simple algebras are C→,∨

3

and C→,∨
2 .

Let Fms be the absolutely free algebra over the language Σ = {→,∨,4} generated by a
set V ar of variables. Consider now the following logic:

Definition 3 We denote by H3
∨,4 the Hilbert calculus determined by the followings axioms

and inference rules, where α, β, γ, ... ∈ Fm:
Axiom schemas
(Ax1) α → (β → α), (Ax2) (α → (β → γ) → ((α → β) → (α → γ)), (Ax3)

((α → (β → γ)) → (((γ → α) → γ) → γ), (Ax4) α → (α ∨ β), (Ax5) β → (α ∨ β),
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(Ax6) (α → γ) → ((β → γ) → ((α ∨ β) → γ)), (Ax7) 4α → α, (Ax8) 4(4α →
β) → (4α → 4β), (Ax9) ((β → 4β) → (α → 4(α → β))) → 4(α → β), (Ax10)
((4α→ β) → γ) → ((4α→ γ) → γ).
Inference rules

(MP), (NEC-S)
Γ `∨ α

Γ `∨ 4α .

Let Γ ∪ {α} be a set formulas of H3
∨,4, we define the derivation of α from Γ in usual

way and denote by Γ `∨ α.

Theorem 4 (Lindenbaum- Los) Let L be a Tarskian and finitary logic (see [2, pag. 48])
over the language L. Let Γ ∪ {ϕ} ⊆ L be such that Γ 6` ϕ. Then exists a set Ω such that
Γ ⊆ Ω ⊆ L with Ω maximal non-trivial with respect to ϕ in L.

Theorem 5 Let Γ ∪ {ϕ} ⊆ Fms, with Γ non-trivial maximal respect to ϕ in H3
∨,4. Let

Γ/ ≡∨= {α : α ∈ Γ} be a subset of the trivalent modal Hilbert algebra with supremum
Fm/ ≡∨, then: 1. If α ∈ Γ and α = β then β ∈ Γ, 2. Γ/ ≡∨ is a modal deductive system of
Fm/ ≡∨. Also, if ϕ /∈ Γ/ ≡∨ and for any modal deductive system D which contains properly
to Γ/ ≡∨, then ϕ ∈ D.

The notion deductive systems considered in the last Theorem, part 2, was named Systèmes
deductifs liés à ”a” by A. Monteiro, where a is an element of some given algebra such that
the congruences are determined by deductive systems [3, pag. 19]. This was studied by
Monteiro himself and other authors for diferent algebraic system where it is possible to
define an implication in terms of the operations of lenguage form this systems.

Lemma 6 Let Γ ∪ {ϕ} ⊆ Fms, with Γ non-trivial maximal respect to ϕ in H3
∨,4. If α /∈ Γ

then 4α→ β ∈ Γ for any β ∈ Fms.

Theorem 7 Let Γ ∪ {ϕ} ⊆ Fms, with Γ non-trivial maximal respect to ϕ in H3
∨,4. The

map v : Fms → C3, defined by:

v(α) =





0 if α ∈ Γ0

1/2 if α ∈ Γ1/2

1 if α ∈ Γ

for all α ∈ Fms it is a valuation for H3
∨,4, where Γ1/2 = {α ∈ Fms : α /∈ Γ,∇α ∈ Γ}

and Γ0 = {α ∈ Fms : α,∇α /∈ Γ}.

Theorem 8 (Soundness and completeness of H3
∨,4 w.r.t. H∨,4

3 -algebras) Let Γ ∪ {ϕ} ⊆
Fms, Γ `∨ ϕ if and only if Γ �H3

∨,4
ϕ.

2 Model Theory and first order logics of H∨,4
3 without identities

Let Λ be the propositional signature of H∨,4
3 , the simbols ∀ (universal quantifier) and ∃

(existential quantifier), with the punctuation marks (commas and parenthesis). Let V ar =
{v1, v2, ...} a numerable set of individual variables. A first order signature Σ = 〈P,F , C〉
consists of: a set C of individual constants; for each n ≥ 1, F a set of functions with n-ary,
for each n ≥ 1, P a set of predicates with n-ary. It will be denoted by TΣ and FmΣ the sets
of all terms and formulas, respectively.

2
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Let Σ be a first order signature. The logic QH∨,4
3 over Σ is obtained from the axioms

and rules of H∨,4
3 by substituting variables by formulas of FmΣ, by extending the following

axioms and rules:
Axioms Schemas (Ax11) ϕtx → ∃xϕ, if t is a term free for x in ϕ, (Ax12) ∀xϕ→ ϕtx,

if t is a term free for x in ϕ, (Ax13) 4∃xϕ ↔ ∃x4ϕ, (Ax14) 4∀xϕ ↔ ∀x4ϕ, (Ax15)
∀x(α → β) → (α → ∀xβ) if α does not contain free occurrences of x. Inferences Rules

(R3)
ϕ→ ψ

∃xϕ→ ψ
, (R4)

ϕ→ ψ

ϕ→ ∀xψ where x does not occur free in ϕ.

Let Σ be a first-order signature. A first-order structure over Σ is pair U = 〈A, ·U〉
where A is a non-empty set and ·U is a interpretation mapping defined on Σ as follows: for
each individual constant symbol c of Σ, cU ∈ A; for each function symbol f n-ary of Σ,
fU : An → A; for each predicate symbol P n-ary of Σ, PU : An → B, where B is a complete
H∨,4

3 -algebra.
For a given Σ-structure 〈A, ·U〉, let us consider the signature Σ′ = Σ ∪ {ca}a∈A which is

the signature Σ extended by a set with new constants. Let us denote the extended language
by Fm(Σ′). We want to define the truth value a closed formula. For this task, we consider
the structure U and the map m : CTΣ′ → A, where CTΣ′ is the set of closed terms (without
free variables) of the language FmΣ′ , is defined as follows: if τ is ca, then m(τ) = m(ca) = a;
if τ is f(τ1, ..., τn) and τi ∈ CTΣ′ , then m(τ) = fU(m(τ1), ...,m(τn)).

Let ϕ be a closed formula (sentence) from Σ′, then we define m : FmΣ′ → B inductively
over the complexity of ϕ as follows: if ϕ is P (τ1, · · · , τn) with P a n-ary predicate and
τi ∈ CTΣ′ , then m(ϕ) = PU(m(τ1), ...,m(τn)); if ϕ is γ ∨ ψ then m(ϕ) = m(γ) ∨m(ψ); if
ϕ is γ → ψ then m(ϕ) = m(γ) → m(ψ); if ϕ is 4ψ then m(ϕ) = 4m(ψ); let ψ = ψ(x) a
formula with x is a unique free variable, we denote ψcax the formula obtained by replacing x
for ca. Then: if ϕ is ∃xψ then m(ϕ) =

∨
ca∈Σ′

m(ψcax ); if ϕ is ∀xψ then m(ϕ) =
∧

ca∈Σ′
m(ψcax ).

We say that m : FmΣ′ → B is QH∨,4
3 -valuation or simply a valuation.

As usual, we can define Γ � α, that is, for any structure U, if U � ψ for every ψ ∈ Γ,
then U � α.

Lemma 9 Let α be a formula of QH∨,4
3 and β an instance of α, then there exits U such

that U � α implies U � β.

Theorem 10 Let Γ ∪ {ϕ} ⊆ FmΣ, if Γ `∨ ϕ then Γ �H3
∨,4

ϕ.

It is important to note that from Theorem 10 and Lemma 9, it is easy to see that every
instance of a theorem is valid.

It is clear that QH∨,4
3 is a tarskian logic. So, we can consider the notion of maximal

theories with respect to some formula and the notion of closed theories is defined in the
same way. Therefore, we have that Lindenbaum-  Los’ Theorem for QH∨,4

3 . Then, we have
the following

Now, let us consider the relation ≡ defined by x ≡ y iff ` x → y and ` y → x, then
we have the algebra FmΣ′/ ≡ is a H∨,4

3 -algebra and the proof is exactly the same as in the
propositional case.

Theorem 11 Let Γ ∪ {ϕ} ⊆ FmΣ, with Γ non-trivial maximal respect to ϕ in QH∨,4
3 . Let

Γ/ ≡∨= {α : α ∈ Γ} be a subset of the trivalent modal Hilbert algebra with supremum
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FmΣ/ ≡∨, then: 1. If α ∈ Γ and α = β, then β ∈ Γ. If α ∈ Γ/ ≡∨, then ∀xα ∈ Γ/ ≡∨; in
this case we say that Γ/ ≡∨ is monadic. 2. Γ/ ≡∨ is a modal deductive system of FmΣ/ ≡∨.
Also, if ϕ /∈ Γ/ ≡∨ and for any modal deductive system D being monadic in the sense of 1
and containing properly to Γ/ ≡∨, then ϕ ∈ D.

Theorem 12 Let Γ∪{ϕ} ⊆ FmΣ, with Γ non-trivial maximal respect to ϕ in QH3
∨,4. The

map v : FmΣ → C3, defined by:

v(α) =





0 if α ∈ Γ0

1/2 if α ∈ Γ1/2

1 if α ∈ Γ

for all α ∈ FmΣ it is a valuation for H3
∨,4, where Γ1/2 = {α ∈ FmΣ : α /∈ Γ,∇α ∈ Γ}

and Γ0 = {α ∈ FmΣ : α,∇α /∈ Γ}.

Theorem 13 Let Γ ∪ {ϕ} ⊆ FmΣ, if Γ �H3
∨,4

ϕ then Γ `∨ ϕ.

Proof: Let us suppose Γ �H3
∨,4

ϕ and Γ 6`∨ ϕ. Then, there exists ∆ maximal theory such

that Γ ⊆ ∆ and ∆ 6`∨ ϕ. From the latter and Theorem 12, there exists a structure U such
that ∆ 6�U ϕ but ∆ �A γ for every γ ∈ ∆, which is a contradiction.

�
It is possible to adapt our proof of strong Completeness Theorem in the propositional

and first order cases to logics from the certain semisimple varieties of algebras. This is so
because the maximal congruences play the same role as the maximal consistent theories in
the Lindenbaum-Tarski algebra. From the latter and results of universal algebra, we have the
algebra quotient by maximal congruences are isomorphic to semisimple algebras. Therefore,
we always have a homomorphism from the Lindenbaum-Tarski algebra to the semisimple
algebras. This homomorphism is the same one constructed by Carnielli and Coniglio to
prove strong completeness theorems for different logics ([2]). On the other hand, we can
observe that A. V. Figallo constructed this homomorphism to study different semisimple
varieties. The general presentation of these ideas will be part of a future work.
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1 Abstract
The ubiquitous notion of resources is a basic one in many fields but has become more and more
central in the design and validation of modern computer systems over the past twenty years.
Resource management encompasses various kinds of behaviours and interactions including con-
sumption and production, sharing and separation, spatial distribution and mobility, temporal
evolution, sequentiality or non-determinism, ownership and access control. Dealing with vari-
ous aspects of resource management is mostly in the territory of substructural logics, and more
precisely, resource logics such as Linear Logic (LL) [5] with its resource consumption interpre-
tation, the logic of Bunched Implications (BI) [8] with its resource sharing interpretation, or
order-aware non-commutative logic (NL) [1]. As specification logics, they allow the modelling
of features like interactions, resource distribution and mobility, non-determinism, sequentiality
or coordination of entities. Separation Logic and its memory model, of which BI is the logical
kernel, has gained momentum and proved itself very successful as an assertion language for
verifying programs that handle mutable data structures via pointers [6, 9].

From a semantic point of view, resource interactions such as production and consumption, or
separation and sharing are handled in resource models at the level of resource composition. For
example, various semantics have been proposed to capture the resource sharing interpretation of
BI including monoidal, relational or topological resource semantics [4]. From a proof-theoretic
and purely syntactical point of view, the subtleties of a particular resource composition usually
leads to the definition of distinct sets of connectives (e.g., additive vs multiplicative, commu-
tative vs non-commutative). Capturing the interaction between various kinds of connectives
often results in structures more elaborated than set of multi-sets of formulas. For example,
the label-free sequent calculus for BI, which is called LBI, admits sequent the left-hand part of
which are structured as bunches [7, 8]. Resource interaction is usually much simpler to handle
in labelled proof-systems since labels and label constraints are allowed to reflect and mimic,
inside the calculus, the fundamental properties of the resource models they are drawn from. For
example, various labelled tableaux calculi, all called TBI, have been proposed for the various
semantics of BI [4]. A labelled tableaux calculus has been also developed for Separation Logic
and its memory model [3].

Our aim is to study the relationships between labelled and label-free proof-systems in BI
logic and, more precisely, with the label-free sequent calculus LBI. The relational, topological
and monoidal semantics with a Beth interpretation of the additive disjunction have all been
proven sound and complete w.r.t. LBI and TBI in [4, 7, 8]. However, the monoidal semantics in
which the additive disjunction has the usual Kripke interpretation and which admits explicitly
inconsistent resources together with a total (and not partial) resource composition operator has
only been proven complete w.r.t. TBI. Its status w.r.t. LBI is not known and still a difficult
open problem. Many attempts at solving the problem from a purely semantic point of view have
failed over the past fifteen years. Instead we propose a three-step syntactic approach to proving
the completeness of the Kripke monoidal semantics of BI that relies on proof translations.
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As a first step, we recently proposed a single-conclusioned sequent-style labelled proof-
system called GBI, that can be seen as a kind of intermediate calculus between TBI and LBI.
GBI shares with TBI the idea of sets of labels and contraints arranged as a resource graph, but
the resource graph is partially constructed on the fly using explicit structural rules on labels
and constraints rather than being obtained as the result of a closure operator.

The main result in [2] was the definition of an effective (algorithmic) procedure that sys-
tematically translates any LBI-proof into a GBI-proof. This translation is not a one-to-one
correspondence sending each LBI-rule occurring in the original proof to its corresponding GBI
counterpart in the translated proof. Indeed, most of the translations patterns require several
additional structural steps to obtain an actual GBI-proof. However, these patterns are such
that the rule-application strategy of the original proof will be contained in the translated proof,
making our translation structure preserving in that particular sense.

In [2] we also started to investigate how GBI-proofs could relate to LBI-proofs. Taking
advantage of the structure preserving property of the translation we gave a reconstruction
algorithm that tries to rebuild a LBI-proof of a formula F , from scratch, knowing only the rule-
application strategy followed in a given (normal) GBI-proof of F . The completeness of this
reconstruction algorithm, i.e., that it might never get stuck, depends on the completeness of
the insertion of semi-distributivity steps in the LBI-proof that are meant to fill in the gaps left by
the application of structural rules of GBI (in the given GBI-proof) with no LBI counterpart. The
completeness of these intermediate semi-distributivity steps was (and still is) only conjectured
and far from obvious.

In this paper, we take a second step and further develop our study of how to translate GBI-
proofs into LBI-proofs. We first define a kind of tree-like property for GBI labelled sequents.
This tree property allows us to translate the left-hand side of a labelled sequent to a bunch
according to the label of the formula on its right-hand side. Refining our analysis of the
translation given in [2], we show that every sequent in a GBI-proof obtained by translation
of an LBI-proof satisfies our tree property. We also show that all GBI rules preserve the tree
property from conclusion to premisses except for the rules of contraction and weakening. The
main contribution then follows as we define a restriction of GBI, called GBItp, in which the only
instances of the weakening and contraction rules that are considered as suitable are the ones
preserving the tree property and we show that GBItp-proofs can effectively and systematically
be translated to LBI-proofs. Let us remark that the main result does not depend on a GBI-proof
being built from an assembly of LBI translation patterns, i.e., on the fact that a GBI-proof
actually corresponds to some translated image of an LBI-proof. We thus observe that our tree-
property can serve as a criterion for defining a notion of normal GBI-proofs for which normality
also means LBI-translatability.

Ongoing and future work will focus on making the third and final step of showing that total
Kripke monoidal models with explicit inconsistency are complete w.r.t. the label-free sequent
calculus LBI. Several directions and approaches can be taken to achieve this final goal. A first
interesting direction is to find an effective (algorithmic) procedure of translating TBI-proofs into
GBItp-proofs since TBI is known to be sound and complete w.r.t. total KRMs. This direction
is challenging because TBI is a multi-conclusioned system in which generative rules can be used
as many times as needed (which avoids backtracking) to saturate the proof-search space and be
able to build a countermodel from Hintikka sets in case of non-provability. A second direction
relies on the construction of counter-models in the KRM semantics of BI directly from failed
GBItp-proof attempts. This direction is also challenging as it requires building countermodels
from a single-conclusioned proof-system in which backtracking is allowed.

Didier Galmiche, Michel Marti and Daniel Méry
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1 Introduction
In abstract argumentation theory [3], an argumentation framework is a directed graph (A,�) [6]. For
x, y ∈ A such that x � y we say that x attacks y. An admissible set, of a given attack graph, is a
set X ⊆ A such that [6]: (a) no two nodes in X attack one another; and (b) for each node y ∈ A\X
attacking a node in X , there exists a node z ∈ X attacking y. Such sets are also called credulously
admissible argument. They form the basis of all main argumentation semantics first developed in [6],
and they are central to the influential graph-theoretic systematization of logic programming and default
reasoning pursued in [4].

One key reasoning tasks is then to decide whether a given argumentation framework contains at least
one non-empty admissible set [7]. Interestingly, the notion has an elegant operationalization in the form
of a two-player game, called Poison Game [5], or game for credulous acceptance [11, 16]. Inspired by
it we define a new modal logic, called Poison Modal Logic (PML), whose operators capture the strategic
abilities of players in the Poison Game, and are therefore fit to express the modal reasoning involved
in the notion of credulous admissibility. This explores research lines presented in [9]. The paper also
defines a suitable notion of p-bisimulation, which answers another open question [8], namely a notion
of structural equivalence tailored for it. More broadly we see the present paper as a contribution to
bridging concepts from abstract argumentation theory, games on graphs and modal logic.

This paper is a natural continuation of the line of work interfacing abstract argumentation and modal
logic. PML sits at the intersection of two lines of research in modal logic: dynamic logic concerned
with the study of operators which transform semantics structures [1, 13, 15]; and game logics analyzing
games through logic [2, 14]. To the best of our knowledge, only [10] (private communication) presented
a preliminary work on a modal logic inspired by the Poison Game.

2 Poison Modal Logic (PML)

2.1 The Poison Game

The Poison Game [5] is a two-player (P, the proponent, and O, the opponent), win-lose, perfect-
information game played on a directed graph (W,R). The game starts by P selecting a node w0 ∈ W .
After this initial choice, O selects w1 a successor of w0, P then selects a successor w1 and so on. How-
ever, while O can choose any successor of the current node, P can select only successors which have
not yet been visited —poisoned— by O. O wins if and only if P ends up in a position with no available
successors. What makes this game interesting for us is that the existence of a winning strategy for P, if
(W,R) is finite, can be shown to be equivalent to the existence of a (non-empty) credulously admissible
argument in the graph [5].
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2.2 Syntax and semantics
The poison modal language Lp is defined by the following grammar in BNF:

Lp : ϕ ::= p | ¬ϕ | (ϕ ∧ ϕ) | ♦ϕ | �ϕ,

where p ∈ P ∪ {p} with P a countable set of propositional atoms and p a distinguished atom called
poison atom. We will also touch on multi-modal variants of the above language, denoted Lp

n, where
n ≥ 1 denotes the number of distinct pairs (♦i,�i) of modalities, with 1 ≤ i ≤ n and where each �i
comes equipped with a distinct poison atom pi.

