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1 Introduction

Markov Decision Processes (MDPs) [11] are a family of probabilistic, state-based models used in
planning under uncertainty and reinforcement learning. Informally, an MDP models a situation
in which an agent (the decision maker) makes choices at each state of a process, and each choice
leads to some reward and a probabilistic transition to a next state. The aim of the agent is to
find an optimal policy, i.e., a way of choosing actions that maximizes future expected rewards.

The classic theory of MDPs with discounting is well-developed (see [11, Chapter 6]), and
indeed we do not prove any new results about MDPs as such. Our work is inspired by Bellman’s
principle of optimality, which states the following: “An optimal policy has the property that
whatever the initial state and initial decision are, the remaining decisions must constitute an
optimal policy with regard to the state resulting from the first decision” [2, Chapter III.3]. This
principle has clear coinductive overtones, and our aim is to situate it in a body of mathematics
that is also concerned with infinite behavior and coinductive proof principles, i.e., in coalgebra.

Probabilistic systems of similar type have been studied extensively, also coalgebraically, in
the area of program semantics (see for instance [5, 6, 14, 15]). Our focus is not so much on
the observable behavior of MDPs viewed as computations, but on their role in solving optimal
planning problems.

This abstract is based on [7] to which we refer for a more detailed account.

2 Markov Decision Processes

We briefly introduce the relevant basic concepts from the classic theory MDPs[11]. Letting ∆S
denote the set of probability distributions with finite support on the set S, we define MDPs1

and policies as follows.

Definition 2.1 (MDP, Policy) Let Act be a finite set of actions. A Markov decision process
(MDP) m = 〈S, u, t〉 consists of a finite set S of states, a reward function u : S → R, and a
probabilistic transition structure t : S → (∆S)Act . A policy is a function σ : S → Act.

That is, in state s when the agent chooses action a, there is a probability distribution t(s)(a)
over states. Furthermore, in each state s, the agent collects a reward (or utility) specified by a
real number u(s).

We shall often leave S implicit and simply write m = 〈u, t〉. Given a probabilistic transition
structure t : S → (∆S)Act and a policy σ ∈ ActS , we write tσ : S → ∆S for the map defined by
tσ(s) = t(s)(σ(s)), and ta when σ is constant equal to a.

1Our simple type of MDPs is known as time-homogeneous, infinite-horizon MDPs with finite state and action
spaces, and our policies as stationary, memoryless deterministic policies.
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There are several criteria for evaluating the long-term rewards expected by following a given
policy. A classic criterion uses discounting. The idea is that rewards collected tomorrow are
worth less than rewards collected today.

Definition 2.2 Let γ be a fixed real number with 0 ≤ γ < 1. Such a γ is called a discount
factor. Let an MDP m = 〈u, t〉 be given. The long-term value of a policy σ (for m) according to
the discounted sum criterion is the function LTVσ : S → R defined as follows:

LTVσ(s) = rσ0 (s) + γ · rσ1 (s) + · · ·+ γn · rσn(s) + · · · (1)

where rσn(s) is the expected reward at time step n.

Note that rσ0 (s) = u(s) for all s ∈ S, and since S is finite, maxs r
σ
0 (s) <∞. This boundedness

property entails that the infinite sum in (1) is convergent.
It will be convenient to work with the map `σ that takes the expected value of LTVσ relative

to some distribution. Formally, `σ : ∆S → R is defined for all ϕ ∈ ∆S by

`σ(ϕ) =
∑
s∈S

ϕ(s) · LTVσ(s). (2)

Observe that for each state s, LTVσ(s) is equal to the immediate rewards plus the discounted
future expected rewards. Seen this way, (1) may be re-written to the corecursive equation

LTVσ(s) = u(s) + γ ·
(∑
s′∈S

tσ(s)(s′) · LTVσ(s′)

)
= u(s) + γ · `σ(tσ(s)). (3)

Viewing LTVσ as a column vector in RS and tσ as a column-stochastic matrix Pσ, the
equation in (3) shows that LTVσ is a fixpoint of the (linear) operator

Ψσ : RS → RS Ψσ(v) = u+ γPσv. (4)

By the Banach Fixpoint Theorem, this fixpoint unique, since Ψσ is contractive (due to 0 ≤ γ < 1),
and RS is a complete metric space. The long-term value induces a preorder on policies: σ ≤ τ if
LTVσ ≤ LTVτ in the pointwise order on RS . A policy σ is optimal if for all policies τ , we have
τ ≤ σ.

Given an MDP m, the optimal value of m is the map V ∗ : S → R that for each state gives
the best long-term value that can be obtained for any policy [11]:

V ∗(s) = max
σ∈ActS

{LTVσ(s)}.

