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The proof-theoretic framework of nested sequents has been very successful in treating normal
modal logics. It is used, e.g., for providing modular calculi for all the logics in the so-called
modal cube, for tense logics, as well as for modal logics based on propositional intuitionistic
logic [2, 5, 9, 11]. The success of this framework might be due to the fact that it provides
an ideal meeting point between syntax and semantics: On the one hand, nested sequents can
be seen as purely syntactic extensions of the sequent framework with a structural connective
corresponding to the modal box. On the other hand, due to the inherent similarity of the
underlying tree structure to Kripke models, the nested sequent framework lends itself to very
direct methods of countermodel construction from failed proof search by essentially reading
off the model from a saturated and unprovable nested sequent. However the full power and
flexibility of this framework so far has not yet been harnessed in the context of non-normal
modal logics. While a first attempt at obtaining nested sequent calculi for non-normal modal
logics indeed yielded modular calculi for a reasonably large class of non-normal modal logics by
decomposing standard sequent rules [7, 8], the obtained calculi were not shown to inhibit the
analogous central spot between syntax and semantics for these logics. In particular, no formula
interpretation of the nested sequents was provided, and the calculi were not used to obtain
countermodels from failed proof search.

Here we propose an approach to rectify this situation by considering bimodal versions of
the non-normal modal logics. Such logics seem to have been considered originally in [1] in the
form of ability logics, but their usefulness extends far beyond this particular interpretation. The
main idea is that the neighbourhood semantics of non-normal monotone modal logics naturally
gives rise to a second modality, which conveniently is normal. Here we concentrate on one
of the most fundamental non-normal modal logics, monotone modal logic M [3, 4, 10], and
present a nested sequent calculus for its bimodal version. Notably, the nested sequents have a
formula interpretation in the bimodal language, and the calculus facilitates the construction of
countermodels from failed proof search in a slightly modified version. An additional benefit is
that the calculus conservatively extends both the standard nested sequent calculus for normal
modal K from [2, 11] and the nested sequent calculus for monotone modal logic M from [7, 8].

The set F of formulae of bimodal monotone modal logic is given by the following grammar,
built over a set V of propositional variables:

Fu=L|V|F = F|@NF| [WF

The remaining propositional connectives are defined by their usual clauses. The semantics are
given in terms of neighbourhood semantics in the following way, also compare [1, 3, 10].

Definition 1. A neighbourhood model is a tuple M = (W, N, [.]) consisting of a universe W, a
neighbourhood function N': W — 22" and a valuation [.] : V — 2W.
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Definition 2. The truth set of a formula A in a model M = (W, N, [.]) is written as [A] and
extends the valuation [.] of the model by the propositional clauses [L] = @) and [A — B] =
[A]¢ U [B] together with

o [(IVA] ={w e W | exists a € N(w) s.t. for all v € a: v € [A]}
o [[W]A] ={w e W | for all « € N(w) and for all v € o : v € [A]}
If w € [A] we also write 0, w I- A. A formula A is valid in M, if for every model [A] = W.

Hence, the formulation of the truth conditions for the modal operator of monomodal monotone
logic in terms of an “exists forall” clause naturally yields the definition of the operator [VV]
in terms of a “forall forall” clause. This can be rewritten into the clause [[VW]A] = {w € W |

for all v € YN (w) : v € [A]} which immediately yields normality of the modality [VV], since
we can take [ JN (w) as the set of successors of w. In particular, it can be seen that the modality
[WV] behaves like a standard K-modality.

In order to capture both modalities (3V] and [¥V] in the nested sequent framework, we
introduce the two corresponding structural connectives (.) and [.] respectively, with the peculiarity
that nested occurrences of these connectives are allowed only in the scope of the latter:

Definition 3. A nested sequent has the form
F=AC=1L),...,(E, = 101,),[S1], - - -, [Sm] (1)

for n,m > 0, where I' = A as well as the X; = 1I; are standard sequents, and the §; are nested
sequents. The formula interpretation of the above nested sequent is

AT = (VAVVL @IS = Vv wus)

where ¢(S;) is the formula interpretation of S;.

In order to obtain a nested sequent calculus for M we need to make sure that applicability
of the propositional rules does not enforce normality of the interpretation of the structural
connective (.). In particular, we cannot permit application of, e.g., the initial sequent rule inside
the scope of (3V] — otherwise the formula interpretation of the nested sequent = (p = p), i.e.,
(3V](p — p) would need to be a theorem, which is not the case in bimodal M.