This language is interpreted on Kripke modelsM = (W,R, V ). A pointed model is a pair (M, w)
with w ∈ M. We will call M the set of all pointed models and M∅ the set of pointed models (M, w)
such that VM(p) = ∅. We define now an operation • on models which modifies valuation V by adding
a specific state to V (p). Formally, forM = (W,R, V ) and w ∈W :

M•w = (W,R, V )•w = (W,R, V ′),

where ∀p ∈ P, V ′(p) = V (p) and V ′(p) = V (p) ∪ {w}.
We are now equiped to describe the semantics for the � modality (the other clauses are standard):

(M, w) |= �ϕ⇐⇒ ∃v ∈W,wRv, (M•v, v) |= ϕ.

We introduce some auxiliary definitions. The poisoning relation between two pointed models •→∈
M2 is defined as: (M, w)

•→ (M′, w′) ⇐⇒ RM(w,w′) andM′ = M•w′ . Furthermore, we denote
(M, w)• ⊂ M the set of all pointed models accessible fromM via a poisoning relation. Two pointed
models (M, w) and (M′, w′) are poison modally equivalent, written (M, w)

p! (M′, w′), if and only
if, ∀ϕ ∈ Lp: (M, w) |= ϕ⇐⇒ (M′, w′) |= ϕ.

2.3 Validities and Expressible Properties
Fact 1. Let ϕ,ψ ∈ Lp be two formulas, then the following formulas are valid in PML:

�p↔ �p
�p→ (�ϕ↔ �ϕ)

�(ϕ→ ψ)→ (�ϕ→ �ψ).

To illustrate the expressive power of PML, we show that it is possible to express the existence of
cycles in the modal frame, a property not expressible in the standard modal language. Consider the class
of formulas δn, with n ∈ N>0, defined inductively as follows, with i < n:

δ1 = ♦p
δi+1 = ♦(¬p ∧ δi).

Fact 2. LetM = (W,R, V ) ∈M∅, then for n ∈ N>0 there exists w ∈ W such that (M, w) |= �δn if
and only if there exists a cycle of length i ≤ n in the frame (W,R).

A direct consequence of Fact 2 is that PML is not bisimulation invariant. In particular, its formulas
are not preserved by tree-unravelings and it does not enjoy the tree model property.

PML (or, more precisely, its infinitary version) can express winning positions in a natural way. Given
a frame (W,R), nodes satisfying formulas ��p are winning for O as she can move to a dead end for

Credulous Acceptability, Poison Games and Modal Logic
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P. It is also the case for nodes satisfying formula ����p: she can move to a node in which, no matter
which successor P chooses, she can then push her to a dead end. In general, winning positions for O are
defined by the following infinitary Lp-formula: p∨��p∨����p∨ · · ·. Dually, winning positions for
P are defined by the following infinitary Lp-formula: ¬p ∧ ♦�¬p ∧ ♦�♦�¬p ∧ · · ·.

3 Expressivity of PML

Definition 1 (FOL translation). Let p, q, . . . in P be propositional atoms, then their corresponding first-
order predicates are called P,Q, . . .. The predicate for the poison atom p is P. Let N be a (possibly
empty) set of variables, and x a designated variable, then the translation STNx : Lp → L is defined
inductively as follows (where L is the first-order correspondence language):

STNx (p) = P (x),∀p ∈ P

STNx (¬ϕ) = ¬STNx (ϕ)

STNx (ϕ ∧ ψ) = STNx (ϕ) ∧ STNx (ψ)

STNx (♦ϕ) = ∃y
(
R(x, y) ∧ STNy (ϕ)

)

STNx (�ϕ) = ∃y
(
R(x, y) ∧ STN∪{y}y (ϕ)

)

STNx (p) = P(x) ∨
∨

y∈N
(y = x).

Theorem 1. Let (M, w) be a pointed model and ϕ ∈ Lp a formula, we have then:

(M, w) |= ϕ⇐⇒M |= ST ∅x (ϕ)[x := w].

A relation Z ⊆M×M is a p-bisimulation if, together with the standard clauses for bisimulation:

Zig�: if (M1, w1)Z(M2, w2) and there exists (M′1, w′1) such that (M1, w1)
•→ (M′1, w′1), then there

exists (M′2, w′2) such that (M2, w2)
•→ (M′2, w′2) and (M′1, w′1)Z(M′2, w′2).

Zag�: as expected.

Invariance under the existence of a p-bisimulation (in symbols,
p

) can be proven to characterize the

fragment of FOL which is equivalent to PML.

Theorem 2. For any two pointed models (M1, w1) and (M2, w2), if (M1, w1)
p

 (M2, w2) then

(M1, w1)
p! (M2, w2).

Theorem 3. For any two ω-saturated models (M1, w1) and (M2, w2), if (M1, w1)
p! (M2, w2)

then (M1, w1)
p

 (M2, w2).

Theorem 4. A L formula is equivalent to the translation of an Lp formula if and only if it is p-
bisimulation invariant.

4 Undecidability
In this section we establish the undecidability of PML3 that corresponds to Lp

3. We call R,R1 and R2

the three accessibility relations of a model of PML3. In this variant we only consider models whose
poison valuation is empty.

Davide Grossi and Simon Rey
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We show that the satisfaction problem for PML3 is undecidable. To do so we reduce the problem of
the N× N tilling in a similar way as the undecidability proof for hybrid logic presented in [12].

Theorem 5. The satisfaction problem for PML3 is undecidable.

Based on this result we postulate that PML is also undecidable, especially since we can show that:

Theorem 6. PML does not have the Finite Model Property.

5 Conclusion
In this article we presented a modal logic to describe the Poison Game which is thus able to detect
credulously admissible arguments. This paper is a first exploration of this logic: we gave a first-order
translation, a suitable notion of bisimulation and we proved the undecidability of a variant of PML.
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1 Introduction

In [5] Andrzej Grzegorczyk presented one of the first systems of point-free topology developed
in the setting of the so-called connection structures. Even today, after a lot has been done and
achieved in the area, Grzegorczyk’s construction keeps being interesting, especially due to his
definition of point, which embodies the geometrical intuition of point as diminishing system of
regions of space (see Section 3). This talk is devoted to the following standard problems: what
kind of topological spaces can be obtained from Grzegorczyk contact algebras and vice versa,
which topological spaces give rise to Grzegorczyk algebras? The topic of the presentation is
located well within the scope of the tradition of Boolean Contact Algebras (see e.g. [1, 6]).

2 Basic concepts

Consider a triple B = 〈R,6,C〉, where 〈R,6〉 is a boolean lattice and C ⊆ R×R satisfies:

¬(0 C x), (C0)

x 6 y =⇒ x C y, (C1)

x C y =⇒ y C x, (C2)

x 6 y =⇒ ∀z∈R(z C x =⇒ z C y). (C3)

Elements of R are called regions and C is a contact (connection) relation. In B we define
non-tangential inclusion relation:

x� y =⇒ ¬(x C −y) ,

where −y is the boolean complement of y (while ¬ is the standard negation operator).

We define x © y to mean that x · y 6= 0 (with · being the standard meet operation), and
take ⊥ ⊆ R×R to be the set-theoretical complement of ©.
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3 Grzegorczyk contact algebras

A pre-point of B is a non-empty set X of regions such that:

0 /∈ X , (r0)

∀u,v∈X(u = v ∨ u� v ∨ v � u) , (r1)

∀u∈X∃v∈X v � u , (r2)

∀x,y∈R
(
∀u∈X(u© x ∧ u© y) =⇒ x C y

)
. (r3)

The purpose of this definition is to formally grasp the intuition of point as the system of
diminishing regions determining the unique location in space (see the figures for geometrical
intuitions on the Cartesian plane).

x y

X

Figure 1: The set X of cross-like regions is not a pre-point, since regions x and y overlap all
regions in X but are not in contact.

Let Q be the set of all pre-points of B. We extend the set of axioms for B with the following
postulate:

∀x,y∈R
(
x C y =⇒ ∃Q∈QR

(
(x ⊥ y ∨ ∃z∈Q z 6 x u y) ∧ ∀z∈Q(z © x ∧ z © y)

))
, (G)

called Grzegorczyk axiom, introduced in [5]. Any B which satisfies all the aforementioned
axioms is called Grzegorczyk Contact Algebra (GCA in short). Every such algebra is a Boolean
Contact Algebra in the sense of [1].

A point of GCA is any filter generated by a pre-point:

p is a point iff ∃Q∈Q p = {x ∈ R | ∃q∈Q q 6 x} .
In every GCA we can introduce a topology in the set of all points, first by defining the set of
all internal points of a region x:

Irl(x) := {p | x ∈ p} ,
and second, taking all Irl(x) as a basis. The natural questions arise: what kind of topological
spaces are determined by GCAs and what is the relation between GCAs and the boolean
algebras of regular open sets of their topological spaces?

4 Representation theorems and topological duality

Let T = 〈S,O〉 be a topological space. The standard method for obtaining BCAs is via
taking RO(X)—the complete algebra of all regular-open subsets of S— as regions, defining the
connection relation C by:

U C V =⇒ Cl U ∩ Cl V 6= ∅ .

Representation theorems for Grzegorczyk contact algebras
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Figure 2: The set of rectangular regions is not a pre-point since the regions are not ordered by
non-tangential inclusion.

This practice can be extended to GCAs as well, however one must narrow down the class
of spaces, since not all topological spaces give rise to GCAs in the way just described.

In our talk we would like to focus on representation theorems for Grzegorczyk algebras.
In particular we would like to show that there is a very strong kinship between GCAs and
topological regular spaces. To this end we introduce the class of concentric spaces (a subclass
of regular spaces), which are T1-spaces such that in every point p there is a local basis Bp
satisfying:

∀U,V ∈Bp

(
U = V ∨ Cl U ⊆ V ∨ Cl V ⊆ U

)
. (R1)

By an ω-concentric space we mean a space which at every point have a local countable basis
which satisfies (R1). We prove, among others, the following theorems:

Theorem 1. Every GCA is isomorphic to a dense subalgebra of a GCA for a concentric
topological space.

Every complete GCA is isomorphic to a GCA for a concentric topological space.

Theorem 2. Every GCA with c.c.c. (countable chain condition) is isomorphic to a dense
subalgebra of a GCA with c.c.c. for an ω-concentric topological space with c.c.c.

Every complete GCA with c.c.c. is isomorphic to a GCA with c.c.c. for an ω-concentric
topological space having c.c.c.

Theorem 3. Every countable GCA is isomorphic to a dense subalgebra of a GCA for a second-
countable regular space.

Every complete countable GCA is isomorphic to a GCA for a second-countable regular space.

We also demonstrate the following topological duality theorem for a subclass of Grzegorczyk
contact algebras:

Theorem 4 (Object duality theorem). Every complete GCA with c.c.c. is isomorphic to
a GCA for a concentric space with c.c.c.; and every concentric c.c.c. space is homeomorphic
to a concentric c.c.c. space for some complete GCA with c.c.c.

The following two problems remain open:

1. full duality for algebras and topological spaces from Theorem 4,

2. duality for the full class of Grzegorczyk algebras (without c.c.c.).

5 Grzegorczyk and de Vries

Last, but not least, we would like to compare GCAs to de Vries constructions from [2]. Among
others, we show that every Grzegorczyk point is a maximal concordant filter in the sense of [2]
(maximal round filter or end in contemporary terminology), but not vice versa.

Rafa l Gruszczyński and Andrzej Pietruszczak
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On Intuitionistic Combinatorial Proofs

Willem B. Heijltjes, Dominic J. D. Hughes, and Lutz Straßburger

The objective of this presentation is simple to state:

1. Provide the most abstract, syntax-free representation of intuitionistic sequent calculus proofs
possible, subject to:

2. Translation from a proof is polynomial-time.

Conventional representations such as lambda calculus or game semantics fail to satisfy 2: by
their extensional nature, they identify so many proofs that translation from a proof blows up
exponentially in size.

Our solution is to define a notion of combinatorial proof for intuitionistic propositional se-
quent calculus. Combinatorial proofs were introduced as a syntax-free reformulation of classical
propositional logic [Hug06a, Hug06b]. For example, here is a combinatorial proof of Peirce’s
Law ((P ⇒Q) ⇒P ) ⇒P :

P
Q

P P

The lower graph abstracts the formula (one vertex per propositional variable, edges encoding
conjunctive relationships); the upper graph has two colour classes, and , each expressing
an axiom P ⇒P ; the dotted lines define a skew fibration from the upper graph to the lower
graph, a lax notion of graph fibration. The upper graph captures the axioms and logical rules
in a proof, the lower graph captures the formula proved, and the skew fibration captures all
contraction and weakening, simultaneously and in parallel [Hug06b, Str07].

The intuitionistic setting required reformulating combinatorial proofs with directed edges
for implicative relationships. Here are two intuitionistic combinatorial proofs on (P ⇒P )⇒Q `
Q ∧Q ,

P P Q

Q
Q P P Q

Q
Q

(1)

Each lower graph, called the base, is an abstraction of the formula (akin to a labelled a arena of
game semantics [HO00]). Leaving base graphs implicit, we can render the combinatorial proofs
compactly:

(P ⇒P ) ⇒Q ` Q∧Q (P ⇒P ) ⇒Q ` Q∧Q

Using this compact notation, Figure 1 shows step-by-step translations of intuitionistic se-
quent calculus proofs into the respective intuitionsitic combinatorial proofs above. Figure 2
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P ` P
⇒

` P ⇒P Q ` Q
⇒

(P ⇒P ) ⇒Q ` Q

P ` P
⇒

` P ⇒P Q ` Q
⇒

(P ⇒P ) ⇒Q ` Q
∧

(P ⇒P ) ⇒Q, (P ⇒P ) ⇒Q ` Q∧Q
c

(P ⇒P ) ⇒Q ` Q∧Q

P ` P
⇒

` P ⇒P

Q ` Q Q ` Q
∧

Q,Q ` Q∧Q
c

Q ` Q∧Q
⇒

(P ⇒P ) ⇒Q ` Q∧Q

Figure 1: Translating two intuitionstic sequent calculus proofs to intuitionistic combinatorial
proofs. The translation is very simple to define: (1) place a pair of tokens atop the propositional
variables in each axiom, with a rightward directed edge; (2) trace the tokens down through the
proof; (3) each left implication rule and right conjunction rule inserts edges.

x :P ` x :P

` λx.x : P⇒P w :Q ` w :Q

f1 : (P ⇒P ) ⇒Q ` f1(λx.x) : Q

y :P ` y :P

` λy.y : P⇒P v :Q ` v :Q

f2 : (P ⇒P ) ⇒Q ` f2(λy.y) : Q

f1 : (P⇒P )⇒Q , f2 : (P⇒P )⇒Q ` 〈f1(λx.x),f2(λy.y)〉 : Q∧Q
f : (P⇒P )⇒Q ` 〈f(λx.x),f(λy.y)〉 : Q∧Q

z :P ` z :P

` λz.z : P⇒P

v1 :Q ` v1 :Q v2 :Q ` v2 :Q

v1 : Q , v2 : Q ` 〈v1, v2〉 : Q∧Q
v : Q ` 〈v, v〉 : Q∧Q

f : (P⇒P )⇒Q ` 〈f(λz.z),f(λz.z)〉 : Q∧Q

Figure 2: Translating the same two intuitionstic sequent calculus proofs into lambda calculus
terms. Note that (up to alpha-conversion, renaming bound variables x, y and z) the two terms
are the same. On the right, the subterm λz.z from the left sub-proof is duplicated, because
of extensionality. In contrast, the translation to a combinatorial proof does not require such a
duplication: on the right of Figure 1, the final rule keeps only one pair of tokens over P ⇒P ,
from the left sub-proof.
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shows the corresponding lambda calculus translations. The resulting lambda terms are identi-
cal (modulo alpha-conversion), and the right translation duplicates λz.z. Because of iterated
duplications, translation to a lambda term is exponential-time in the size of the proof. In con-
trast, translating the right proof to an intuitionistic combinatorial proof involves no duplication.
More generally, a proof with n axioms translates to an intuitionistic combinatorial proof with
n colour classes. Thus translation to an intuitionistic combinatorial proof is polynomial-time.

Just as the translation to lambda calculus is surjective, we can prove that the translation
to intuitionistic combinatorial proofs is surjective. Thus intuitionistic combinatorial proofs are
sound and complete for intuitionistic logic. We also prove that if two proofs are equivalent
modulo rule commutations which do not involve duplications of entire subproofs, then they
translate to the same combinatorial proofs. Taken together, these two theorems formalize the
sense in which achieved the two goals stated at the start of this abstract.

In the presentation we will also compare the normalization procedures for classical combi-
natorial proofs (as presented in [Hug06b, Str17a, Str17b]) and for intuitionistic combinatorial
proofs. A surprising observation is that in the intuitionistic case we need to rely on a normal-
ization method for additive linear logic, as presented in [HH15].

If time permits, we will also show how we can translate between syntactic proofs and com-
binatorial proofs. Here we can observe for the intuitionistic case the same technical subtleties
as for the classical case in [Hug06b, AS18].
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Abstract

The aim of our talk consists of three following elements: the first one is to semanti-
cally define relating logics, new kind of non-classical logics which enable to express that
constituent propositions are related because of some, for instance causal or temporal, re-
lationship; the second one is to present axiomatic and tableaux systems for the logics we
study; the third one is connected with an idea of proof of soundness and completeness
theorems based on a transition from a tableaux-like proof to an axiomatic one.

1 Introduction

The idea behind relating logic is simple one. Truth-values of compound propositions depend
not only on logical values but also whether their component propositions are related. Consider
the following examples:

1. Jan arrived in Amsterdam and took part in conference SYSMICS 2019.

2. If you turned off the light, in the room was pretty dark.

In these propositions we want to express more than extensional relations. Propostion 1 might
be false even if both component propositions are true, because it is also required that Jan first
arrived in Amsterdam and then took part in conference SYSMICS 2019. Similarly in case of
proposition 2. This time we require that the fact of turning off the light to be a cause of dark
in a room. It is easy to imagine further examples concerning analytic relationship (cf. [2, 115–
120]) or content relationship (relevance) in a general sense (cf. [1], [2, 61–72], [5], [6]). Such
examples lead to an idea of relating connectives which enable to express standard extensional
dependences and non-extensional ones, some kind of intensional relations.

Relating logics are based on an interpretation of propositions which involves two factors:
logical value and relation between propositions. In the talk we define them semantically and
introduce syntactic approach by means of axiomatic and tableaux systems.

2 Language and Semantics of Relating Logic

Language L of relating logic consists of propositional variables, Boolean connectives ¬, ∧, ∨,
→, ↔, relating connectives which are counterparts of Boolean two argument connectives ∧w,
∨w, →w, ↔w and brackets.1 A set of formulas in L is defined in the standard way:

For 3 A ::= pn | ¬A | (A ? A) | (A ?w A),

where n ∈ N and ? ∈ {∧,∨,→,↔}.
1We use letter w for notation of relating connectives because of Polish words wia̧zać, wia̧ża̧cy, which might

be translated as relate, relating.
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A model based on relating relation is an ordered pair 〈v,R〉 such that v : Prop −→ {0, 1} is
a valuation of propositional variables and R ⊆ For × For is a relating relation. Relation R as
an element of semantic structure enables to express in metalanguage, in a quite natural way,
that some propositions are somehow related. Such relation is supposed to simulate or model
various kinds of relationships like temporal or causal one.

