On one-variable fragments of modal predicate logics.

Valentin Shehtman¹²³ and Dmitry Shkatov⁴

 $^{1}\,$ National Research University Higher School of Economics $^{2}\,$ Institute for Information Transmission Problems, Russian Academy of Sciences $^{3}\,$ Moscow State University

We consider normal 1-modal predicate logics as they were defined in [2]. I.e., the signature contains predicate letters of different arities, but no constants or functions letters; also we do not specify the equality symbol. A logic is a set of formulas containing all classical validities and the axioms of \mathbf{K} and closed under Modus Ponens, \forall - and \Box - introduction, and predicate substitution.

We also consider (normal) modal propositional logics. For a propositional modal logic Λ , its minimal predicate extension is denoted by $Q\Lambda$.

For modal predicate logics several different semantics are known. The most popular is Kripke semantics (with expanding domains). Recall that a predicate Kripke frame is a pair (F, D), where F = (W, R) is a propositional Kripke frame (i.e., $W \neq \emptyset$, $R \subseteq W^2$) and D is a family of non-empty sets $(D_u)_{u \in W}$ such that $D_u \subseteq D_v$ whenever uRv. A predicate Kripke model over a frame $\mathbf{F} = (F, D)$ is a pair (\mathbf{F}, ξ) , where ξ (a valuation) is a family $(\xi_u)_{u \in W}$, ξ_u sends every n-ary predicate letter P to an n-ary relation on D_u (0-ary relation is a fixed value 0 or 1).

The truth predicate $M, u \models A$ is defined for any world $u \in W$ and D_u -sentence A (a sentence with individuals from D_u as constants). In particular,

$$M, u \vDash P(a_1, \dots, a_n) \text{ iff } (a_1, \dots, a_n) \in \xi_u(P),$$

 $M, u \vDash \Box A \text{ iff } \forall v \in R(u) M, v \vDash A,$
 $M, u \vDash \forall x A \text{ iff } \forall a \in D_u M, u \vDash [a/x]A.$

A formula A is valid in $\mathbf{F} = (F, D)$ (in symbols, $\mathbf{F} \models A$) if its universal closure is true at any world in any Kripke model over \mathbf{F} . The set $\mathbf{ML}(\mathbf{F}) := \{A \mid \mathbf{F} \models A\}$ is a modal predicate logic (the logic of \mathbf{F}). The logic of a class of frames \mathcal{C} is $\mathbf{ML}(\mathcal{C}) := \bigcap \{\mathbf{ML}(\mathbf{F}) \mid F \in \mathcal{C}\}$. Logics of this form are called Kripke complete.

Similar definitions for propositional logics are well-known, so we skip them.

Formulas constructed from a single variable x and monadic predicate letters are called 1-variable. Every such formula A translates into a bimodal propositional formula A_* with modalities \square and \blacksquare if every atom $P_i(x)$ is replaced with the proposition letter p_i and every quantifier $\forall x$ with \blacksquare . The 1-variable fragment of a predicate logic L is the set

$$L-1 := \{A_* \mid A \in L, A \text{ is 1-variable}\}.$$

Then

Lemma 1. L-1 is a bimodal propositional logic.

Recall that for monomodal propositional logics Λ_1 , Λ_2 the fusion $\Lambda_1 * \Lambda_2$ is the smallest bimodal logic containing $\Lambda_1 \cup \Lambda_2$ (if the modal connectives in Λ_1 , Λ_2 are distinct).

⁴ University of Witwatersrand, Johannesburg, South Africa

The *semicommutative join* of a monomodal logic Λ (in the language with \square) with **S5** (in the language with \blacksquare) is obtained from $\Lambda * S5$ by adding the axiom

$$(com^l)$$
 $\square \blacksquare p \to \blacksquare \square p.$

This logic is denoted by $\Lambda \, \rfloor \, S5$. The following properties are easily checked.

Lemma 2. (1) $\Lambda \perp S5 \subseteq Q\Lambda - 1$.

(2) A propositional Kripke frame $F = (W, R_1, R_2)$ validates $\Lambda \rfloor S5$ iff

$$(W, R_1) \vDash \mathbf{\Lambda} \& R_2$$
 is an equivalence $\& R_2 \circ R_1 \subseteq R_1 \circ R_2$.

Definition 1. Let $F_1 = (U_1, R_1)$, $F_2 = (U_2, R_2)$ be propositional frames. Their product is the frame $F_1 \times F_2 = (U_1 \times U_2, R_h, R_v)$, where

- $(u, v)R_h(u', v')$ iff uR_1u' and v = v',
- $(u, v)R_v(u', v')$ iff u = u' and vR_2v' .

A semiproduct (or an expanding product) of F_1 and F_2 is a subframe (W, S_1, S_2) of $F_1 \times F_2$ such that $R_h(W) \subseteq W$.

Definition 2. A semiproduct $\Lambda \times S5$ of a monomodal propositional logic Λ with S5 is the logic of the class of all semiproducts of Λ -frames (i.e., frames validating Λ) with clusters (i.e., frames with a universal relation).

From Lemma 2 we readily have

Lemma 3. $\Lambda \, \rfloor \, S5 \subseteq \Lambda \, \times \, S5$.

