
Intermediate Logic Proofs as Concurrent Programs

Federico Aschieri, Agata Ciabattoni, and Francesco A. Genco

TU Wien
Vienna, Austria

Building on ideas of Haskell Curry, in 1969 William Howard showed that constructing an
intuitionistic proof is not at all different from writing a program in λ-calculus [8]. He also
showed that the reduction of the proof to its normal form exactly corresponds to the evaluation
of the associated program. This relation between intuitionistic natural deduction and simply
typed λ-calculus is now called the Curry–Howard correspondence. In 1990 Griffin showed that
such a correspondence is not limited to intuitionistic logic but a similar relation holds between
classical logic and sequential extensions of simply typed λ-calculus featuring control operators [7].
One year later, in 1991, Avron noticed a connection between concurrent computation and
hypersequent calculus – a proof calculus well suited for capturing logics intermediate between
intuituionistic and classical logic, see [3]. He envisaged, in particular, the possibility of using
the intermediate logics that can be captured by hypersequent calculi “as bases for parallel
λ-calculi” [4].

The translation in [5] from hypersequent rules into higher-level natural deduction rules [9]
made it possible to define natural deduction calculi matching the parallel structure of hyperse-
quents. Building on this, we establish modular Curry–Howard correspondences for a family of
natural deduction calculi and we prove their normalization. These correspondences provide a
concurrent computational interpretation for intermediate logics that are naturally formalized as
hypersequent calculi. The calculi resulting from this computational interpretation are extensions
of the simply typed λ-calculus by a parallelism operator and communication channel variables.
We thus confirm Avron’s 1991 thesis for a rather general class of intermediate logics and present
some specific instances of particular proof-theoretical interest.

In particular, we first introduce the typed concurrent λ-calculi λCl [2] and λG [1]. These
calculi are defined extending simply typed λ-calculus by the type assignment rules

[a : ¬A]
....

s : B

[a : A]
....

t : B
s ‖a t : B

and

[a : A→ B]
....

s : C

[a : B → A]
....

t : C
s ‖a t : C

respectively. These rules logically correspond to the excluded middle law ¬A ∨ A and to the
linearity axiom (A→ B) ∨ (B → A), respectively, and hence allow us to provide a concurrent
interpretation of classical logic and Gödel–Dummett logic. The computational rôle of these rules
is to introduce the parallelism operator ‖a. The parallelism operator, in turn, acts as a binder
for the communication variables a occurring in s and in t. Thus, in the calculus λCl we can
compose processes in parallel and establish communication channels of the form

between them. The communication reduction rule (basic cross reduction) of λCl is

S[a¬A v] ‖a t 7→ t[v/a] for s = S[a¬Av] and v closed term

and can be intuitively represented as



Intermediate Logic Proofs as Concurrent Programs Aschieri, Ciabattoni, and Genco

This reduction rule enables us to use channels in one direction only: we can only transmit the
argument v of a¬A from s to t. On the other hand, in λG we can establish channels of the form

The corresponding basic reduction rules are two, one for transmitting messages from left to
right:

S[a v] ‖a T [aw] 7→ S[a v] ‖a T [v] for s = S[a v], t = T [aw] and v closed term

which we can represent as

and one for transmitting messages from right to left:

S[a v] ‖a T [aw] 7→ S[w] ‖a T [aw] for s = S[a v], t = T [aw] and w closed term

Thus in λG we can encode dialogues between processes during which messages are exchanged in
both directions.

Generalising the ideas used for λCl and λG, we then present a family of concurrent λ-calculi
which provide concurrent computational interpretations for all the intermediate logics that can
be defined extending intuitionistic logic by axioms of the form

(F1 → G1) ∨ . . . ∨ (Fn → Gn)

where for i ∈ {1, . . . , n} no Fi is repeated and if Fi 6= > then Fi = Gj for some j ∈ {1, . . . , n}.
The corresponding minimal communication topologies generalize those of λCl and λG and

include, for instance, cyclic graphs such as

. . .

Even though the rather simple communication reductions shown above – the basic cross reductions
– seem to cover in practice most of the expressiveness needs of concurrent programming, the
normalisation of the proof-systems on which the discussed concurrent λ-calculi are based induces

2



Intermediate Logic Proofs as Concurrent Programs Aschieri, Ciabattoni, and Genco

much more general forms of communications. In order to obtain analytic proof-terms, we need
also to be able to transmit open processes that have bonds with their original environment.
We need thus, more importantly, to be able to restore the required dependencies after the
communication. The corresponding computational problem is often called the problem of the
transmission of closures, see for example [6], and is very well known in the context of code
mobility, which is the field of study precisely concerned with the issues related to the transmission
of functions between programs. Fortunately, our proof systems do not only require very general
reductions, but also provides a solution to the problems arising from them. This solution is
realized in the presented λ-calculi as the full cross reduction rules, which implement the required
term communication and establish a new communication channel on the fly in order to handle
the dependencies, or closure, of the transmitted term.

We prove a general normalization result for the introduced calculi, we show that they are
strictly more expressive than simply typed λ-calculus and discuss their computational features.

References

[1] Federico Aschieri, Agata Ciabattoni, and Francesco A. Genco. Gödel logic: from natural deduction
to parallel computation. In LICS 2017, pages 1–12, 2017.

[2] Federico Aschieri, Agata Ciabattoni, and Francesco A. Genco. Classical proofs as parallel programs.
In GandALF 2018, 2018.

[3] Arnon Avron. A constructive analysis of RM. Journal of Symbolic Logic, 52(4):939–951, 1987.

[4] Arnon Avron. Hypersequents, logical consequence and intermediate logics for concurrency. Annals
of Mathematics and Artificial Intelligence, 4(3):225–248, 1991.

[5] Agata Ciabattoni and Francesco A. Genco. Hypersequents and systems of rules: Embeddings and
applications. ACM Transactions on Computational Logic (TOCL), 19(2):11:1–11:27, 2018.

[6] Jeff Epstein, Andrew P. Black, and Simon L. Peyton Jones. Towards haskell in the cloud. In ACM
Haskell Symposium 2011, pages 118–129, 2011.

[7] Timothy G. Griffin. A formulae-as-type notion of control. In POPL 1990, 1990.

[8] William A. Howard. The formulae-as-types notion of construction. In To H. B. Curry: Essays on
Combinatory Logic, Lambda Calculus, and Formalism, pages 479–491. Academic Press, 1980.

[9] Peter Schroeder-Heister. The calculus of higher-level rules, propositional quantification, and the
foundational approach to proof-theoretic harmony. Studia Logica, 102(6):1185–1216, 2014.

3