An interpretation of propositional variables and formulas build by means of Boolean con-
nectives are defined in the standard way. According to intuitions presented in an introduction
we assume the following interpretation in case of formulas build by relating connectives:

〈v,R〉 |= A ?w B iff [〈v,R〉 |= A ? B and R(A,B)].

We might define notion of a truth with respect to a relating relation R, i.e R |= A iff
∀v∈{0,1}Prop〈v,R〉 |= A. A notion of tautology might be defined in two ways: as a true for-
mula in all models and as a true formula with respect to all relating relations.

A logic is identified with a set of tautologies determined on the ground of some non-empty
class of relating relations. The smallest relating logic is logic W (cf. [5]). Its extensions
are defined by means of various classes of relations which are determined by some relational
conditions. We distinguish three types of classes of relating relations:

• a horizontal class (for short: h-class) — a class of relations satisfying conditions in which
we do not refer to complexity of formulas;

• a vertical class (for short: v-class) — a class of relations satisfying some conditions in
which we refer to complexity of formulas

• a diagonal class (for short: d-class) — a class which is horizontal and vertical at the same
time.

Examples of h-classes are: class of reflexive relations, class of symmetric relations or class
of transitive relations (cf. [1], [2, 61–143], [5], [6]).

An example of v-class is a class of relations of eliminations and introductions of binary
connectives (cf. [1], [2, 61–143], [5], [6]), i.e. the class of relations determined by the following
conditions:

(◦1⇒ or) R(A ◦B,C) =⇒ [R(A,C) or R(B,C)]

(or⇒◦1) [R(A,C) or R(B,C)] =⇒ R(A ◦B,C)

(◦2⇒ or) R(A,B ◦ C) =⇒ [R(A,C) or R(B,C)]

(or⇒◦2) [R(A,C) or R(B,C)] =⇒ R(A,B ◦ C).

Examples of d-classes are intersections of h-classes and v-classes, for instance a class of
reflexive relations which are relations of eliminations and introductions of connectives (cf. [1],
[2, 61–143], [5], [6]).

Because of three types of classes of relations we distinguish three types of extensions of W, i.e.
h-logics (determined by h-classes), v-logics (determined by v-classes) and d-logics (determined
by d-classes). In the talk we are going to focus on logics determined by the distinguished classes.

3 Axiomatic and Tableaux Systems of Relating Logics

In many cases relating logics are not difficult to axiomatize. The most important thing we need
to know is that relating relation is expressible in language L by formula (A ∨w B)∨ (A→w B).

Tomasz Jarmużek and Mateusz Klonowski
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Let A # B := (A ∨w B) ∨ (A →w B). Axiomatic system of W consists of the following
axiom schemata:

(A ?w B)↔ ((A ? B) ∧ (A# B)). (ax?w)

The only rules of inference is modus ponens:

A,A→ B

B

By means of # it is quite easy to present axiom schemata which express relational conditions
that characterize a class of relation. For instance, we have that:

A# A expresses condition of reflexivity

(A# B)→ (B # A) expresses condition of symmetry

((A# B) ∧ (B # C))→ (A# C) expresses condition of reflexivity.

In turn, tableaux systems might be defined by some methods introduced in [3], [4] and [5].
A set of tableaux expressions is an union of For and the following sets {ArB : A,B ∈ For},
{ArB : A,B ∈ For}. By expressions ArB and ArB we say that formulas A,B are related and
not related respectively. A tableaux inconsistency is either A and ¬A or ArB and ArB.

In order to define a sound and complete tableaux system for a relating logic we use standard
rules for formulas build by Boolean connectives (cf. [3], [4] and [5]). Then it is easy to determine
tableaux rules concerning relating connectives:

(R¬?w)
¬(A ?w B)

¬(A ? B) ArB (R?w)
A ?w B
A ? B
ArB

Specific rules which enable to express relational conditions are also not difficult to express.
For instance, for reflexivity, transitivity and condition (or⇒◦1) we have:

(Rr)
A
ArA (Rt)

ArB,BrC
ArC (R1:or⇒◦1)

ArC
(A ◦B)rC (R2:or⇒◦1)

BrC
(A ◦B)rC

where B in rule (R1:or⇒◦1) and A in rule (R2:or⇒◦1) already appeared on a branch.

In the talk, we will focus on a problem of passing from tableaux-like proof to axiomatic proof.
The main theorem we would like to present will say that if formula A is a branch consequence
of set Σ (i.e A has proof from Σ in a tableaux system), then it is also an axiomatic consequence
of Σ (i.e. A has proof from Σ in an axiomatic system).
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Tomasz Jarmużek and Mateusz Klonowski

98
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The Gödel-Dummett logic LC from [9] is a strengthening of intuitionistic logic IPC with
linear Kripke-models. It can be axiomatized by many different axiom schemes:

(L1) (A → B) ∨ (B → A)

(L2) (A → B) ∨ ((A → B) → A)

(L3) (A → B) ∨ ((A → B) → B)
(L4) (A → B ∨ C) → (A → B) ∨ (A → C)

(L5) (A ∧ B → C) → (A → C) ∨ (B → C)

(L6) ((A → B) → B) ∧ ((B → A) → A) → A ∨ B.

An even larger number of equivalents arises by the fact that in IPC ` A∨B iff ` (A → C)∧(B →
C) → C (DR), and, more generally, ` D → A ∨ B iff ` D ∧ (A → C) ∧ (B → C) → C (EDR).

For strong completeness of LC see e.g. [13]. In the present research in progress we study
logics with linear models originating from logics weaker than IPC. Weaker logics than IPC are
the subintuitionistic logics with Kripke models extending F studied by [4, 6] and those with
neighborhood models extending WF originated in [7, 12]. Linear extensions of those logics
have already been obtained in the case of BPC, the extension of F with transitive persistent
models [1, 2, 14]. Our object is to study the character of and the relations between the schemes
(L1), . . .,(L6). Besides syntactic methods we use the construction of neighborhood frames [3]
for various logics. We also obtain modal companions for a number of the logics. Hájek’s basic
fuzzy logic BL [10] compares less well with IPC, and is therefore left out of consideration this
time.

Extensions of Corsi’s logic F. The logic F is axiomatized by

1. A → A ∨ B 7. A ∧ (B ∨ C) → (A ∧ B) ∨ (A ∧ C)

2. B → A ∨ B 8. (A → B) ∧ (B → C) → (A → C)
3. A ∧ B → A 9. (A → B) ∧ (A → C) → (A → B ∧ C)

4. A ∧ B → B 10. A → A

5. A B
A∧B 11. (A → C) ∧ (B → C) → (A ∨ B → C)

6. A A→B
B 12. A

B→A

The axioms 8, 9 and 11 are more descriptively named I, C and D. Corsi [4] proved completeness
for Kripke models with an arbitrary relation R without stipulation of persistence of truth.

The axioms needed to obtain IPC from F are

R: A ∧ (A → B) → B (defines and is complete for reflexive Kripke frames)

T: (A → B) → ((B → C) → (A → C)) (defines and is complete for transitive Kripke frames)
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P: p → (> → p) (defines and is complete for persistent Kripke models).

Visser’s basic logic BPC can be defined as FTP. In the case of Kripke models we mean with
linear models of course connected (∀xyz ((xRy ∧ xRz) → (y 6= z → yRz ∨ zRy))) and transi-
tive models. (Anti-symmetry is covered by persistence.) Visser already proved that over BPC,
L2 is complete with regard to linear models, and that L1 is not [14], see also [2]. We prove that
L1, L4 and L5 are equivalent over F. Moreover, we show that L1 plus L3 prove L2 in F, so L1

plus L3 is complete for linear models over BPC. We didn’t study DR and EDR in depth yet, but
were able to prove that the right-to-left direction of DR can be proved in F, but for DFR one
needs FR. The left-to-right direction can be executed in FR in both cases.

Neighborhood models and extensions of the logics WF and WFN. The logic WF can be
obtained by deleting the axioms C, D and I from F, and replacing them by the corresponding
rules like concluding A → B ∧ C from A → B and A → C (see [12]).

Neighborhood frames describing the natural basic system WF have been obtained in [12].
These NB-neighborhoods consist of pairs (X,Y ) with the X and Y corresponding to the an-
tecedent and consequent of implications.

Definition 1. F = 〈W,NB, X〉 is called an NB-frame of subintuitionistic logic if W 6= ∅ and
X is a non-empty collection of subsets of W such that ∅ and W belong to X , and X is closed
under ∪, ∩ and → defined by U → V := {w ∈ W | (U, V ) ∈ NB(w)}, where NB: W → P (X 2)
is such that: ∀w ∈ W, ∀X,Y ∈ X , (X ⊆ Y ⇒ (X, Y ) ∈ NB(w)).

If M is a model on such a frame, M, w 
 A → B iff (V (A), V (B)) ∈ NB(w). Also N-
neighborhood frames, closer to the neighborhood frames of modal logic, were described. In
those frames X ∪ Y corresponds to implications. An additional rule N [5, 7] axiomatizes them:

A → B ∨ C C → A ∨ D A ∧ C ∧ D → B A ∧ C ∧ B → D

(A → B) ↔ (C → D)
(N)

WF plus the rule N is denoted by WFN. For extensions of WFN modal companions can often be
found.

Again we can see linearity as the combination of connectedness and transitivity of the
neighborhood frames. But, of course, connectedness as well as transitivity now concerns sets
of worlds (neighborhoods), not individual worlds. NB-frames are called transitive if, for all
(X,Y ) ∈ NB(w), (Y, Z) ∈ NB(w) we have (X, Z) ∈ NB(w) as well. The formula I defines
this property and is complete for the transitive NB-frames. For the N-frames this becomes, for
all X ∪ Y ∈ N(w), Y ∪ Z ∈ N(w) we have X ∪ Z ∈ N(w) as well. This too is defined by I,
and WFN is complete for the transitive N-frames. We cannot say that the connection between
transitivity and connectedness in Kripke and neighborhood frames has completely been cleared
up. Note that the axiom I for transitivity of the neighborhood frames, which is provable in F,
is weaker than the axiom T for transitivity of the Kripke models. On the other hand, in the
canonical models of logics like IL1 the worlds are linearly ordered by inclusion. Study of the
neighborhood frames for BPC and IPC of [11] may further clarify the matter.

The IPC-equivalents of the introduction all define different connectedness properties. Defin-
ability and completeness of these logics is part of the present paper. For example the straight-
forward

for all X,Y ∈ X 2, (X,Y ) ∈ NB(w) or (Y,X) ∈ NB(w)
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is called connected1 by us and is defined by L1. This formula defines a similar property in the
case of N-frames, and is complete for those frames as well.

We can refine the results of the section on F by discussing in which extensions of WF the
results are provable.

Proposition 1. IL1, IL4 and IL5 are equivalent over WF.

Proposition 2. WFIL1L3 proves IL2.

The opposite direction is open.

Proposition 3. WFNIRL1 
 L2.

Proposition 4. WFNIRL2 
 L3.

Modal companions. We consider the translation � from L, the language of propositional
logic, to L�, the language of modal propositional logic. It is given by:

p� = p;
(A ∧ B)� = A� ∧ B�;
(A ∨ B)� = A� ∨ B�;
(A → B)� = �(A� → B�).

This translation was discussed independently by both [4] and [8] for subintuitionistic logics with
Kripke models. We discussed it for extensions of WFN in [5, 7]. For example the extension EN
of classical modal logic E is a modal companion of WFN. Here we get modal companions for all
of the extensions of WFN that we discuss. For example we obtain as a modal companion of the
logic WFNL1 the modal logic ENL1 axiomatized over EN by L1 : �(A → B) ∨ �(B → A).

References

[1] M. Alizadeh, M. Ardeshir. On the linear Lindenbaum algebra of basic propositional logic, Mathe-
matical Logic Quarterly 50, 65-70, 2004.

[2] M. Alizadeh, M. Ardeshir, Amalgamation Property for the class of basic algebras and some of its
natural subclasses, Arch. Math. Logic, 45(8): 913-930, 2006.

[3] B. Chellas, Modal logic: An Introduction, Cambridge University Press, 1980.

[4] G. Corsi, Weak Logics with strict implication, Zeitschrift für Mathematische Logik und Grundlagen
der Mathematik, 33:389-406, 1987.

[5] D. de Jongh, F. Shirmohammadzadeh Maleki, Subintuitionistic Logics and the Implications they
Prove, Indagationes Mathematicae, 10.1016/j.indag.2018.01.013.

[6] D. de Jongh, F. Shirmohammadzadeh Maleki, Subintuitionistic Logics with Kripke Semantics, In
11th International Tbilisi Symposium on Logic, Language, and Computation, TbiLLC 2015, LNCS,
pp 333-354, Volume 10148, Springer 2017.

[7] D. de Jongh, F. Shirmohammadzadeh Maleki, Two Neighborhood Semantics for Subintuitionistic
Logic, To be published in the Proceedings of the 12th International Tbilisi Symposium on Logic,
Language, and Computation, TbiLLC 2017.
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Glivenko’s theorem [6] asserts that provability in classical logic CL can be translated to that
of intuitionistic logic IL by means of double negation. Since then many translations of this kind
where proved, e.g. between the  Lukasiewicz logic  L and Hájek’s basic fuzzy logic BL [2], or
between classical logic CL and the product fuzzy logic Π [1]. It is a common phenomenon that
these results are obtained by algebraic (i.e. semantic) means. In this talk we provide a syntactic
account of these results. The results presented in this contribution can be found in [8].

Our main result characterizes those extensions of a certain basic substructural logic which
are Glivenko-equivalent to classical logic. The proof of this result relies on the notion of an
inconsistency lemma (introduced by Raftery [9] and further studied in [8]) and the new notion
of an antistructural completion [8]. In particular, it proceeds by identifying sufficient conditions
under which classical logic is the antistructural completion of a given substructural logic.

Inconsistency lemmas are equivalences relating inconsistency and validity in a given logic,
just like deduction-detachment theorems are equivalences relating theoremhood and validity.
For example, it is well known that the following equivalence holds in intuitionistic logic:

Γ, ϕ ` ⊥ ⇐⇒ Γ ` ¬ϕ. (1)

This property was first explicitly isolated and systematically studied by Raftery [9], who called
such an equivalence an inconsistency lemma. He also considered the following dual version of
this property, which he called a dual inconsistency lemma:

Γ,¬ϕ ` ⊥ ⇐⇒ Γ ` ϕ. (2)

This equivalence, of course, is no longer valid in intuitionistic logic but it does hold for classical
logic. (In fact it is the law of excluded middle in disguise.)

We continue the line of research initiated by Raftery and introduce what we call local
and parametrized local versions of these properties, by analogy with the so-called local and
parametrized local deduction-detachment theorems. This yields a hierarchy of inconsistency
lemmas similar to the existing hierarchy of deduction-detachment theorems (see e.g. [4]).

Let us illustrate what the local form of Raftery’s inconsistency lemma and dual inconsistency
lemma looks like. For example, Hájek’s basic logic BL enjoys a local inconsistency lemma in
the following form:

Γ, ϕ ` ⊥ ⇐⇒ Γ ` ¬ϕn for some n ∈ ω.
On the other hand, the infinitary  Lukasiewicz logic  L∞ (i.e. the infinitary consequence relation
of the standard  Lukasiewicz algebra on the unit interval [0, 1]) enjoys a dual local inconsistency
lemma in the following form (note the universal rather than existential quantifier here):

Γ,¬ϕn ` ⊥ for all n ∈ ω ⇐⇒ Γ ` ϕ.

We remark that the finitary companion of  L∞, i.e. the finitary  Lukasiewicz logic  L, validates
the above mentioned dual local inconsistency lemma for finite sets of formulas Γ.
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The second component of our proof is the notion of an antistructural completion, which is
the natural dual to the notion of a structural completion (see [7]). Recall that the structural
completion of a logic L is the largest logic σL which has the same theorems as L. A logic L is
then called structurally complete if σL = L. The logic σL exists for each L and it has a simple
description: Γ `σL ϕ if and only if the rule Γ ` ϕ is admissible in L, i.e. for each substitution
τ we have ∅ `L τϕ whenever ∅ `L τγ for each γ ∈ Γ.

Dually, the antistructural completion of a logic L is defined as the largest logic αL, whenever
it exists, which has the same inconsistent (or equivalently, maximally consistent) sets as L.
Naturally, a logic L is called antistructurally complete if αL = L. For example, Glivenko’s
theorem essentially states that αIL = CL.

Just like σL can be characterized in terms of admissible rules, the antistructural completion
of αL of L can be characterized in terms of antiadmissible rules. These are rules Γ ` ϕ which
for every substitution σ and every set of formulas ∆ satisfy the implication:

{σϕ} ∪∆ is inconsistent in L =⇒ σΓ ∪∆ is inconsistent in L.

Moreover, in many contexts the description of antiadmissible rules can be simplified by omitting
the quantification over substitutions. This yields what we call simply antiadmissible rules, which
for every set of formulas ∆ satisfy the implication:

{ϕ} ∪∆ is inconsistent in L =⇒ Γ ∪∆ is inconsistent in L.

Our first main result now ties all these notions together.

Theorem. Let L be a finitary logic with a local inconsistency lemma. Then the following are
equivalent:

1. L is antistructurally complete.

2. Every simply antiadmissible rule is valid in L.

3. L enjoys the local dual inconsistency lemma.

4. L is semisimple (i.e. subdirectly irreducible models of L are simple).

5. L is complete w.r.t. (a subclass of) the class of all simple models of L.

The above characterization (especially points 4. and 5.) provides a wealth of examples of
antistructurally complete logics: e.g. the global modal logic S5, the k-valued  Lukasiewicz logics
 Lk, or the infinitary  Lukasiewicz logic  L∞.

With the above result in hand, we now proceed to describe the substructural logics Glivenko-
equivalent to classical logic. Here we say that a logic L′ is Glivenko-equivalent to L if

Γ `L′ ¬¬ϕ ⇐⇒ Γ `L ϕ.

Our weakest substructural logic is the logic SL (see [3]), which corresponds the bounded
nonassociative full Lambek calculus. It is introduced in a standard substructural language

{∧,∨,&,→, , 0̄, 1̄,>,⊥}

consisting of lattice conjunction and disjunction, strong conjunction & and its right and left
residuals→ and , and four constants, > being a lattice top and ⊥ a lattice bottom. Moreover,
we consider the following two defined negations: ¬ϕ = ϕ → 0̄ and ∼ϕ = ϕ  0̄. We identify
substructural logics with finitary extensions of SL. (The two implications and negations are
equivalent in extensions which validate the axiom of Exchange.)

Tomáš Lávička and Adam Přenosil
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Theorem. For every substructural logic L, the following are equivalent:

1. L is Glivenko-equivalent to classical logic, i.e. for every Γ ∪ {ϕ} ⊆ Fm

Γ `L ¬¬ϕ ⇐⇒ Γ `CL ϕ.

2. L “almost” has the inconsistency lemma of IL, i.e.

Γ, ϕ `L 0 ⇐⇒ Γ `L ¬ϕ, (3)

and moreover the following rules are valid in L:

¬(ϕ→ ψ) `¬(¬¬ϕ→ ∼¬ψ) (A)

¬(ϕ& ¬ψ) a`¬(ϕ ∧ ¬ψ). (Conj)

Furthermore, if 0 is an inconsistent set in L then both properties imply that αL = CL.