Definition 3. The logics Λ and S5 are called semiproduct matching if $\Lambda \, \rfloor \, S5 = \Lambda \, \rightthreetimes \, S5$. Λ is called quantifier-friendly if $Q\Lambda - 1 = \Lambda \, \rfloor \, S5$.

Definition 4. The Kripke-completion $C_{\mathcal{K}}(L)$ of a predicate logic L is the logic of the class of all frames validating L.

 $C_{\mathcal{K}}(L)$ is the smallest Kripke-complete extension of L. From definitions we obtain

Lemma 4. $C_K(\mathbf{Q}\Lambda) - 1 = \Lambda \times \mathbf{S5}$. Hence

$$\mathbf{Q}\mathbf{\Lambda} - 1 \subseteq \mathbf{\Lambda} \times \mathbf{S5}$$
.

Also

$$\mathbf{Q}\mathbf{\Lambda} - 1 = \mathbf{\Lambda} \times \mathbf{S5}$$

if $\mathbf{Q}\boldsymbol{\Lambda}$ is Kripke-complete, and

$$\mathbf{Q}\mathbf{\Lambda} - 1 = \mathbf{\Lambda} \mid \mathbf{S5}$$

if Λ and S5 are semiproduct matching.

The following result is proved in [1] (Theorem 9.10).

Theorem 5. Λ and S5 are semiproduct matching for $\Lambda = K, T, K4, S4, S5$.

¹The book [1] uses a different terminology and notation: semiproducts are called 'expanding products', $\Lambda \perp S5$ is denoted by $[\Lambda, S5]^{EX}$, $\Lambda \times S5$ by $(\Lambda \times S5)^{EX}$, and there is no term for 'semiproduct matching'.

This result extends to a slightly larger class.

Definition 5. A one-way PTC-logic is a modal propositional logic axiomatized by formulas of the form $\Box p \to \Box^n p$ and closed (i.e., variable-free) formulas.

Theorem 6. Λ and S5 are semiproduct matching for any one-way PTC-logic Λ .

Corollary 7. Every one-way PTC-logic is quantifier-friendly.

Also we have

Theorem 8. ([2], theorem 6.1.29) $\mathbf{Q}\mathbf{\Lambda}$ is Kripke complete for any one-way PTC-logic $\mathbf{\Lambda}$.

It is not clear how far theorems 6, 8 can be generalized. Anyway, unlike the case of products and predicate logics with constant domains (cf. [1], [2]), they do not hold for arbitrary Horn axiomatizable logics

Many counterexamples are given by the next theorem.

Let

$$\Box ref := \Box(\Box p \to p), \ \Box \mathbf{T} := \mathbf{K} + \Box ref,$$
$$\mathbf{SL4} := \mathbf{K4} + \Diamond p \leftrightarrow \Box p.$$

Theorem 9. Let Λ be a propositional logic such that $\Box \mathbf{T} \subseteq \Lambda \subseteq \mathbf{SL4}$. Then

- Λ and S5 are not semiproduct matching.
- $\mathbf{Q}\mathbf{\Lambda}$ is Kripke incomplete.

The crucial formula for Kripke incompleteness is

$$\Box \forall ref := \Box \forall x (\Box P(x) \to P(x)),$$

and to disprove semiproduct matching one can use

$$\Box \blacksquare ref := (\Box \forall ref)_* = \Box \blacksquare (\Box p \to p).$$

However, by applying the Kripke bundle semantics (cf. [2]) we can prove the following

Theorem 10. The logics $\Box \mathbf{T}$, **SL4** are quantifier-friendly.

Conjecture Every Horn axiomatizable logic is quantifier-friendly.

For some logics Λ between $\Box \mathbf{T}$ and $\mathbf{SL4}$ completeness of $\mathbf{Q}\Lambda$ can be restored by adding $\Box \forall ref$. Let

$$5 := \Diamond \Box p \to \Box p, \ \mathbf{K5} := \mathbf{K} + 5, \ \mathbf{K45} := \mathbf{K4} + 5,$$
$$\Box \mathbf{S5} := \Box \mathbf{T} + \Box ((\Box p \to \Box \Box p) \land (\Diamond \Box p \to p)).$$

Theorem 11. For the logics $\Lambda = \Box T$, SL4, K5, $\Box S5$:

- $C_{\mathcal{K}}(\mathbf{Q}\mathbf{\Lambda}) = \mathbf{Q}\mathbf{\Lambda} + \Box \forall ref$,
- $\Lambda \times S5 = \Lambda \mid S5 + \square \blacksquare ref$.

Corollary 12. For logics from Theorem 11

$$(\mathbf{Q}\mathbf{\Lambda} + \Box \forall ref) - 1 = \mathbf{\Lambda} \mid \mathbf{S5} + \Box \blacksquare ref.$$

This research was done in part within the framework of the Basic Research Program at National Research University Higher School of Economics and was partially supported within the framework of a subsidy by the Russian Academic Excellence Project 5-10.

References

- [1] D. Gabbay, A. Kurucz, F. Wolter, and M. Zakharyaschev. *Many-dimensional modal logics: theory and applications*. Elsevier, 2003.
- $[2]\,$ D. Gabbay, V. Shehtman, and D. Skvortsov. *Quantification in nonclassical logic*, volume 1. Elsevier, 2009.