It is an important classic result that V ∗ is the unique (bounded) map that satisfies Bellman’s
optimality equation [2, 11]:

V ∗(s) = u(s) + γ · max
a∈Act

{∑
s′∈S

ta(s)(s′) · V ∗(s′)
}
.

3 Main Contributions

3.1 Policy Improvement via Contraction Coinduction

For our simple model of MDPs with discounting, it is known that the simple type of policies that
we consider here, are sufficient. In other words, an optimal policy can always be found among
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stationary, memoryless, deterministic policies [11, Theorem 6.2.7]. This result together with
the optimality equation forms the basis for an effective algorithm for finding optimal policies,
known as policy iteration [8]. The algorithm starts from any policy σ ∈ ActS , and iteratively
improves σ to some τ such that σ ≤ τ . This leads to an increasing sequence of policies in the
preorder of all policies (SAct ,≤). Since this preorder is finite, this process will at some point
stabilize. The correctness of policy iteration follows from the following theorem.

Theorem 3.1 (Policy Improvement) Let an MDP be given by t : S → (∆S)Act and
u : S → R. Let σ and τ be policies. If `σ ◦ tτ ≥ `σ ◦ tσ, then LTVτ ≥ LTVσ. Similarly, if
`σ ◦ tτ ≤ `σ ◦ tσ, then LTVτ ≤ LTVσ.

We present a coinductive proof of the Policy Improvement theorem. This leads us to formulate
a coinductive proof principle that we have named contraction (co)induction. The contraction
coinduction principle is a variation of the classic Banach Fixpoint Theorem, asserting that any
contractive mapping on a complete metric space has a unique fixpoint. We need a version of
this theorem which, in addition to a complete metric, also has an order.

Definition 3.2 An ordered metric space is a structure (M,d,≤) such that d is a metric on
M and ≤ is a partial order on M , satisfying the extra property that for all y ∈M , {z | z ≤ y}
and {z | y ≤ z} are closed sets in the metric topology. This space is said to be complete if it is
complete as a metric space.

Theorem 3.3 (Contraction (Co)Induction) Let M be a non-empty, complete ordered
metric space. If f : M →M is both contractive and order-preserving, then the fixpoint x∗ of f
is a least pre-fixpoint (if f(x) ≤ x, then x∗ ≤ x), and also a greatest post-fixpoint (if x ≤ f(x),
then x ≤ x∗).

Theorem 3.3 follows from the Metric Coinduction Principle [10, 12]. Our aim is not the
highest level of generality. Rather, we see contraction (co)induction as a particular instance
of Metric Coinduction that suffices to prove interesting results about MDPs. We also believe
contraction (co)induction should have applications far beyond the topic of MDPs.

3.2 Long-Term Values via b-Corecursive Algebras

We now take a coalgebraic perspective on MDPs and long-term value functions. Let ∆ be
the Set-monad of finitely supported probability distributions, and let H be the Set-functor
H = R× Id. A leading observation of this paper is that we can re-express (3) by saying that
LTVσ : S → R makes the following diagram commute:

S
mσ //

LTVσ

��

R×∆S

R×∆(LTVσ)

��
R R× R

αγ
oo R×∆R

R×E
oo

(5)

Here, E: ∆R→ R is the expected value function and αγ : R× R→ R is the H-algebra

αγ : HR→ R αγ(x, y) = x+ γ · y. (6)

This means that LTVσ is an H∆-coalgebra-to-algebra map. We naturally wonder whether
the H∆-algebra at the bottom of the diagram is a corecursive algebra [4]: for every coalgebra
f : X → H∆X (where X is possibly infinite), is there a unique map f† : S → R making the
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diagram commute? This turns out not to be the case for arbitrary state spaces, as problems
can arise when reward values are unbounded. To remedy this, we introduce the notions of
b-categories and b-corecursive algebras with which we aim to give a sparse categorification of
boundedness. Combining these with techniques from coinductive specification ([3]) and trace
sematics [1, 9], we can show that αγ ◦ (R× E) is a b-corecursive algebra, and thereby obtain
LTVσ from its universal property. The optimal value function V ∗ can be characterised in a
similar way via a b-corecursive algebra.

This categorical approach emphasizes compositional reasoning about functions and functors.
The classical theory of MDPs does not do this; it directly proves properties (such as boundedness)
of composites viewed as monolithic entities, instead of deriving them from preservation properties
of their constituents. So it neither needs nor uses the extra information that we obtained by
working in a categorical setting. Indeed, most of our work is devoted to this extra information,
and we hope that it will be useful in settings beyond MDPs. We have some pilot results in this
direction for stochastic games [13].
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