The main idea of a proof of the more interesting direction (2. implies 1.) is the following.
Extend L to L0 by a rule 0 ` ⊥ (i.e. 0 proves everything) and show that the antistructural com-
pletion of L0 is the classical logic. This can be established by purely syntactic means from the
assumptions using the following lemma connecting inconsistency lemmas, duals inconsistency
lemmas, and antistructural completions.1

Lemma. Let L be a substructural logic satisfying the inconsistency lemma of intuitionistic
logic (1). Then:

1. αL also satisfies (1).

2. αL satisfies the dual inconsistency lemma of classical logic, i.e. (2).

3. αL validates the law of excluded middle, i.e. ϕ ∨ ¬ϕ is its theorem.

4. As a consequence of (1) and (2), αL enjoys a deduction-detachment theorem in the form:

Γ, ϕ ` ψ ⇐⇒ Γ ` ¬(ϕ ∧ ¬ψ).

This theorem provides a simple strategy for finding the smallest axiomatic extension of a
given substructural logic which is Glivenko-equivalent to classical logic, a problem investigated
e.g. in [5]. Namely, given a substructural logic, first extend it by the rules (Conj) and (A) in
the form of axioms. Secondly, find axioms which ensure the validity of (3). To this end, use a
known deduction-detachment theorem.

Let us for example consider the full Lambek calculus with exchange FLe (i.e. SL with &
being commutative and associative). It is well known that this logic enjoys a local deduction-
detachment theorem which in particular yields the equivalence

Γ, ϕ `FLe
0 ⇐⇒ Γ `FLe ¬(ϕ ∧ 1̄)k for some k ∈ ω.

Thus we only need to add axioms ensuring that ¬(ϕ ∧ 1̄)k a` ¬ϕ in our extension. This can
be achieved e.g. by adding the axioms ¬(ϕ ∧ 1̄) → ¬ϕ and ¬(ϕ & ψ) → ¬(ϕ ∧ ψ). Moreover,
these axioms can be proved to hold in each extension of FLe Glivenko-equivalent to CL.

Finally, let us remark that inconsistency lemmas and antistructural completions can be used
in a similar fashion to establish the Glivenko-equivalence between  Lukasiewicz logic and Hájek’s
basic fuzzy logic BL.

1We remark that the lemma can proved in much grater generality than presented here.
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The proof-theoretic framework of nested sequents has been very successful in treating normal
modal logics. It is used, e.g., for providing modular calculi for all the logics in the so-called
modal cube, for tense logics, as well as for modal logics based on propositional intuitionistic
logic [2, 5, 9, 11]. The success of this framework might be due to the fact that it provides
an ideal meeting point between syntax and semantics: On the one hand, nested sequents can
be seen as purely syntactic extensions of the sequent framework with a structural connective
corresponding to the modal box. On the other hand, due to the inherent similarity of the
underlying tree structure to Kripke models, the nested sequent framework lends itself to very
direct methods of countermodel construction from failed proof search by essentially reading
off the model from a saturated and unprovable nested sequent. However the full power and
flexibility of this framework so far has not yet been harnessed in the context of non-normal
modal logics. While a first attempt at obtaining nested sequent calculi for non-normal modal
logics indeed yielded modular calculi for a reasonably large class of non-normal modal logics by
decomposing standard sequent rules [7, 8], the obtained calculi were not shown to inhibit the
analogous central spot between syntax and semantics for these logics. In particular, no formula
interpretation of the nested sequents was provided, and the calculi were not used to obtain
countermodels from failed proof search.

Here we propose an approach to rectify this situation by considering bimodal versions of
the non-normal modal logics. Such logics seem to have been considered originally in [1] in the
form of ability logics, but their usefulness extends far beyond this particular interpretation. The
main idea is that the neighbourhood semantics of non-normal monotone modal logics naturally
gives rise to a second modality, which conveniently is normal. Here we concentrate on one
of the most fundamental non-normal modal logics, monotone modal logic M [3, 4, 10], and
present a nested sequent calculus for its bimodal version. Notably, the nested sequents have a
formula interpretation in the bimodal language, and the calculus facilitates the construction of
countermodels from failed proof search in a slightly modified version. An additional benefit is
that the calculus conservatively extends both the standard nested sequent calculus for normal
modal K from [2, 11] and the nested sequent calculus for monotone modal logic M from [7, 8].

The set F of formulae of bimodal monotone modal logic is given by the following grammar,
built over a set V of propositional variables:

F ::= ⊥ | V | F → F | 〈∃∀]F | [∀∀]F

The remaining propositional connectives are defined by their usual clauses. The semantics are
given in terms of neighbourhood semantics in the following way, also compare [1, 3, 10].

Definition 1. A neighbourhood model is a tuple M = (W,N , J. K) consisting of a universe W , a

neighbourhood function N : W → 22W

, and a valuation J. K : V → 2W .
∗Work funded by WWTF grant MA16-28.
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Definition 2. The truth set of a formula A in a model M = (W,N , J. K) is written as JAK and
extends the valuation J. K of the model by the propositional clauses J⊥K = ∅ and JA→ BK =
JAKc ∪ JBK together with

• J〈∃∀]AK = {w ∈W | exists α ∈ N (w) s.t. for all v ∈ α : v ∈ JAK}

• J[∀∀]AK = {w ∈W | for all α ∈ N (w) and for all v ∈ α : v ∈ JAK}

If w ∈ JAK we also write M, w 
 A. A formula A is valid in M, if for every model JAK = W .

Hence, the formulation of the truth conditions for the modal operator of monomodal monotone
logic in terms of an “exists forall” clause naturally yields the definition of the operator [∀∀]
in terms of a “forall forall” clause. This can be rewritten into the clause J[∀∀]AK = {w ∈ W |
for all v ∈ ⋃N (w) : v ∈ JAK} which immediately yields normality of the modality [∀∀], since

we can take
⋃N (w) as the set of successors of w. In particular, it can be seen that the modality

[∀∀] behaves like a standard K-modality.
In order to capture both modalities 〈∃∀] and [∀∀] in the nested sequent framework, we

introduce the two corresponding structural connectives 〈.〉 and [.] respectively, with the peculiarity
that nested occurrences of these connectives are allowed only in the scope of the latter:

Definition 3. A nested sequent has the form

Γ⇒ ∆, 〈Σ1 ⇒ Π1〉 , . . . , 〈Σn ⇒ Πn〉 , [S1], . . . , [Sm] (1)

for n,m ≥ 0, where Γ⇒ ∆ as well as the Σi ⇒ Πi are standard sequents, and the Sj are nested
sequents. The formula interpretation of the above nested sequent is

∧
Γ→

(∨
∆ ∨

∨n

i=1
〈∃∀](

∧
Σi →

∨
Πi) ∨

∨m

j=1
[∀∀] ι(Sj)

)

where ι(Sj) is the formula interpretation of Sj .

In order to obtain a nested sequent calculus for M we need to make sure that applicability
of the propositional rules does not enforce normality of the interpretation of the structural
connective 〈.〉. In particular, we cannot permit application of, e.g., the initial sequent rule inside
the scope of 〈∃∀] – otherwise the formula interpretation of the nested sequent ⇒ 〈p⇒ p〉, i.e.,
〈∃∀](p→ p) would need to be a theorem, which is not the case in bimodal M.

Definition 4. The nested sequent rules of the calculus NM are given in Fig. 1. The rules can
be applied anywhere inside a nested sequent except for inside the scope of 〈.〉.

Soundness of the rules with respect to the formula interpretation can then be shown as usual
by obtaining a countermodel for the formula interpretation of the premiss(es) of a rule from a
countermodel for the formula interpretation of its conclusion:

Proposition 5. The rules of Fig. 1 are sound for M under the formula interpretation.

A relatively straightforward proof of completeness for the calculus NM can be obtained by
using the completeness result for the Hilbert-style axiomatisation of bimodal M in [1] as follows.
The axioms given there can be converted into rules of a cut-free standard sequent calculus
using, e.g., the methods of [6]. Then, cut-free derivations in the resulting sequent calculus can
be converted into cut-free derivations in the nested sequent calculus NM along the lines of [7].
Hence together with the previous proposition we obtain:

Björn Lellmann
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Γ, p⇒ p,∆
init

Γ,⊥ ⇒ ∆
⊥L

Γ, A⇒ ∆, B

Γ⇒ ∆, A→ B
→R

Γ, B ⇒ ∆ Γ⇒ ∆, A

Γ, A→ B ⇒ ∆
→L

Γ⇒ ∆, [⇒ A]

Γ⇒ ∆, [∀∀]A [∀∀]R
Γ⇒ ∆, [Σ, A⇒ Π]

Γ, [∀∀]A⇒ ∆, [Σ⇒ Π]
[∀∀]L

Γ⇒ ∆, 〈 ⇒ A〉
Γ⇒ ∆, 〈∃∀]A 〈∃∀]R

Γ⇒ ∆, [Σ, A⇒ Π]

Γ, 〈∃∀]A⇒ ∆, 〈Σ⇒ Π〉 〈∃∀]L
Γ⇒ ∆, [Σ⇒ Π]

Γ⇒ ∆, [∀∀]A, 〈Σ⇒ Π〉 W

Γ, A,A⇒ ∆

Γ, A⇒ ∆
ICL

Γ⇒ ∆, A

Γ⇒ ∆, A
ICR

Γ⇒ ∆
Γ,Σ⇒ ∆,Π

W

Figure 1: The nested sequent rules of the calculus NM for the bimodal system.

Theorem 6. The calculus in Fig. 1 is sound and complete for bimodal monotone modal logic,
i.e.: A formula A is a theorem of M, if and only if the nested sequent ⇒ A is derivable in NM.

As an interesting corollary of the sketched completeness proof we even obtain cut-free
completeness of the calculus NM restricted to linear nested sequents, i.e., the subclass of nested
sequents where we restrict m to be at most 1 in 1 along the lines of [7].

Due to the structure of the rules of NM, in a derivation of a formula of the [∀∀]-fragment of
M neither the connective 〈∃∀] nor its structural version 〈.〉 occur. Hence, as a further corollary
of Thm. 6, the calculus obtained by dropping the rules 〈∃∀]R, 〈∃∀]L,W from NM is complete for
this fragment, which is normal modal logic K. Since the rules [∀∀]R, [∀∀]L are exactly the modal
right and left rules in the standard nested sequent calculus for modal logic K from [2, 11], this
immediately yields a completeness proof for that calculus seen as a fragment of NM.

Moreover, by dropping the rules [∀∀]R, [∀∀]L,W from NM we obtain the calculus for
monomodal M from [7, 8]. Hence we also obtain a completeness proof for that calculus,
together with a formula interpretation, albeit the latter only in the language extended with [∀∀].
Thus the calculus NM can be seen as a generalisation and combination of both the standard
nested sequent calculus for normal modal logic K and the linear nested sequent calculus for
monomodal monotone logic M. This seems to support the intuition that bimodal M can be seen
as a refinement of modal logic K, where the set of successor states

⋃N (w) is further structured
by N , a structure which is accessible through the additional connective 〈∃∀].

So far the presented nested sequent calculus eliminates one of the shortcomings of the calculi
in [7, 8], namely the lack of a formula interpretation. In addition, it facilitates a semantic
proof of completeness by constructing a countermodel from failed proof search. The intuition
is the same as for normal modal logics: the nodes in a saturated unprovable nested sequent
yield the worlds of a Kripke-model. Here the nodes of a nested sequent are separated by the [.]
operator, so that every node contains a standard sequent and a multiset of structures 〈Σi ⇒ Πi〉.
The successor relation given by

⋃N (w) then corresponds to the immediate successor relation
between nodes in the nested sequent. The main technical challenge is the construction of the
neighbourhood function N itself. This can be done by adding annotations in the form of a

set of formulae to every node in the nested sequent, written as Γ
S⇒ ∆. Further, to facilitate

backwards proof search we absorb contraction into the rules by copying the principal formulae
into the premiss(es). The so modified annotated versions of the interesting rules are given in
Fig. 2. In all the other rules the annotations are preserved going from conclusion to premiss(es).
In the following we write `(w) for the annotation of the component v of a nested sequent.

Countermodels for non-normal modal logics via nested sequents
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Γ⇒ ∆, [∀∀]A, [ ∅⇒ A]

Γ⇒ ∆, [∀∀]A [∀∀]∗R
Γ, 〈∃∀]A⇒ ∆, [Σ, A

{A}⇒ Π]

Γ, 〈∃∀]A⇒ ∆, 〈Σ⇒ Π〉 〈∃∀]∗L
Γ⇒ ∆, [∀∀]A, [Σ ∅⇒ Π]

Γ⇒ ∆, [∀∀]A, 〈Σ⇒ Π〉 W
∗

Figure 2: The interesting rules of the annotated variant N ∗M of the system

Definition 7. The model generated by a nested sequent S is the model MS = (W,N , J. K) where
W is the set of components (nodes) of S, the valuation is defined by: if w ∈W , then w ∈ JpK
iff w contains [Γ

Σ⇒ ∆] and p ∈ Γ. Finally, the neighbourhood function N (w) is defined as
follows. Let Cw be the set of immediate successors of w, and let `[Cw] be the set of labels of
nodes in Cw. Then let Lw := { {v ∈ C(w) | `(v) = Σ} | Σ ∈ `[Cw]}. Now, N (w) is defined as
(Lw ∪ {Cw}) r {∅} if there is a formula 〈∃∀]A ∈ ∆, and Lw ∪ {Cw} ∪ {∅} otherwise.

Thus, disregarding the empty set, the set of neighbourhoods of a node in a nested sequent
includes the set of all its children, as well as every set of children labelled with the same label.
Whether it contains the empty set or not depends on whether there is a formula of the form
〈∃∀]A in its succedent. This construction then yields countermodels from failed proof search:

Theorem 8. If S is a saturated nested sequent obtained by backwards proof search from a
non-nested sequent Γ⇒ ∆, then MS is a neighbourhood model, and the root w of S satisfies for
every formula A: if A ∈ Γ, then w ∈ JAK, and if A ∈ ∆, the w /∈ JAK.

An implementation of the resulting proof search procedure which yields either a derivation
or a countermodel is available under http://subsell.logic.at/bprover/nnProver/.

While here we considered only monotone logic M, we expect the calculus NM to be extensible
to a large class of extensions of M. Hence it should provide the basis for an ideal meeting ground
for syntax and semantics in the context of non-normal monotone modal logics.
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Abstract

An algebra-valued model of set theory is called loyal to its algebra if the model and its
algebra have the same propositional logic; it is called faithful if all elements of the algebra
are truth values of a sentence of the language of set theory in the model. We observe that
non-trivial automorphisms of the algebra result in models that are not faithful and apply
this to construct three classes of illoyal models: the tail stretches, the transposition twists,
and the maximal twists.

The construction of algebra-valued models of set theory starts from an algebra A and a model
V of set theory and forms an A-valued model of set theory that reflects both the set theory of
V and the logic of A. This construction is the natural generalisation of Boolean-valued models,
Heyting-valued models, lattice-valued models, and orthomodular-valued models (Bell, 2011;
Grayson, 1979; Ozawa, 2017; Titani, 1999) and was developed by Löwe and Tarafder (2015).

Recently, Passmann (2018) introduced the terms “loyalty” and “faithfulness” while studying
the precise relationship between the logic of the algebra A and the logical phenomena witnessed
in the A-valued model of set theory. The model constructed by Löwe and Tarafder (2015) is
both loyal and faithful to PS3.

In this talk, we shall give elementary constructions to produce illoyal models by stretching
and twisting Boolean algebras. After we give the basic definitions, we remind the audience of the
construction of algebra-valued models of set theory. We then introduce our main technique: a
non-trivial automorphisms of an algebra A excludes values from being truth values of sentences
in the A-valued model of set theory. Finally, we apply this technique to produce three classes
of models: tail stretches, transposition twists, and maximal twists. This talk is based on Löwe
et al. (2018).

1 Basic definitions
Algebras. Let Λ be a set of logical connectives; we shall assume that {∧, ∨,0,1} ⊆ Λ ⊆
{∧, ∨, →, ¬,0,1}. An algebra A with underlying set A is called a Λ-algebra if it has one operation
for each of the logical connectives in Λ such that (A, ∧, ∨,0,1) is a distributive lattice; we can
define ≤ on A by x ≤ y if and only if x∧ y = x. An element a ∈ A is an atom if it is ≤-minimal
in A\{0}; we write At(A) for the set of atoms in A. If Λ = {∧, ∨, →,0,1}, we call A an
implication algebra and if Λ = {∧, ∨, → ¬,0,1}, we call A an implication-negation algebra.

We call a Λ-algebra A with underlying set A complete if for every X ⊆ A, the ≤-supremum
and ≤-infimum exist; in this case, we write

∨
X and

∧
X for these elements of A. A complete

Λ-algebra A is called atomic if for every a ∈ A, there is an X ⊆ At(A) such that a =
∨

X.
∗This research was partially supported by the Marie Skłodowska-Curie fellowship REGPROP (706219) funded

by the European Commission at the Universität Hamburg. The authors would like to thank Nick Bezhanishvili
and Lorenzo Galeotti for various discussions about Heyting algebras and their logics.
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Boolean algebras B = (B, ∧, ∨, ¬,0,1) and a Heyting algebras H = (H, ∧, ∨, →,0,1) are defined
as usual.

On an atomic distributive lattice A = (A, ∧, ∨,0,1), we have a canonical definition for
a negation operation, the complementation negation: since A is atomic, every element a ∈
A is uniquely represented by a set X ⊆ At(A) such that a =

∨
X. Then we define the

complementation negation by ¬c(
∨

X) :=
∨{t ∈ At(A) ; t /∈ X}.

Homomorphisms, assignments, & translations. For any two Λ-algebras A and B, a
map f : A → B is called a Λ-homomorphism if it preserves all connectives in Λ; it is called
a Λ-isomorphism if it is a bijective Λ-homomorphism; isomorphisms from A to A are called
Λ-automorphisms.

Since the propositional formulas LΛ are generated from the propositional variables P , we can
think of any Λ-homomorphism defined on LΛ as a function on P , homomorphically extended
to all of LΛ. If A is a Λ-algebra with underlying set A, we say that Λ-homomorphisms ι :
LΛ → A are A-assignments; if S is a set of non-logical symbols, we say that Λ-homomorphisms
T : LΛ → SentΛ,S are S-translations.

Using assignments, we can define the propositional logic of A as

L(A) := {φ ∈ LΛ ; ι(φ) = 1 for all A-assignments ι}.

Note that if B is a Boolean algebra, then L(B) = CPC.

Algebra-valued structures and their propositional logic. If A is a Λ-algebra and S is
a set of non-logical symbols, then any Λ-homomorphism J·K : SentΛ,S → A will be called an
A-valued S-structure. Note that if S′ ⊆ S and J·K is an A-valued S-structure, then J·K↾SentΛ,S′

is an A-valued S′-structure. We define the propositional logic of J·K as

L(J·K) := {φ ∈ LΛ ; JT (φ)K = 1 for all S-translations T}.

Note that if T is an S-translation and J·K is an A-valued S-structure, then φ 7→ JT (φ)K is an
A-assignment, so

L(A) ⊆ L(J·K). (†)
Clearly, ran(J·K) ⊆ A is closed under all operations in Λ (since J·K is a homomorphism) and
thus defines a sub-Λ-algebra AJ·K of A. The A-assignments that are of the form φ 7→ JT (φ)K
are exactly the AJ·K-assignments, so we obtain L(J·K) = L(AJ·K).

Loyalty & faithfulness. An A-valued S-structure J·K is called loyal to A if the converse
of (†) holds, i.e., L(A) = L(J·K = 1); it is called faithful to A if for every a ∈ A, there is a
φ ∈ SentΛ,S such that JφK = a; equivalently, if AJ·K = A. The two notions central for our paper
were introduced by Passmann (2018).

Lemma 1. If J·K is faithful to A, then it is loyal to A.

Algebra-valued models of set theory. We will work with the general construction of
an algebra-valued model of set theory following Löwe and Tarafder (2015), where the precise
definitions can be found.

If V is a model of set theory and A is any set, then we construct a universe of names
Name(V, A) by transfinite recursion. We then let SV,A be the set of non-logical symbols con-
sisting of the binary relation symbol ∈ and a constant symbol for every name in Name(V, A).
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If A is a Λ-algebra with underlying set A, we can now define a map J·KA assigning to each
φ ∈ LΛ,SV,A

a truth value in A by recursion, see Löwe and Tarafder (2015) for the precise
definitions. As set theorists are usually interested in the restriction to SentΛ,S , we shall use the
notation J·KA to refer to this restricted A-valued {∈}-structure.

The results for algebra-valued models of set theory were originally proved for Boolean alge-
bras, then extended to Heyting algebras:

Theorem 2. If V is a model of set theory, B = (B, ∧, ∨, →, ¬,0,1) is a Boolean algebra or
Heyting algebra, and φ is any axiom of ZF, then JφKB = 1.

Lemma 3. Let H = (H, ∧, ∨, →,0,1) be a Heyting algebra and V be a model of set theory.
Then J·KName

H is faithful to H (and hence, loyal to H).

Automorphisms and algebra-valued models of set theory. Given a model of set theory
V and any Λ-algebras A and B and a Λ-homomorphism f : A → B, we can define a map f̂ :
Name(V, A) → Name(V, B) by ∈-recursion such that f(Jφ(u1, . . . , un)KA) = Jφ(f̂(u1), . . . , f̂(un))KB
for all φ ∈ LΛ,{∈} with n free variables and u1, . . . , un ∈ Name(V, A). In particular, if f : A → B
is a complete Λ-isomorphism and φ ∈ SentΛ,{∈}, then f(JφKA) = JφKB. Hence, if f : A → A is a
complete Λ-automorphism with f(a) ̸= a, then there is no φ ∈ SentΛ,{∈} such that JφKA = a.

Proposition 4. If A = (A, ∧, ∨,0,1) is an atomic distributive lattice and a ∈ A\{0,1}, then
there is a {∧, ∨, ¬c,0,1}-automorphism f of A such that f(a) ̸= a.

Note that every J·KB is loyal but not faithful for any non-trivial atomic Boolean algebra B.

2 Stretching and twisting the loyalty of Boolean algebras
In this section, we start from an atomic, complete Boolean algebra B and modify it, to get an
algebra A that gives rise to an illoyal J·KA. The first construction is the well-known construction
of tail extensions of Boolean algebras to obtain a Heyting algebra. The other two constructions
are negation twists: in these, we interpret B as a Boolean implication algebra via the definition
a → b := ¬a ∨ b, and then add a new, twisted negation to it that changes its logic.

What can be considered a negation? When twisting the negation, we need to define a
sensible negation. Dunn (1995) lists Hazen’s subminimal negation as the bottom of his Kite
of Negations: only the rule of contraposition, i.e., a ≤ b implies ¬b ≤ ¬a, is required. In the
following, we shall use this as a necessary requirement to be a reasonable candidate for negation.

Tail stretches Let B = (B, ∧, ∨, →, ¬,0,1) be a Boolean algebra and let 1∗ /∈ B be an
additional element that we add to the top of B to form the tail stretch H as follows: H :=
B ∪ {1∗}, the complete lattice structure of H is the order sum of B and the one element lattice
{1∗}, and →∗ is defined as follows:1

a →∗ b :=





a → b if a, b ∈ B such that a ̸≤ b,
1∗ if a, b ∈ B with a ≤ b or if b = 1∗,
b if a = 1∗.

1In H, we use the (Heyting algebra) definition ¬Hh := h →∗ 0 to define a negation; note that if 0 ̸= b ∈ B,
¬Hb = ¬b, but ¬H0 = 1∗ ̸= 1 = ¬0.

Constructing illoyal algebra-valued models of set theory
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Transposition twists Let B be an atomic Boolean algebra, a, b ∈ At(B) with a ̸= b, and π
be the transposition that transposes a and b. We now define a twisted negation by

¬π(
∨

X) :=
∨

{π(t) ∈ At(B) ; t /∈ X}

and let the π-twist of B be Bπ := (B, ∧, ∨, →, ¬π,0,1).2 We observe that the twisted negation
¬π satisfies the rule of contraposition.

Maximal twists Again, let B be an atomic Boolean algebra with more than two elements
and define the maximal negation by

¬mb :=

{
1 if b ̸= 1 and
0 if b = 1

for every b ∈ B. We let the maximal twist of B be Bm := (B, ∧, ∨, →, ¬m,0,1); once more
observe that the maximal negation ¬m satisfies the rule of contraposition.

The following is our main result, which is proved by providing non-trivial automorphisms
for each of the three constructions.

Theorem 5. If B is a Boolean algebra, then its tail stretch, its transposition twist and its
maximal twist are not loyal. In particular, the logics of the transposition twist and of the
maximal twist is CPC.
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A morphism f : A → B in a category is an epimorphism [5, 10, 11] provided it is right-
cancellative, i.e. that for every pair of morphisms g, h : B→ C,

if g ◦ f = h ◦ f , then g = h.

We will focus on epimorphisms in varieties K of algebras, which we regard as categories whose
objects are the members of K and whose morphisms are the algebraic homomorphisms. It is
immediate that in such categories all surjective morphisms are indeed epimorphisms. However
the converse need not be true in general: for instance, the embedding of three-element chain
into the four-element diamond happens to be a non-surjective epimorphism in the variety of
distributive lattices. Accordingly, a variety K of algebras is said to have the epimorphism
surjectivity property (ES property for short), if its epimorphisms are surjective.

The failure of the ES property in distributive lattices can be explained in logical terms as
the observation that complements are implicitly, but not explicitly, definable in distributive
lattices, in the sense that when complements exist they are uniquely determined, even if there
is no unary term witnessing their explicit definition. In general, the algebraic counterpart
K of an algebraizable logic ` [4] has the ES property if and only if ` satisfies the so-called
(infinite deductive) Beth definability property, i.e. the demand that all implicit definitions in
` can be turned explicit [3, 9, 17]. This raises the question of determining which varieties of
Heyting algebras have the ES property or, equivalently, which intermediate logics have the Beth
definability property.

Classical results by Kreisel and Maksimova, respectively, state that all varieties of Heyting
algebras have a weak form of the ES property [12], while only finitely many of them have a strong
version of it [6, 14, 15, 16]. Nonethelss the standard ES property in varieties of Heyting algebras
seems to defy simple characterizations, and very little is known about it. One of the few general
results about the topic states that the ES property holds for all varieties with bounded depth
[2, Thm. 5.3], yielding in particular a continuum of varieties with the ES property. Remarkably,
this observation has been recently generalized [18, Thm. 13] beyond the setting of integral and
distributive residuated lattices [7] as follows:

Theorem 1 (M., Raftery and Wannenburg). Let K be a variety of commutative square-
increasing (involutive) residuated lattices. If the finitely subdirectly irreducible members of K
have finite depth and are generated by their negative cones, then K has the ES property.

On the other hand, the first (ad hoc) example of a variety of Heyting algebras lacking the
ES property was discovered in [2, Cor. 6.2]. We enhance that observation by ruling out the
ES property for a range of well-known varieties. To this end, let RN be the Rieger-Nishimura
lattice. Relyng on Esakia duality we establish the following:
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Theorem 2.

(i) For every 2 6 n ∈ ω, the variety of all Heyting algebras of width 6 n lacks the ES property.

(ii) The variety V(RN) lacks the ES property, and has a continuum of locally finite subvari-
eties without the ES property.

Recall that the Kuznetsov-Gerčiu variety KG is the variety generated by finite sums of cyclic
(i.e. one-generated) Heyting algebras [8, 13, 1]. As a case study, we will present a full description
of subvarieties of KG with the ES property. This yields an alternative proof of the well-known
fact that varieties of Gödel algebras have the ES property.

References

[1] G. Bezhanishvili, N. Bezhanishvili, and D. de Jongh. The Kuznetsov-Gerciu and Rieger-Nishimura
logics: the boundaries of the finite model property. Logic and Logical Philosophy, 17:73–110, 2008.

[2] G. Bezhanishvili, T. Moraschini, and J. G. Raftery. Epimorphisms in varieties of residuated
structures. Journal of Algebra, 492:185–211, 2017.

[3] W. J. Blok and E. Hoogland. The Beth property in Algebraic Logic. Studia Logica, 83(1–3):49–90,
2006.

[4] W. J. Blok and D. Pigozzi. Algebraizable logics, volume 396 of Mem. Amer. Math. Soc. A.M.S.,
Providence, January 1989.

[5] M. Campercholi. Dominions and primitive positive functions. J. Symbolic Logic, 83(1):40–54, 2018.

[6] D. M. Gabbay and L. Maksimova. Interpolation and definability, volume 46 of Oxford Logic Guides.
The Clarendon Press Oxford University Press, Oxford, 2005. Modal and intuitionistic logics.

[7] N. Galatos, P. Jipsen, T. Kowalski, and H. Ono. Residuated Lattices: an algebraic glimpse at
substructural logics, vol. 151 of Studies in Logic and the Foundations of Mathematics. Elsevier,
Amsterdam, 2007.
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PBZ∗–lattices are bounded lattice–ordered algebraic structures arising in the study of quan-
tum logics. By definition, PBZ∗–lattices are the paraorthomodular Brouwer–Zadeh lattices in
which each pair consisting of an element and its Kleene complement fulfills the Strong de Mor-
gan condition. They include orthomodular lattices, which are exactly the PBZ∗–lattices without
unsharp elements, as well as antiortholattices, which are exactly the PBZ∗–lattices whose only
sharp elements are 0 and 1. See below the formal definitions. Recall that the sharp elements
of a bounded involution lattice are the elements having their involutions as bounded lattice
complements; more precisely, with the terminology of [2], this is the notion of a Kleene–sharp
element, and, in Brouwer–Zadeh lattices, we have also the notions of a Brouwer–sharp and a 3–
sharp element; however, in the particular case of PBZ∗–lattices, Kleene–sharp, Brouwer–sharp
and 3–sharp elements coincide. All the results in this abstract that are not cited from other
papers and not mentioned as being immediate are new and original.

We will designate algebras by their underlying sets and denote by N the set of the natural
numbers and by N∗ = N \ {0}. We recall the following definitions and immediate properties:

• a bounded involution lattice (in brief, BI–lattice) is an algebra (L,∧,∨, ·′, 0, 1) of type
(2, 2, 1, 0, 0) such that (L,∧,∨, 0, 1) is a bounded lattice with partial order ≤, a′′ = a for
all a ∈ L, and a ≤ b implies b′ ≤ a′ for all a, b ∈ L; the operation ·′ of a BI–lattice is
called involution;

• if an algebra L has a BI–lattice reduct, then we denote by S(L) the set of the sharp
elements of L, namely S(L) = {x ∈ L | x ∧ x′ = 0};

• an ortholattice is a BI–lattice L such that S(L) = L;

• an orthomodular lattice is an ortholattice L such that, for all a, b ∈ L, a ≤ b implies
a ∨ (a′ ∧ b) = b;

• a pseudo–Kleene algebra is a BI–lattice L satisfying, for all a, b ∈ L: a ∧ a′ ≤ b ∨ b′;
the involution of a pseudo–Kleene algebra is called Kleene complement; recall that dis-
tributive pseudo–Kleene algebras are called Kleene algebras or Kleene lattices; clearly, any
ortholattice is a pseudo–Kleene algebra;

• an algebra L having a BI–lattice reduct is said to be paraorthomodular iff, for all a, b ∈ L,
whenever a ≤ b and a′ ∧ b = 0, it follows that a = b; note that any orthomodular lattice
is a paraorthomodular pseudo–Kleene algebra, but the converse does not hold; however,
if L is an ortholattice, then: L is orthomodular iff L is paraorthomodular;

∗This work was supported by the research grant Proprietà d‘Ordine Nella Semantica Algebrica delle Logiche

Non–classiche of Università degli Studi di Cagliari, Regione Autonoma della Sardegna, L. R. 7/2007, n. 7, 2015,
CUP: F72F16002920002.
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• a Brouwer–Zadeh lattice (in brief, BZ–lattice) is an algebra (L,∧,∨, ·′, ·∼, 0, 1) of type
(2, 2, 1, 1, 0, 0) such that (L,∧,∨, ·′, 0, 1) is a pseudo–Kleene algebra and, for all a, b ∈

L:

{

a ∧ a∼ = 0; a ≤ a∼∼;

a∼′ = a∼∼; a ≤ b implies b∼ ≤ a∼;

• a BZ∗–lattice is a BZ–lattice that satisfies condition (∗) : (a ∧ a′)∼ ≤ a∼ ∨ a′∼, written
in equivalent form: (∗) : (a ∧ a′)∼ = a∼ ∨ a′∼;

• a PBZ∗–lattice is a paraorthomodular BZ∗–lattice;

• if we extend their signature by adding a Brouwer complement equalling their Kleene
complement, then ortholattices become BZ–lattices and orthomodular lattices become
PBZ∗–lattices; in any PBZ∗–lattice L, S(L) is the largest orthomodular subalgebra of L;

• an antiortholattice is a PBZ∗–lattice L such that S(L) = {0, 1}; antiortholattices are
exactly the PBZ∗–lattices L whose Brower complement is defined by: 0∼ = 1 and x∼ = 0
for all x ∈ L\ {0}; this Brower complement is called the trivial Brower complement; note,
also, that any pseudo–Kleene algebra L with S(L) = {0, 1} becomes an antiortholattice
when endowed with the trivial Brower complement.

PBZ∗–lattices form a variety, which we will denote by PBZL∗. We will also denote by
BA, OML, OL and PKA the varieties of Boolean algebras, orthomodular lattices, ortholattices
and pseudo–Kleene algebras. BA ( OML ( OL ( PKA and, with the extended signature,
OML = {L ∈ PBZL∗ | L � x′ ≈ x∼}. AOL will denote the class of antiortholattices, which is
a proper universal class, since not only it is not closed with respect to direct products, but, as
we have proven, each of its members has the bounded lattice reduct directly indecomposable.
We also denote by DIST the variety of distributive PBZ∗–lattices.

We consider the following identities in the language of BZ–lattices, where, for any element
x of a BZ–lattice, we denote by 2x = x′∼ and by 3x = x∼∼:

SK x ∧ 3y ≤ 2x ∨ y

SDM (x ∧ y)∼ ≈ x∼ ∨ y∼ (the Strong de Morgan law)
WSDM (x ∧ y∼)∼ ≈ x∼ ∨3y (weak SDM)

S2 (x ∧ (y ∧ y′)∼)∼ ≈ x∼ ∨ 3(y ∧ y′)
S3 (x ∧ 3(y ∧ y′))∼ ≈ x∼ ∨ (y ∧ y′)∼

J0 x ≈ (x ∧ y∼) ∨ (x ∧3y)
J2 x ≈ (x ∧ (y ∧ y′)∼) ∨ (x ∧ 3(y ∧ y′))

Clearly, J0 implies J2 and SDM implies WSDM, which in turn implies S2 and S3. We
have proven that, in what follows, whenever we state that a subvariety of PBZL∗ is axiomatized
relative to PBZL∗ by axioms γ1, . . . , γn for some n ∈ N∗, we have that, for each k ∈ [1, n], γk

is independent from {γi | i ∈ [1, n] \ {k}}.
For any class C of similar algebras, the variety generated by C will be denoted by V (C);

so V (C) = HSP(C), where H, S and P are the usual class operators; for any algebra A,
V ({A}) will be streamlined to V (A). We denote by SDM the variety of the PBZ∗–lattices
that satisfy the Strong de Morgan condition, and by SAOL = SDM ∩ V (AOL). Note that
OML ∩ V (AOL) = BA, hence DIST ⊆ V (AOL). In the lattice of subvarieties of PBZL∗, BA is
the single atom and it has only two covers: its single orthomodular cover, V (MO2) [1], where
MO2 is the modular ortholattice with four atoms and length three (see the notation in Section
2 below), and V (D3) [2], where D3 is the three–element antiortholattice chain (see Section 1
below); furthermore, D3 belongs to any subvariety of PBZL∗ which is not included in OML,
hence OML ∨ V (D3) is the single cover of OML in this subvariety lattice.
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1 Ordinal Sums

Let us denote by Dn the n–element chain for any n ∈ N∗, which clearly becomes an an-
tiortholattice with its dual lattice automorphism as Kleene complement and the trivial Brower
complement. Moreover, any pseudo–Kleene algebra with the 0 meet–irreducible becomes an
antiortholattice when endowed with the trivial Brower complement; furthermore, if we denote
by L ⊕ M the ordinal sum of a lattice L with largest element and a lattice M with smallest
element, obtained by glueing L with M at the largest element of L and the smallest element
of M , then, for any pseudo–Kleene algebra K and any non–trivial bounded lattice L, if Ld

is the dual of L, then L ⊕ K ⊕ Ld becomes an antiortholattice, with the clear definition for
the Kleene complement and the trivial Brower complement. If C ⊆ PKA, then we denote by
D2 ⊕ C ⊕ D2 = {D2 ⊕ K ⊕ D2 | K ∈ C} ( AOL ∩ SAOL ( AOL.

Recall from [3] that, for any n ∈ N with n ≥ 5, V (D3) = V (D4) ( V (D5) = V (Dn) =
DIST ∩ SAOL ( DIST = V ({Dκ

2 ⊕ Dκ
2 , Dκ

2 ⊕ D2 ⊕ Dκ
2 | κ a cardinal number}) and note that

BA = V (D2) ( V (D3) and, for each j ∈ {0, 1}, D2j+1 = D
j
2 ⊕D

j
2 and D2j+2 = D

j
2 ⊕ D2 ⊕ D

j
2.

We have proven the following:

• BA = V (D2) ( V (D3) = V (D4) ( . . . ( V (Dn
2 ⊕ Dn

2 ) ( V (Dn
2 ⊕ D2 ⊕ Dn

2 ) (

V (Dn+1
2 ⊕Dn+1

2 ) ( V (Dn+1
2 ⊕D2 ⊕Dn+1

2 ) ( . . . ( V ({Dκ
2 ⊕Dκ

2 | κ a cardinal number})
= V ({Dκ

2 ⊕D2⊕Dκ
2 | κ a cardinal number}) = DIST ( DIST∨SAOL ( V (AOL), where

n designates an arbitrary natural number with n ≥ 2;

• SAOL ∩ DIST = V (D5) = V (D2 ⊕ BA ⊕ D2) ( V (D2 ⊕ OML ⊕ D2) ( V (D2 ⊕ OL ⊕
D2) ( V (D2 ⊕ PKA ⊕ D2) = SAOL ( DIST ∨ SAOL = V ((D2 ⊕ PKA ⊕ D2) ∪ {Dκ

2 ⊕
Dκ

2 | κ a cardinal number}), the latter equality following from the above;

• OML ∨ V (D3) ( OML ∨ V (D5) = OML ∨ (DIST ∩ SAOL) = (OML ∨ DIST) ∩ (OML ∨
SAOL) ( OML ∨ DIST, OML ∨ SAOL ( OML ∨ DIST ∨ SAOL ( OML ∨ V (AOL) (

SDM ∨ V (AOL) ) SDM ) OML ∨ SAOL, where the second equality follows from the
more general fact that:

Theorem 1. L is a sublattice of the lattice of subvarieties of PBZL∗ such that all elements of
L except the largest, if L has a largest element, are either subvarieties of OML or of V (AOL),
and the sublattice of L formed of its elements which are subvarieties of OML is distributive,
then L is distributive.

We know from the above that OML ∨ V (AOL) is not a cover of OML in the lattice of
subvarieties of PBZL∗. The previous theorem shows that OML ∨ V (AOL) is not a cover
of V (AOL), either, because, for any subvariety V of OML such that BA ( V ( OML,
{BA, V, OML, V (AOL), OML ∨ V (AOL)} fails to be a sublattice of PBZL∗, which can only
happen if V (AOL) ( V ∨ V (AOL) ( OML ∨ V (AOL). The theorem above also implies:

Corollary 2. The lattice of subvarieties of V (AOL) is distributive.

2 Horizontal Sums and Axiomatizations

We denote by A�B the horizontal sum of two non–trivial bounded lattices A and B, obtained
by glueing them at their smallest elements, as well as at their largest elements; clearly, the
horizontal sum is commutative and has D2 as a neutral element; note that, in the same way,
one defines the horizontal sum of an arbitrary family of non–trivial bounded lattices. Whenever
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A is a non–trivial orthomodular lattice and B is a non–trivial PBZ∗–lattice, A � B becomes a
PBZ∗–lattice having A and B as subalgebras, that is with its Kleene and Brower complement
restricting to those of A and B, respectively; similarly, the horizontal sum of an arbitrary
family of PBZ∗–lattices becomes a PBZ∗–lattice whenever all members of that family excepting
at most one are orthomodular. If C ⊆ OML and D ⊆ PBZL∗, then we denote by C � D =
{D1} ∪ {A � B | A ∈ C \ {D1}, B ∈ D \ {D1}} ⊆ PBZL∗.

For any cardinal number κ, we denote by MOκ = �i<κD2
2 ∈ OML, where, by convention,

we let MO0 = D2. All PBZ∗–lattices L having the elements of L \ {0, 1} join–irreducible are of
the form L = MOκ � A for some cardinal number κ and some antiortholattice chain A, hence
they are horizontal sums of families of Boolean algebras with antiortholattice chains, so, by a
result in [3], the variety they generate is generated by its finite members, from which, noticing
that, for any A ∈ OML \ {D1, D2} and any non–trivial B ∈ AOL, the horizontal sum A � B

is subdirectly irreducible exactly when B is subdirectly irreducible and using and the fact that
the only subdirectly irreducible antiortholattice chains are D1, D2, D3, D4 and D5, we obtain
that V ({L ∈ PBZL∗ | L \ {0, 1} ⊆ Ji(L)}) = V ({MOn � Dk | n ∈ N, k ∈ [2, 5]}), where we
have denoted by Ji(L) the set of the join–irreducibles of an arbitrary lattice L.

We have also proven that:

• OML ∨ V (AOL) ( V (OML � AOL) ( V (OML � V (AOL)) ( PBZL∗;

• the class of the members of OML � V (AOL) that satisfy J2 is OML � AOL, hence
V (OML � AOL) is included in the variety axiomatized by J2 relative to V (OML �

V (AOL)).

We have obtained the following axiomatizations:

Theorem 3. (i) V (AOL) is axiomatized by J0 relative to PBZL∗.

(ii) OML ∨ V (D3) is axiomatized by SK, WSDM and J2 relative to PBZL∗.

(iii) OML ∨ SAOL is axiomatized by SDM and J2 relative to PBZL∗.

(iv) OML ∨ V (AOL) is axiomatized by WSDM and J2 relative to PBZL∗.

(v) OML ∨ V (AOL) is axiomatized by WSDM relative to V (OML � AOL).

(vi) V (OML � AOL) is axiomatized by S2, S3 and J2 relative to PBZL∗.

In Theorem 3, (i) is a streamlining of the axiomatization of V (AOL) obtained in [2]; we
have obtained (iv) both by a direct proof and as a corollary of (v) and (vi).
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1 Introduction

Possibilistic logic [5, 6]) is a well-known uncertainty logic to reasoning with graded (epistemic)
beliefs on classical propositions by means of necessity and possiblity measures. In this setting,
epistemic states of an agent are represented by possibility distributions. If W is a set of classical
evaluations or possible worlds, for a given propositional language, a normalized possibility
distribution on W is a mapping π : W → [0, 1], with supw∈W π(w) = 1. π ranks interpretations
according to its plausibility level: π(w) = 0 means that w is rejected, π(w) = 1 means that w
is fully plausible, while π(w) < π(w′) means that w′ is more plausible than w. A possibility
distribution π induces a pair of dual possibility and necessity measures on propositions, defined
respectively as:

Π(ϕ) = sup{π(w) | w ∈W,w(ϕ) = 1}
N(ϕ) = inf{1− π(w) | w ∈W,w(ϕ) = 0} .

N(ϕ) measures to what degree ϕ can be considered certain given the given epistemic, while
Π(ϕ) measures the degree in which ϕ is plausible or possible. Both measures are dual in the
sense that Π(ϕ) = 1 −N(¬ϕ), so that the degree of possibility of a proposition ϕ equates the
degree in which ¬ϕ is not certain. If the normalized condition over possibility distribution is
dropped, then we gain the ability to deal with inconsistency. In [7], a possibility distribution
which satisfies supw∈W π(w) < 1 is called sub-normal. In this case, given a set W of classical
interpretations, a degree of inconsistency can be defined in the following way:

inc(W ) = 1− sup
w∈W

π(w)

When the normalised possibility distribution π is {0, 1}-valued, i.e. when π is the characteristic
function of a subset ∅ 6= E ⊆W , then the structure (W,π), or better (W,E), can be seen in fact
as a KD45 frame. In fact, it is folklore that modal logic KD45, which is sound and complete
w.r.t. the class of Kripke frames (W,R) where R is a serial, euclidean and transitive binary
relation, also has a simplified semantics given by the subclass of frames (W,E), where E is a
non-empty subset of W (understanding E as its corresponding binary relation RE defined as
RE(w,w′) iff w′ ∈ E).

When we go beyond the classical framework of Boolean algebras of events to many-valued
frameworks, one has to come up with appropriate extensions of the notion of necessity and pos-
sibility measures for many-valued events [4]. In the setting of many-valued modal frameworks
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over Gödel logic, in [1] the authors claim a similar result as above, in the sense of providing
a simplified possibilistic semantics for the logic KD45(G) defined by the class of many-valued
Kripke models with a many-valued accessibility relation satisfying counterparts of the serial,
euclidean and transitive relations. However, it has to be noted that the completeness proof in
[1] has some flaws, as reported by Tuyt.1 In this paper we will report on a correct proof, not
only for the completeness of KD45(G) w.r.t. to its corresponding class of possibilistic frames,
but also for the weaker logic K45(G) accounting for partially inconsistent possibilistic Kripke
frames.

2 The logic K45(G)

In their paper [3] Caicedo and Rodŕıguez consider a modal logic over Gödel logic with two
operators 2 and 3. The language L23(V ar) is built from a countable set V ar of propositional
variables, connectives symbols ∨,∧,→,⊥, and the modal operator symbols 2 and 3. We will
simply write L23 assuming V ar is known and fixed.

In their work, Caicedo and Rodŕıguez define the logic K(G) as the smallest set of formulas
containing some axiomatic version of Gödel-Dummet propositional calculus; that is, Heyting
calculus plus the prelinearity law and the following additional axioms:

(K2) 2(ϕ→ ψ)→ (2ϕ→ 2ψ) (K3) 3(ϕ ∨ ψ)→ (3ϕ ∨3ψ)
(F2) 2> (P ) 2(ϕ→ ψ)→ (3ϕ→ 3ψ)

(FS2) (3ϕ→ 2ψ)→ 2(ϕ→ ψ) (Nec) from ϕ infer 2ϕ

The logic K45(G) is defined by adding to K(G) the following axioms:

(42) 2ϕ→ 22ϕ (43) 33ϕ→ 3ϕ
(52) 32ϕ→ 2ϕ (53) 3ϕ→ 23ϕ

Let `G denote deduction in Gödel fuzzy logic G. Let L(X) denote the set of formulas built by
means of the connectives ∧,→, and ⊥, from a given subset of variables X ⊆ V ar. For simplicity,
the extension of a valuation v : X → [0, 1] to L(X) according to Gödel logic interpretation of
the connectives will be denoted v as well. It is well known that G is complete for validity with
respect to these valuations. We will need the fact that it is actually sound and complete in the
following stronger sense, see [2].

Proposition 2.1. i) If T ∪ {ϕ} ⊆ L(X), then T `G ϕ implies inf v(T ) ≤ v(ϕ) for any
valuation v : X → [0, 1].

ii) If T is countable, and T 0G ϕi1 ∨ .. ∨ ϕin for each finite subset of a countable family
{ϕi}i∈I there is an evaluation v : L(X) → [0, 1] such that v(θ) = 1 for all θ ∈ T and
v(ϕi) < 1 for all i ∈ I.

The following are some theorems of K(G), see [3]. The first one is an axiom in Fitting’s
systems in [8], the next two were introduced in [3], the fourth one will be useful in our com-
pleteness proof and is the only one depending on prelinearity. The last is known as the first
connecting axiom given by Fischer Servi.

T1. ¬3θ ↔ �¬θ T4. (�ϕ→ 3ψ) ∨�((ϕ→ ψ)→ ψ)
T2. ¬¬�θ → �¬¬θ T5. 3(ϕ→ ψ)→ (�ϕ→ 3ψ)
T3. 3¬¬ϕ→ ¬¬3ϕ

1Personal communication
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122



Next we show that in K45(G) some iterated modalities can be simplified. This is in accordance
with our intended simplified semantics for K45(G) that will be formally introduced in the next
section.

Proposition 2.2. The logic K45(G) proves the following schemes:

(F32) 32> ↔ 3> (F23) 23> ↔ 2>
(U3) 33ϕ↔ 3ϕ (U2) ��ϕ↔ �ϕ
(T42) (2ϕ→ 32ϕ) ∨2ϕ (T43) (23ϕ→ 3ϕ) ∨ (3> → 3ϕ)

From now on we will use ThK45(G) to denote the set of theorems of K45(G). We close this
section with the following observation: deductions in K45(G) can be reduced to derivations in
pure propositional Gödel logic G.

Lemma 2.1. For any theory T and formula ϕ in L23, it holds that T `K45(G) ϕ iff T ∪
ThK45(G) `G ϕ.

It is worth noticing that for any valuation v such that v(ThK45(G)) = 1 there is no formula
ϕ such that v(3>) < v(∇ϕ) < 1 with ∇ ∈ {2,3} because both formulae (2ϕ → 3ϕ) ∨ 2ϕ
and 3ϕ→ 3> are in ThK45(G).

3 Simplified Kripke semantics and completeness

In this section we will show that K45(G) is complete with respect to a class of simplified Kripke
Gödel frames.

Definition 3.1. A (normalised) possibilistic Kripke frame, or Π-frame, is a structure 〈W,π〉
where W is a non-empty set of worlds, and π : W → [0, 1] is a (resp. normalised) possibility
distribution over W .

A (resp. normalised) possibilistic Gödel Kripke model is a triple 〈W,π, e〉 where 〈W,π〉 is a
Π-frame frame and e : W ×V ar → [0, 1] provides a Gödel evaluation of variables in each world.
For each w ∈ W , e(w,−) extends to arbitrary formulas in the usual way for the propositional
connectives and for modal operators in the following way:

e(w,2ϕ) := infw′∈W {π(w′)⇒ e(w′, ϕ)}
e(w,3ϕ) := supw′∈W {min(π(w′), e(w′, ϕ))}.

Observe that the evaluation of formulas beginning with a modal operator is in fact inde-
pendent from the current world. Also note that the e(−,2ϕ) and e(−,3ϕ) are in fact gener-
alisations for Gödel logic propositions of the necessity and possibility degrees of ϕ introduced
in Section 1 for classical propositions, although now they are not dual (with respect to Gödel
negation) any longer.

In the rest of this abstract we briefly sketch a weak completeness proof of the logic K45(G)
(resp. KD45(G)) with respect to the class ΠG (resp. Π∗G) of (resp. normalised) possibilistic
Gödel Kripke models. In fact one can prove a little more, namely completeness for deductions
from finite theories.

In what follows, for any formula ϕ we denote by Sub(ϕ) ⊆ L�3 the set of subformulas
of ϕ and containing the formula ⊥. Moreover, let X := {�θ,3θ : θ ∈ L�3} be the set of
formulas in L�3 beginning with a modal operator; then L�3(V ar) = L(V ar∪X). That is, any
formula in L�3(V ar) may be seen as a propositional Gödel formula built from the extended set
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of propositional variables V ar ∪X. In addition, for a given formula ϕ, let ∼ϕ be equivalence
relation in [0, 1]V ar∪X × [0, 1]V ar∪X defined as follows:

u ∼ϕ w iff ∀ψ ∈ Sub(ϕ) : u(2ψ) = w(2ψ) and u(3ψ) = w(3ψ).

Now, assume that a formula ϕ is not a theorem of K45(G). Hence by completeness of
Gödel calculus and Lemma 2.1, there exists a Gödel valuation v such that v(ThK45(G)) = 1
and v(ϕ) < 1. Following the usual canonical model construction, once fixed the valuation v, we
define next a canonical ΠG-model Mv

ϕ in which we will show ϕ is not valid.
The canonical model Mv

ϕ = (W v, πϕ, eϕ) is defined as follows:

• W v is the set {u ∈ [0, 1]V ar∪X | u ∼ϕ v and u(ThK45(G)) = 1}.

• πϕ(u) = infψ∈Sub(ϕ){min(v(2ψ)→ u(ψ), u(ψ)→ v(3ψ))}.

• eϕ(u, p) = u(p) for any p ∈ V ar.

Completeness will follow from the next truth-lemma, whose proof is rather involved.

Lemma 3.1 (Truth-lemma). eϕ(u, ψ) = u(ψ) for any ψ ∈ Sub(ϕ) and any u ∈W v.

Actually, the same proof for weak completeness easily generalizes to get completeness for
deductions from finite theories.

Theorem 3.1 (Finite strong completeness). For any finite theory T and formula ϕ in L�3,
we have:

• T |=ΠG ϕ implies T `K45(G) ϕ

• T |=Π∗G ϕ implies T `KD45(G) ϕ
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Propositional Dynamic Logic PDL, introduced in [6] following the ideas of [11], is a modal
logic with applications in formal verification of programs [7], dynamic epistemic logic [1] and
deontic logic [10], for example. More generally, PDL can be seen as a logic for reasoning about
structured actions modifying various types of objects; examples of such actions include programs
modifying states of the computer, information state updates or actions of agents changing the
world around them.

In this contribution we study versions of PDL where the underlying propositional logic is a
weak substructural logic in the vicinity of the full distributive non-associative Lambek calculus
with a weak negation. The motivation is to provide a logic for reasoning about structured
actions that modify situations in the sense of [2]; the link being the informal interpretation of
the Routley–Meyer semantics for substructural logics in terms of situations [9].

In a recent paper [14] we studied versions of PDL based on Kripke frames with a ternary
accessibility relation (in the style of [4, 8]). These frames do not contain the inclusion ordering
essential for modelling situations, nor the compatibility relation articulating the semantics for
a wide range of weak negations [5, 12]. Hence, in this contribution we study PDL based on
(partially ordered) Routley–Meyer models with a compatibility relation.

Formulas ϕ and actions A are defined by mutual induction in the usual way [7]

A := a | A ∪A | A;A | A∗ | ϕ?

ϕ := p | ϕ ∧ ϕ | ϕ ∨ ϕ | ∼ϕ | ϕ→ ϕ | ϕ ◦ ϕ | [A]ϕ

where p is an atomic formula and a an atomic action. So far, we have results for the language
without existential modalities 〈A〉 dual to [A]; inclusion of these is the focus of ongoing work.
The implication → is the left residual of fusion ◦ which is assumed to be commutative for the
sake of simplicity.

A Routley-Meyer frame is F = 〈S,≤, L, C,R〉 where (S,≤, L) is a partially ordered set with
an upwards-closed L ⊆ S; C is a symmetric binary relation antitone in both positions, that is

• Cxy, x′ ≤ x and y′ ≤ y only if Cx′y′;

and R is a ternary relation antitone in the first two positions such that

• Rxyz only if Ryxz and

• x ≤ y iff there is z ∈ L such that Rzxy.

A (dynamic) Routley-Meyer model based on F is M = 〈F, J·K〉 where

• JϕK is a subset of S such that JpK is upwards-closed and

• JAK is a binary relation on S such that JaK is antitone in the first position.

It is assumed that Jϕ ∧ ψK (Jϕ ∨ ψK) is the intersection (union) of JϕK and JψK and

∗This contribution is based on joint work with Vı́t Punčochář and Andrew Tedder.
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• J∼ϕK = {x | ∀y (Cxy ⇒ y 6∈ JϕK)},
• Jϕ→ ψK = {x | ∀yz ((Rxyz & y ∈ JϕK)⇒ z ∈ JψK)},
• Jϕ ◦ ψK = {x | ∃yz (Ryzx & y ∈ JϕK & z ∈ JψK)} and

• J[A]ϕK = {x | ∀y (xJAKy ⇒ y ∈ JϕK)}.
It is also assumed that JA ∪ BK (JA;BK) is the union (composition) of JAK and JBK, that

JA∗K is the reflexive-transitive closure of JAK and that

• Jϕ?K = {〈x, y〉 | x ≤ y & y ∈ JϕK}
We say that ϕ is valid in M iff L ⊆ JϕK; a finite Γ entails ϕ in M iff J∧ΓK ⊆ JϕK. Validity

and entailment in a class of frames are defined as usual.
It can be shown that each JAK is antitone in its first position. This, together with the other

tonicity conditions, entails that JϕK is an upwards-closed set for all ϕ (this is the motivation of
the unusual definition of Jϕ?K) and so we have in turn the consequence that Γ entails ϕ in M
iff
∧

Γ→ ϕ is valid in M (unlike the semantics without L and ≤ where both directions of the
equivalence may fail).

Extending the results of [13], we prove completeness and decidability of the set of formulas
valid in all frames using filtration in the style of [3].

A logic is any set of formulas Λ containing all formulas of the form (� indicates that both
implications are in Λ)

• ϕ→ ϕ

• ϕ ∧ ψ → ϕ and ϕ ∧ ψ → ψ

• ϕ→ ϕ ∨ ψ and ψ → ϕ ∨ ψ
• ϕ ∧ (ψ ∨ χ)→ (ϕ ∧ ψ) ∨ (ϕ ∧ χ)

• [A]ϕ ∧ [A]ψ → [A](ϕ ∧ ψ)

• [A ∪B]ϕ� ([A]ϕ ∧ [B]ϕ)

• [A;B]ϕ� [A][B]ϕ

• [A∗]ϕ� (ϕ ∧ [A][A∗]ϕ)

• [ϕ?]ϕ

• ψ → [ϕ?]ψ

• (ϕ ∧ [ϕ?]ψ)→ ψ

and closed under the inference rules (‘//’ indicates a two-way rule):

• ϕ,ϕ→ ψ /ψ

• ϕ→ ψ,ψ → χ/ϕ→ χ

• χ→ ϕ, χ→ ψ /χ→ (ϕ ∧ ψ)

• ϕ→ χ, ψ → χ/ (ϕ ∨ ψ)→ χ

• ϕ→ ψ / [A]ϕ→ [A]ψ

• ϕ→ (ψ → χ) // (ψ ◦ ϕ)→ χ

• ϕ→ (ψ → χ) //ψ → (ϕ→ χ)

• ϕ→ ∼ψ //ψ → ∼ϕ

• ϕ→ [A]ϕ/ϕ→ [A∗]ϕ

We write Γ `Λ ∆ iff there are finite Γ′,∆′ such that
∧

Γ′ → ∨
∆′ is in Λ (hence, the relation

`Λ is finitary by definition). A prime Λ-theory is a set of formulas Γ such that ϕ,ψ ∈ Γ only if
Γ `Λ ϕ ∧ ψ and Γ `Λ ϕ ∨ ψ only if ϕ ∈ Γ or ψ ∈ Γ. For each Γ 6`Λ ∆ there is a prime theory
containing Γ but disjoint from ∆ [12, 94]. The canonical Λ-frame the frame-type structure FΛ

where SΛ is the set of prime Λ-theories, ≤Λ is set inclusion, LΛ is the set of prime theories
containing Λ and
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• CΛΓ∆ iff ∼ϕ ∈ Γ only if ϕ 6∈ ∆

• RΛΓ∆Σ iff ϕ ∈ Γ and ψ ∈ ∆ only if ϕ ◦ ψ ∈ Σ

It is a standard observation that FΛ is a Routley–Meyer frame for all Λ [12]. The canonical
Λ-structure SΛ is the canonical frame with J·KΛ defined as follows: JϕKΛ = {Γ ∈ SΛ | ϕ ∈ Γ}
and JAKΛ = {〈Γ,∆〉 | ∀ϕ ([A]ϕ ∈ Γ⇒ ϕ ∈ ∆)}. It can be shown that SΛ is not a dynamic
Routley–Meyer model (since {[an]p | n ∈ N} 6`Λ [a∗]p, we may show that Ja∗KΛ is not the
reflexive-transitive closure of JaKΛ).

Fix a finite set of formulas Φ that is closed under subformulas and satisfies the following
conditions: i) [ϕ?]ψ ∈ Φ only if ϕ ∈ Φ, ii) [A ∪B]ϕ ∈ Φ only if [A]ϕ, [B]ϕ ∈ Φ, iii) [A;B]ϕ ∈ Φ
only if [A][B]ϕ ∈ Φ and iv) [A∗]ϕ ∈ Φ only if [A][A∗]ϕ ∈ Φ. We define Γ �Φ ∆ as (Γ∩Φ) ⊆ ∆.
This relation is obviously a preorder; let ≡Φ be the associated equivalence relation and let [Γ]Φ
be the equivalence class of Γ with respect to this relation.

The Φ-filtration of SΛ is the model-type structure MΛ
Φ such that SΦ is the (finite) set of

equivalence classes [Γ] for Γ ∈ SΛ, [Γ] ≤Φ [∆] iff Γ �Φ ∆ and

• LΦ = {[Γ] | ∃∆ ∈ SΛ
(
∆ �Φ Γ & ∆ ∈ LΛ

)
}

• CΦ = {〈[Γ1], [Γ2]〉 | ∃∆1,∆2

(
Γ1 �Φ ∆1 & Γ2 �Φ ∆2 & CΛ∆1∆2

)
}

• RΦ = {〈[Γ1], [Γ2], [Γ3]〉 | ∃∆1,∆2,
(
Γ1 �Φ ∆1 & Γ2 �Φ ∆2 & RΛ∆1∆2Γ3

)
}

• JpKΦ = {[Γ] | p ∈ Γ} for p ∈ Φ and JpKΦ = ∅ otherwise

• JaKΦ = {〈[Γ1], [Γ2]〉 | ∃∆
(
Γ1 �Φ ∆ & ∆JaKΛΓ2

)
} if [a]χ ∈ Φ; JaKΦ = ∅ otherwise.

The values of J·KΦ on complex formulas and actions are defined exactly as in dynamic Routley–
Meyer models. It can be shown that MΛ

Φ is a dynamic Routley–Meyer model such that if
ϕ ∈ (Φ \Λ), then ϕ is not valid in MΛ

Φ. This implies completeness of the minimal logic Λ0 with
respect to (the set of formulas valid in) all Routley–Meyer frames.

In general, assume that we have Log(F), the set of formulas valid in all Routley–Meyer
frames F ∈ F. If FΛ

Φ ∈ F for all Φ, then Λ is complete with respect to F (for instance, this is
the case where F is the class of frames satisfying Rxxx for all x). If FΛ

Φ 6∈ F, then one has to
either modify the requirements concerning Φ (while keeping it finite; our argument showing that
if ϕ ∈ (Φ \Λ), then ϕ is not valid in MΛ

Φ does not work if Φ is infinite) or devise an alternative
definition of RΦ and CΦ. Such modifications for specific classes of frames (e.g. associative ones)
is the focus of ongoing work.

A topic for future work is a modification of our argument not requiring that Φ be finite. An
argument based on finite filtration does not go through in case of logics that are known not to
have the finite model property, such as the relevant logic R for instance.
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We consider normal 1-modal predicate logics as they were defined in [2]. I.e., the signature
contains predicate letters of different arities, but no constants or functions letters; also we do
not specify the equality symbol. A logic is a set of formulas containing all classical validities
and the axioms of K and closed under Modus Ponens, ∀- and �- introduction, and predicate
substitution.

We also consider (normal) modal propositional logics. For a propositional modal logic Λ,
its minimal predicate extension is denoted by QΛ.

For modal predicate logics several different semantics are known. The most popular is
Kripke semantics (with expanding domains). Recall that a predicate Kripke frame is a pair
(F,D), where F = (W,R) is a propositional Kripke frame (i.e., W 6= ∅, R ⊆ W 2) and D is
a family of non-empty sets (Du)u∈W such that Du ⊆ Dv whenever uRv. A predicate Kripke
model over a frame F = (F,D) is a pair (F, ξ), where ξ (a valuation) is a family (ξu)u∈W , ξu
sends every n-ary predicate letter P to an n-ary relation on Du (0-ary relation is a fixed value
0 or 1).

The truth predicate M,u � A is defined for any world u ∈W and Du-sentence A (a sentence
with individuals from Du as constants). In particular,

M,u � P (a1, . . . , an) iff (a1, . . . , an) ∈ ξu(P ),

M, u � �A iff ∀v ∈ R(u)M, v � A,

M, u � ∀xA iff ∀a ∈ DuM,u � [a/x]A.

A formula A is valid in F = (F,D) (in symbols, F � A) if its universal closure is true at any
world in any Kripke model over F. The set ML(F) := {A | F � A} is a modal predicate logic
(the logic of F). The logic of a class of frames C is ML(C) :=

⋂{ML(F) | F ∈ C}. Logics of
this form are called Kripke complete.

Similar definitions for propositional logics are well-known, so we skip them.
Formulas constructed from a single variable x and monadic predicate letters are called

1-variable. Every such formula A translates into a bimodal propositional formula A∗ with
modalities � and � if every atom Pi(x) is replaced with the proposition letter pi and every
quantifier ∀x with �. The 1-variable fragment of a predicate logic L is the set

L−1 := {A∗ | A ∈ L, A is 1-variable}.

Then

Lemma 1. L−1 is a bimodal propositional logic.

Recall that for monomodal propositional logics Λ1, Λ2 the fusion Λ1 ∗ Λ2 is the smallest
bimodal logic containing Λ1 ∪Λ2 (if the modal connectives in Λ1, Λ2 are distinct).
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The semicommutative join of a monomodal logic Λ (in the language with �) with S5 (in
the language with �) is obtained from Λ ∗ S5 by adding the axiom

(coml) ��p→ ��p.

This logic is denoted by Λ |S5. The following properties are easily checked.

Lemma 2. (1) Λ |S5 ⊆ QΛ−1.

(2) A propositional Kripke frame F = (W,R1, R2) validates Λ |S5 iff

(W,R1) � Λ &R2 is an equivalence &R2 ◦R1 ⊆ R1 ◦R2.

Definition 1. Let F1 = (U1, R1), F2 = (U2, R2) be propositional frames. Their product is the
frame F1 × F2 = (U1 × U2, Rh, Rv), where

• (u, v)Rh(u′, v′) iff uR1u
′ and v = v′,

• (u, v)Rv(u
′, v′) iff u = u′ and vR2v

′.

A semiproduct (or an expanding product) of F1 and F2 is a subframe (W,S1, S2) of F1 × F2

such that Rh(W ) ⊆W .

Definition 2. A semiproduct Λ i S5 of a monomodal propositional logic Λ with S5 is the
logic of the class of all semiproducts of Λ-frames (i.e., frames validating Λ) with clusters (i.e.,
frames with a universal relation).

From Lemma 2 we readily have

Lemma 3. Λ |S5 ⊆ Λi S5.

Definition 3. The logics Λ and S5 are called semiproduct matching if
Λ |S5 = Λi S5. Λ is called quantifier-friendly if QΛ−1 = Λ |S5.

Definition 4. The Kripke-completion CK(L) of a predicate logic L is the logic of the class of
all frames validating L.

CK(L) is the smallest Kripke-complete extension of L. From definitions we obtain

Lemma 4. CK(QΛ)−1 = Λi S5. Hence

QΛ−1 ⊆ Λi S5.

Also
QΛ−1 = Λi S5

if QΛ is Kripke-complete, and
QΛ−1 = Λ |S5

if Λ and S5 are semiproduct matching.

The following result is proved in [1] (Theorem 9.10).

Theorem 5. Λ and S5 are semiproduct matching1 for Λ = K,T,K4,S4,S5.

1The book [1] uses a different terminology and notation: semiproducts are called ‘expanding products’,
Λ |S5 is denoted by [Λ,S5]EX , Λ i S5 by (Λ× S5)EX , and there is no term for ‘semiproduct matching’.

Valentin Shekhtman and Dmitry Shkatov
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This result extends to a slightly larger class.

Definition 5. A one-way PTC-logic is a modal propositional logic axiomatized by formulas of
the form �p→ �np and closed (i.e., variable-free) formulas.

Theorem 6. Λ and S5 are semiproduct matching for any one-way PTC-logic Λ.

Corollary 7. Every one-way PTC-logic is quantifier-friendly.

Also we have

Theorem 8. ([2], theorem 6.1.29) QΛ is Kripke complete for any one-way PTC-logic Λ.

It is not clear how far theorems 6, 8 can be generalized. Anyway, unlike the case of products
and predicate logics with constant domains (cf. [1], [2]), they do not hold for arbitrary Horn
axiomatizable logics

Many counterexamples are given by the next theorem.
Let

�ref := �(�p→ p), �T := K +�ref,
SL4 := K4 + 3p↔�p.

Theorem 9. Let Λ be a propositional logic such that �T ⊆ Λ ⊆ SL4. Then

• Λ and S5 are not semiproduct matching.

• QΛ is Kripke incomplete.

The crucial formula for Kripke incompleteness is

�∀ref := �∀x(�P (x)→ P (x)),

and to disprove semiproduct matching one can use

��ref := (�∀ref)∗ = ��(�p→ p).

However, by applying the Kripke bundle semantics (cf. [2]) we can prove the following

Theorem 10. The logics �T, SL4 are quantifier-friendly.

Conjecture Every Horn axiomatizable logic is quantifier-friendly.

For some logics Λ between �T and SL4 completeness of QΛ can be restored by adding
�∀ref . Let

5 := 3�p→ �p, K5 := K + 5, K45 := K4 + 5,

�S5 := �T +�((�p→ ��p) ∧ (3�p→ p)).

Theorem 11. For the logics Λ = �T, SL4, K5, �S5:

• CK(QΛ) = QΛ +�∀ref ,

• Λi S5 = Λ |S5 +��ref .

Corollary 12. For logics from Theorem 11

(QΛ +�∀ref)−1 = Λ |S5 +��ref.

This research was done in part within the framework of the Basic Research Program at
National Research University Higher School of Economics and was partially supported within
the framework of a subsidy by the Russian Academic Excellence Project 5-10.
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Abstract

In this work we deal with algebraic categories and deterministic weighted automata functors
on them. Such categories are the target of generalized determinization [1, 2, 4] and enable
coalgebraic modelling beyond sets; such automata are the result of generalized determinization.
For example, “determinized” non-deterministic automata, weighted, or probabilistic ones are
coalgebraically modelled over the categories of join-semilattices, semimodules for a semiring,
and convex algebras, respectively. Moreover, expressions for axiomatizing behavior semantics
often live in algebraic categories.

In order to prove completeness of such axiomatizations, the common approach [8, 7, 2] is
to prove finality of a certain object in a category of coalgebras over an algebraic category.
Proofs are significantly simplified if it suffices to verify finality only w.r.t. coalgebras carried
by free finitely generated algebras, as those are the coalgebras that result from generalized
determinization. In recent work, Milius [9] proposed the notion of a proper functor. If the
functor describing determinized systems in an algebraic category (where also the expressions
live) is proper, then it suffices to verify finality only w.r.t. coalgebras carried by free finitely
generated algebras in completeness proof of axiomatizations. This was completeness proofs
are significantly simplified. However, proving properness is hard, i.e., the notion of properness
extracts the essence of difficulty in completeness proofs.

Recalling Milius’ definition [9], a functor is proper if and only if for any two states that are
behaviourally equivalent in coalgebras with free finitely generated carriers, there is a zig-zag of
homomorphisms (called a chain of simulations in the original works on weighted automata and
proper semirings) that identifies the two states and whose nodes are all carried by free finitely
generated algebras.

This notion is a generalization of the notion of a proper semiring introduced by Esik and
Maletti [10]: A semiring is proper if and only if its “cubic” functor is proper. A cubic functor is
a functor S× (−)A where A is a finite alphabet and S is a free algebra with a single generator
in the algebraic category. Cubic functors model deterministic weighted automata which are
models of determinized non-deterministic and probabilistic transition systems. The underly-
ing Set functors of cubic functors are also sometimes called deterministic-automata functors,
see e.g. [4], as their coalgebras are deterministic weighted automata with output in the semir-
ing/algebra. Having properness of a semiring (cubic functor), together with the property of the
semiring being finitely and effectively presentable, yields decidability of the equivalence problem
(decidability of trace equivalence, i.e., language equivalence) for weighted automata.

In our work on proper semirings and proper convex functors, recently published at FoSSaCS
2018 [12], see [11] for the full version, motivated by the wish to prove properness of a certain

functor F̂ on positive convex algebras (PCA) used for axiomatizing trace semantics of proba-
bilistic systems in [2], as well as by the open questions stated in [9, Example 3.19], we provide
a framework for proving properness and prove:
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• The functor [0, 1]× (−)A on PCA is proper, and the required zig-zag is a span.

• The functor F̂ on PCA is proper. This proof is quite involved, and interestingly, provides
the only case that we encountered where the zig-zag is not a span: it contains three
intermediate nodes of which the middle one forms a span.

Along the way, we instantiate our framework on some known cases like Noetherian semirings
and N (with a zig-zag that is a span), and prove new semirings proper: The semirings Q+ and
R+ of non-negative rationals and reals, respectively. The shape of these zig-zags is a span as
well. It is an interesting question for future work whether these new properness results may
lead to new complete axiomatizations of expressions for certain weighted automata.

Our framework requires a proof of so-called extension lemma and reduction lemma in each
case. While the extension lemma is a generic result that covers all cubic functors of interest,
the reduction lemma is in all cases a nontrivial property intrinsic to the algebras under consid-
eration. For the semiring of natural numbers it is a consequence of a result that we trace back
to Hilbert [16]; for the case of convex algebra [0, 1] the result is due to Minkowski [17]. In the

case of F̂ , we use Kakutani’s set-valued fixpoint theorem [6].
All base categories in this work are algebraic categories, i.e., categories SetT of Eilenberg-

Moore algebras of a finitary monad T on Set.
The main category of interest to us is the category PCA of positively convex algebras, the

Eilenberg-Moore algebras of the monad of finitely supported subprobability distributions, see,
e.g., [13, 14] and [15].

Concretely, a positive convex algebra A in PCA is a carrier set A together with infinitely
many finitary operations denoting sub-convex sums, i.e., for each tuple (pi | 1 ≤ i ≤ n) with
pi ∈ [0, 1] and

∑
i pi ≤ 1 we have a corresponding n-ary operation, the sub-convex combination

with coefficients pi. (Positive) Convex algebras algebras satisfy two axioms: the projection
axiom stating that

∑
pixi = xk if pk = 1; and the barycentre axiom

∑

i

pi(
∑

j

pijxj) =
∑

j

(
∑

i

pi · pij)xj .

These axioms are precisely the unit and multiplication law required from an Eilenberg-Moore
algebra when instantiated to the probability subdistribution monad, and enable working with
abstract convex combinations (formal sums) in the usual way as with convex combinations /
sums in R.

For the proofs of proper semirings, we work in the category S-SMOD of semimodules over a
semiring S which are the Eilenberg-Moore algebras of the monad TS of finitely supported maps
into S.

For n ∈ N, the free algebra with n generators in S-SMOD is the direct product Sn, and in PCA

it is the n-simplex ∆n = {(ξ1, . . . , ξn) | ξj ≥ 0,
∑n
j=1 ξj ≤ 1}.

For the semirings N, Q+, and R+ that we deal with (with ring completions Z, Q, and R,
respectively), the categories of S-semimodules are:

• CMON of commutative monoids for N,

• AB of abelian groups for Z,

• CONE of convex cones for R+, and

• Q-VEC and R-VEC of vector spaces over the field of rational and real numbers, respectively,
for Q and R.

Ana Sokolova and Harald Woracek
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Abstract

In [1], Iemhoff introduced the notion of a centered axiom and a centered rule as the
building blocks for a certain form of sequent calculus which she calls a centered proof
system. She then showed how the existence of a terminating centered system implies the
uniform interpolation property for the logic that the calculus captures. In this paper we
first generalize her centered rules to semi-analytic rules, a dramatically powerful generaliza-
tion, and then we will show how the semi-analytic calculi consisting of these rules together
with our generalization of her centered axioms, lead to the feasible Craig interpolation
property. Using this relationship, we first present a uniform method to prove interpola-
tion for different logics from sub-structural logics FLe, FLec, FLew and IPC to their
appropriate classical and modal extensions, including the intuitionistic and classical linear
logics. Then we will use our theorem negatively, first to show that so many sub-structural
logics including  Ln, Gn, BL, R and RMe and almost all super-intutionistic logics (except
at most seven of them) do not have a semi-analytic calculus.

Let us begin with some preliminaries. First fix a propositional language extending the lan-
guage of FLe. By the meta-language of this language we mean the language with which we
define the sequent calculi. It extends our given language with the formula symbols (variables)
such as ϕ and ψ. A meta-formula is defined as the following: Atomic formulas and formula
symbols are meta-formulas and if ϕ̄ is a set of meta-formulas, then Cpϕ̄q is also a meta-formula,
where C P L is a logical connective of the language. Moreover, we have infinitely many variables
for meta-multisets and we use capital Greek letters again for them, whenever it is clear from
the context whether it is a multiset or a meta-multiset variable. A meta-multiset is a multiset
of meta-formulas and meta-multiset variables. By a meta-sequent we mean a sequent where
the antecedent and the succedent are both meta-multisets. We use meta-multiset variable and
context, interchangeably.

For a meta-formula ϕ, by V pϕq we mean the meta-formula variables and atomic constants
in ϕ. A meta-formula ϕ is called p-free, for an atomic formula or meta-formula variable p, when
p R V pϕq.

And finally note that by FLe
´ we mean the system FLe minus the following axioms:

Γ ñ J,∆ Γ,K ñ ∆

And CFLe
´ has the same rules as FLe

´, this time in their full multi-conclusion version, where
` is added to the language and also the usual left and right rules for ` are added to the system.

Now let us define some specific forms of the sequent-style rules:
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Definition 1. A rule is called a left semi-analytic rule if it is of the form

xxΠj , ψ̄js ñ θ̄jsysyj xxΓi, ϕ̄ir ñ ∆iyryi

Π1, ¨ ¨ ¨ ,Πm,Γ1, ¨ ¨ ¨ ,Γn, ϕ ñ ∆1, ¨ ¨ ¨ ,∆n

where Πj , Γi and ∆i’s are meta-multiset variables and

Ť
i,r V pϕ̄irq Y Ť

j,s V pψ̄jsq Y Ť
j,s V pθ̄jsq Ď V pϕq

and it is called a right semi-analytic rule if it is of the form

xxΓi, ϕ̄ir ñ ψ̄iryryi

Γ1, ¨ ¨ ¨ ,Γn ñ ϕ

where Γi’s are meta-multiset variables and

Ť
i,r V pϕ̄irq Y Ť

i,r V pψ̄irq Ď V pϕq
For the multi-conclusion case, we define a rule to be left multi-conclusion semi-analytic if it is
of the form

xxΓi, ϕ̄ir ñ ψ̄ir,∆iyryi

Γ1, ¨ ¨ ¨ ,Γn, ϕ ñ ∆1, ¨ ¨ ¨ ,∆n

with the same variable condition as above and the same condition that all Γi’s and ∆i’s are
meta-multiset variables. A rule is defined to be a right multi-conclusion semi-analytic rule if it
is of the form

xxΓi, ϕ̄ir ñ ψ̄ir,∆iyryi

Γ1, ¨ ¨ ¨ ,Γn ñ ϕ,∆1, ¨ ¨ ¨ ,∆n

again with the similar variable condition and the same condition that all Γi’s and ∆i’s are
meta-multiset variables.
Moreover, the usual modal rules in the cut-free Gentzen calculus for the logics K, K4, KD and
S4 are considered as semi-analytic modal rules.

Definition 2. A sequent is called a centered axiom if it has the following form:

p1q Identity axiom: (ϕ ñ ϕ)

p2q Context-free right axiom: (ñ ᾱ)

p3q Context-free left axiom: (β̄ ñ)

p4q Contextual left axiom: (Γ, ϕ̄ ñ ∆)

p5q Contextual right axiom: (Γ ñ ϕ̄,∆)

where Γ and ∆ are meta-multiset variables and the variables in any pair of elements in ᾱ
or in β̄ or in ϕ̄ are equal.

The main theorem of the paper is the following:

Theorem 3. piq If FLe Ď L, (FLe
´ Ď L) and L has a single-conclusion sequent calculus

consisting of semi-analytic rules and centered axioms (context-free centered axioms), then
L has Craig interpolation.

Semi-analytic Rules and Craig Interpolation
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piiq If CFLe Ď L, (CFLe
´ Ď L) and L has a multi-conclusion sequent calculus consisting of

semi-analytic rules and centered axioms (context-free centered axioms), then L has Craig
interpolation.

Proof. Call the centered sequent system G. Use the Maehara technique to prove that for any
derivable sequent S “ pΣ,Λ ñ ∆q in G there exists a formula C such that pΣ ñ Cq and
pΛ, C ñ ∆q are provable in G and V pCq Ď V pΣq X V pΛ Y ∆q, where V pAq is the set of the
atoms of A.

As a positive result, our method provides a uniform way to prove the Craig interpolation
property for substructural logics. For instance we have:

Corollary 4. The logics FLe, FLec, FLew, CFLe, CFLew, CFLec, ILL, CLL, IPC, CPC
and their K, KD and S4 versions have the Craig interpolation property. The same also goes
for K4 and K4D extensions of IPC and CPC.

Proof. The usual cut-free sequent calculus for all of these logics consists of semi-analytic rules
and centered axioms. Now, use Corollary 3.

As a much more interesting negative result, which is also the main contribution of our
investigation, we show that many different sub-structural logics do not have a complete sequent
calculus consisting of semi-analytic rules and cenetered axioms. Our proof is based on the prior
works (for instance [4] and [2]) that established some negative results on the Craig interpolation
of some sub-structural logics. Considering the naturalness and the prevalence of these rules,
our negative results expel so many logics from the elegant realm of natural sequent calculi.

Corollary 5. None of the logics R, BL and  L8,  Ln for n ě 3 have a single-conclusion
(multi-conclusion) sequent calculus consisting only of single-conclusion (multi-conclusion) semi-
analytic rules and context-free centered axioms.

Corollary 6. Except G, G3 and CPC, none of the consistent BL-extensions have a single-
conclusion sequent calculus consisting only of single-conclusion semi-analytic rules and context-
free centered axioms.

Corollary 7. Except eight specific logics, none of the consistent extensions of RMe have a
single-conclusion (multi-conclusion) sequent calculus consisting only of single-conclusion (multi-
conclusion) semi-analytic rules and context-free centered axioms.

Corollary 8. Except seven specific logics, none of the consistent super-intuitionistic logics have
a single-conclusion sequent calculus consisting only of single-conclusion semi-analytic rules,
context-sharing semi-analytic rules and centered axioms.

A more detailed version of the Corollaries 7 and 8 can be found in [3].
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Propositional Union Closed Team Logics: Expressive
Power and Axiomatizations
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In this paper, we prove the expressive completeness of some propositional union closed team log-
ics, and introduce sound and complete systems of natural deduction for these logics. These logics are
variants of dependence logic, which is a non-classical first-order logic, introduced by Väänänen, for rea-
soning about dependencies. This framework extends the classical logic by adding new atomic formulas
for charactering dependence and independence between variables. Examples of such atoms are depen-
dence atoms (giving rise to dependence logic), and inclusion atoms (giving rise to inclusion logic [1]).
Hodges [3, 4] observed that dependency properties can only manifest themselves in multitudes, and he
thus introduced the so-called team semantics that dependence logic and its variants adopt. Formulas of
these logics are evaluated under teams, which in the propositional context are sets of valuations.

Logics based on team semantics (also called team logics) can have interesting closure properties.
For example, dependence logic is closed downwards, meaning that the truth of a formula on a team is
preserved under taking subteams. In this paper, we consider propositional team logics that are closed un-
der unions, meaning that if two teams both satisfy a formula, then their union also satisfies the formula.
Inclusion logic is closed under unions. Other known union closed logics are classical logic extended
with anonymity atoms (introduced very recently by Väänänen [6] to characterize anonymity in the con-
text of privacy), or with the relevant disjunction / (introduced by Rönnholm, see [5], and also named
nonempty disjunction by some other authors [2, 8]).

While propositional downwards closed team logics are well studied (e.g., [7]), propositional union
closed team logics are not understood very well yet. It follows from [2] that propositional inclusion logic
(PInc) with extended inclusion atoms is expressively complete, and PInc is thus expressively equiva-
lent to classical logic extended with relevant disjunction (PU), which is shown to be also expressively
complete in [8]. We show in this paper that classical logic extended with anonymity atoms (PAm) is
also expressively complete, and PInc with slightly less general inclusion atoms is already expressively
complete. From the expressive completeness, we will derive the interpolation theorem for these logics.
We also provide axiomatizations for PInc, PU and PAm, which are lacking in the literature. We define
sound and complete systems of natural deduction for these logics. As with other team logics, these
systems do not admit uniform substitution. Another interesting feature of the systems is that the usual
disjunction introduction rule (φ/φ /ψ) is not sound for the relevant disjunction.

1 Propositional union closed team logics
Fix a set Prop of propositional variables, whose elements are denoted by p,q,r, . . . (with or without sub-
scripts). We first define the team semantics for classical propositional logic (CPL), whose well-formed
formulas (called classical formulas), in the context of the present paper, are given by the grammar:

α ∶∶= p ∣ � ∣ ⊺ ∣ ¬α ∣ α ∧α ∣ α ∨α
Let N ⊆Prop be a set of propositional variables. An (N-)team is a set of valuations v ∶N∪{�,⊺}→{0,1}
with v(�) = 0 and v(⊺) = 1. Note that the empty set ∅ is a team. The notion of a classical formula α
being true on a team X , denoted by X ⊧ α , is defined inductively as follows:
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• X ⊧ p iff for all v ∈ X , v(p) = 1.
• X ⊧ � iff X = ∅.
• X ⊧ ⊺ always holds
• X ⊧ ¬α iff for all v ∈ X , {v} /⊧ α .

• X ⊧ α ∧β iff X ⊧ α and X ⊧ β .

• X ⊧ α ∨ β iff there are Y,Z ⊆ X such that
X =Y ∪Z, Y ⊧ α and Z ⊧ β .

Clearly, CPL has the empty team property, union closure property and downwards closure property:

Empty Team Property: ∅ ⊧ α holds for all α;
Union Closure: X ⊧ α and Y ⊧ α imply X ∪Y ⊧ α;
Downwards Closure: X ⊧ α and Y ⊆ X imply Y ⊧ α .
The union closure and downwards closure property together are equivalent to the flatness property:

Flatness X ⊧ α if and only if {v} ⊧ α for all v ∈ X .

The flatness of classical formulas shows that team semantics is conservative over classical formulas.
We now extend CPL to three non-flat but union closed team-based logics. Consider a new disjunction/, called relevant disjunction, and new atomic formulas of the form a1 . . .ak ⊆ b1 . . .bk with each ai,bi ∈
Prop∪{�,⊺}, called inclusion atoms, and of the form ≠(p1, . . . , pk;q), called anonymity atoms. The
team semantics of these new connective and atoms are defined as:

• X ⊧ φ /ψ iff X = ∅ or there are nonempty Y and Z such that X =Y ∪Z, Y ⊧ φ and Z ⊧ψ .

• X ⊧ a1 . . .ak ⊆ b1 . . .bk iff for all v ∈ X , there exists v′ ∈ X such that

⟨v(a1), . . . ,v(ak)⟩ = ⟨v′(b1), . . . ,v′(bk).
• X ⊧ ≠(p1, . . . , pk;q) iff for all v ∈ X , there exists v′ ∈ X such that

⟨v(p1), . . . ,v(pk)⟩ = ⟨v′(p1), . . . ,v′(pk)⟩ and v(q) ≠ v′(q).
Note the similarity and difference between the semantics clauses of ∨ and /. In particular, we write≠(p) for ≠(⟨⟩; p), and clearly its semantics clause is reduced to

• X ⊧ ≠(p) iff either X = ∅ or there exist v,v′ ∈ X such that v(p) ≠ v′(p).

We define the syntax of propositional union closed logic (PU) as the syntax of CPL expanded by adding/, and negation ¬ is allowed to occur only in front of classical formulas, that is,

φ ∶∶= p ∣ � ∣ ⊺ ∣ ¬α ∣ φ ∧φ ∣ φ ∨φ ∣ φ /φ ,

where α is an arbitrary classical formula. Similarly, propositional inclusion logic (PInc) is CPL ex-
tended with inclusion atoms a1 . . .ak ⊆ b1 . . .bk (and negation occurs only in front of classical formulas),
and propositional anonymity logic (PAm) is CPL extended with anonymity atoms ≠(p1, . . . , pk;q) (and
negation occurs only in front of classical formulas).

For any formula φ in N ⊆ Prop, we write JφK = {X an N-team ∶ X ⊧ φ}. It is easy to verify that for
any formula φ in the language of PU or PInc or PAm, the set JφK contains the empty team ∅, and is
closed under unions, i.e., X ,Y ∈ JφK implies X ∪Y ∈ JφK.

2 Expressive completeness
It was proved in [8] that PU is expressively complete with respect to the set of all union closed team
properties which contain the empty team, in the sense that for any set N ⊆Prop, for any set P of N-teams
that is closed under unions and contains the empty team, we have P = JφK for some PU-formula φ in N.
The proof in [8] first defines for any N-team X with N = {p1, . . . , pn} a PU-formula

ΨX ∶= �
v∈X(pv(1)

1 ∧⋅ ⋅ ⋅∧ pv(n)
n ),
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where v(i) is short for v(pi), p1
i ∶= pi, and p0

i = ¬pi. Observing that Y ⊧ΨX ⇐⇒ Y = X holds for any
N-team Y , one then easily establishes that P = J⋁X∈PΨXK. Generalizing this argument, we can now
show that PInc and PAm are both expressively complete in the same sense, and in particular, all these
three union closed team logics we introduced are equivalent in expressive power.

Theorem 1. PU ≡ PInc ≡ PAm.

Proof. (sketch) We first show that the PU-formula ΨX is expressible in PInc. Define PAm-formulas

ΘX ∶= ⋁
v∈X(pv(1)

1 ∧⋅ ⋅ ⋅∧ pv(n)
n ), and ΦX ∶= ⋀

v∈X v(1) . . .v(n) ⊆ p1 . . . pn,

where 0 ∶= � and 1 ∶= ⊺. Observe that for any N-team Y ,

Y ⊧ΘX ⇐⇒ Y ⊆ X , and Y ⊧ΦX ⇐⇒ X ⊆Y.

Thus, ΨX ≡ΘX ∧ΦX
1.

To show that ΨX is expressible in PAm, we show that for any N-team X and any K = {pi1 , . . . , pik} ⊆{p1, . . . , pn} = N, the formula ΨK
X = �

v∈X(pv(i1)
i1

∧ ⋅ ⋅ ⋅ ∧ pv(ik)
ik

) is expressible in PAm as some ψK
X by in-

duction on ∣K∣ ≤ n. If ∣K∣ = 1, then ΨK
X ≡ pi1 or ¬pi1 or ≠(pi1). If ∣K∣ = m+ 1, let K = K0 ∪{pim+1},

Y = {v ∈ X ∣ v(im+1) = 1} and Z = {v ∈ X ∣ v(im+1) = 0}. If Y = ∅, then by induction hypothesis,

ΨK
X = �

v∈Z(pv(i1)
i1

∧⋅ ⋅ ⋅∧ pv(im)
im ∧¬pim+1) ≡ (�

v∈Z(pv(i1)
i1

∧⋅ ⋅ ⋅∧ pv(im)
im ))∧¬pim+1 ≡ψK0

Z ∧¬pim+1 .

Similarly, if Z = ∅, then ΨK
X ≡ψK0

Y ∧ pim+1 . Now, if Y,Z ≠ ∅, we have by induction hypothesis that

ΨK
X ≡ (ψK0

Y ∧ pim+1)/(ψK0
Z ∧¬pim+1) ≡ ((ψK0

Y ∧ pim+1)∨(ψK0
Z ∧¬pim+1))∧≠(pim+1).

We show next that the interpolation property of a team logic is a consequence of the expressive
completeness and the locality property, which is defined as:

Locality: For any formula φ in N ⊆ Prop, if X is an N0-team and Y an N1-team such that N ⊆ N0,N1
and X ↾N =Y ↾N, then X ⊧ φ ⇐⇒ Y ⊧ φ

The team logics PU, PInc and PAm all have the locality property. But let us emphasize here that in
the team semantics setting, locality is not a trivial property. Especially, if in the semantics clause of
disjunction ∨ the two subteams Y,Z ⊆ X are required to be disjoint, then the logic PInc is not local any
more, as, e.g., the formula pq ⊆ rs∨ tu ⊆ rs (with the modified semantics for ∨) is not local.

Theorem 2 (Interpolation). If a team logic L is expressively complete and has the locality property, then
it enjoys Craig’s Interpolation. In particular, PU, PInc and PAm enjoy Craig’s interpolation.

Proof. (sketch) Suppose φ is an L-formula in N∪N0 ⊆ Prop, and ψ an L-formula in N∪N1 ⊆ Prop.
Since L is expressively complete, there is an L-formula θ in N such that JθK = JφK∣N= {X ↾N ∶ X ⊧ φ}.
It follows from the locality property of L that θ is the desired interpolant, i.e., φ ⊧ θ and θ ⊧ψ .

3 Axiomatizations
The proof of Theorem 1 and also results in [8] show that every formula in the language of PU, PInc or
PAm can be turned into an equivalent formula in a certain normal form, .e.g, the form ⋁X∈PΨX for PU.
Making use of these normal forms, we can axiomatize these union closed team logics.

1This PInc-formula is essentially adapted from a very similar modal formula in [2], but our formula ΦX is slightly simpler
than the one in [2], which uses slightly more general inclusion atoms. In this sense, the result that our version of PInc is
expressively complete is a slight refinement of the expressive completeness of another version of PInc that follows from [2].
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We present in this abstract only the system of natural deduction for PU, and the systems for PInc or
PAm have rules for inclusion and anonymity atoms in addition to the following ones. In the following
rules, α ranges over classical formulas only:

[α]⋮� ¬I¬α

¬¬α ¬¬Eα
α ¬α ¬Eφ

�
ex falsoφ

φ ψ ∧Iφ ∧ψ
φ ∧ψ ∧Eφ

φ ∧ψ ∧Eψ

φ ∨Iφ ∨ψ For ○ ∈ {∨,/}:
D0

φ ○ψ

[φ]
D1
χ

[ψ]
D2
χ ○Eχ

φ ○φ ○Ctrφ

ψ /� /Eφ
φ /ψ / > ∨φ ∨ψ

The undischarged assumptions in D0

contains classical formulas only

φ /(ψ ∨χ)
Dstr/∨(φ /ψ)∨(φ /χ) φ ∨(ψ /χ)

Dstr∨/(φ ∨ψ)/(φ ∨χ) ( ⋁
X∈XΨX)∧( ⋁

Y∈YΨY)
Dstr∨∧∨⋁

Z∈ZΨZ

where Z = {Z = ⋃X ′ = ⋃Y ′ ∣ X ′ ⊆ X & Y ′ ⊆ Y}
As other systems for team logics (see e.g., [7, 8]), the above system does not admit uniform substi-

tution, as, e.g., the negation rules apply to classical formulas only. Restricted to classical formulas, the
above system contains all the usual rules for disjunction ∨.

Theorem 3 (Sound and Completeness). For any PU-formulas φ and ψ , we have ψ ⊧ φ ⇐⇒ ψ ⊢ φ .

Proof. (idea) Use the normal form of PU, and the equivalence of the following clauses:

(i) ⋁
X∈XΨX ⊧ ⋁

Y∈YΨY .

(ii) for each X ∈ X , there exists YX ⊆ Y such that X = ⋃YX .
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