Definition 4. The nested sequent rules of the calculus Ny are given in Fig. 1. The rules can
be applied anywhere inside a nested sequent except for inside the scope of {(.).

Soundness of the rules with respect to the formula interpretation can then be shown as usual
by obtaining a countermodel for the formula interpretation of the premiss(es) of a rule from a
countermodel for the formula interpretation of its conclusion:

Proposition 5. The rules of Fig. 1 are sound for M under the formula interpretation.

A relatively straightforward proof of completeness for the calculus Ny can be obtained by
using the completeness result for the Hilbert-style axiomatisation of bimodal M in [1] as follows.
The axioms given there can be converted into rules of a cut-free standard sequent calculus
using, e.g., the methods of [6]. Then, cut-free derivations in the resulting sequent calculus can
be converted into cut-free derivations in the nested sequent calculus Ny along the lines of [7].
Hence together with the previous proposition we obtain:
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Figure 1: The nested sequent rules of the calculus Ny for the bimodal system.

Theorem 6. The calculus in Fig. 1 is sound and complete for bimodal monotone modal logic,
i.e.. A formula A is a theorem of M, if and only if the nested sequent = A is derivable in Ny.

As an interesting corollary of the sketched completeness proof we even obtain cut-free
completeness of the calculus My restricted to linear nested sequents, i.e., the subclass of nested
sequents where we restrict m to be at most 1 in 1 along the lines of [7].

Due to the structure of the rules of My, in a derivation of a formula of the [VV]-fragment of
M neither the connective (3V] nor its structural version (.) occur. Hence, as a further corollary
of Thm. 6, the calculus obtained by dropping the rules (3V], (3V],, W from Ny is complete for
this fragment, which is normal modal logic K. Since the rules [VV], [VV], are exactly the modal
right and left rules in the standard nested sequent calculus for modal logic K from [2, 11], this
immediately yields a completeness proof for that calculus seen as a fragment of Ny.

Moreover, by dropping the rules [VV],, [VV],,W from Ny we obtain the calculus for
monomodal M from [7, 8]. Hence we also obtain a completeness proof for that calculus,
together with a formula interpretation, albeit the latter only in the language extended with [VV].
Thus the calculus Ny can be seen as a generalisation and combination of both the standard
nested sequent calculus for normal modal logic K and the linear nested sequent calculus for
monomodal monotone logic M. This seems to support the intuition that bimodal M can be seen
as a refinement of modal logic K, where the set of successor states | JN (w) is further structured
by N, a structure which is accessible through the additional connective (3V].

So far the presented nested sequent calculus eliminates one of the shortcomings of the calculi
in [7, 8], namely the lack of a formula interpretation. In addition, it facilitates a semantic
proof of completeness by constructing a countermodel from failed proof search. The intuition
is the same as for normal modal logics: the nodes in a saturated unprovable nested sequent
yield the worlds of a Kripke-model. Here the nodes of a nested sequent are separated by the []
operator, so that every node contains a standard sequent and a multiset of structures (X; = II;).
The successor relation given by | JA (w) then corresponds to the immediate successor relation
between nodes in the nested sequent. The main technical challenge is the construction of the
neighbourhood function A itself. This can be done by adding annotations in the form of a

set of formulae to every node in the nested sequent, written as I’ 2 A. Further, to facilitate
backwards proof search we absorb contraction into the rules by copying the principal formulae
into the premiss(es). The so modified annotated versions of the interesting rules are given in
Fig. 2. In all the other rules the annotations are preserved going from conclusion to premiss(es).
In the following we write £(w) for the annotation of the component v of a nested sequent.
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Figure 2: The interesting rules of the annotated variant N, of the system

Definition 7. The model generated by a nested sequent S is the model M = (W, N, [.]) where
W is the set of components (nodes) of S, the valuation is defined by: if w € W, then w € [p]

iff w contains [T 22 A] and p € T'. Finally, the neighbourhood function N (w) is defined as
follows. Let C,, be the set of immediate successors of w, and let £[C,,] be the set of labels of
nodes in C,,. Then let £, := {{v € C(w) | L(v) = X} | £ € {[Cyw]}. Now, N (w) is defined as
(L U{Cyw}) ~ {0} if there is a formula (IV]A € A, and L, U {C,} U {0} otherwise.

Thus, disregarding the empty set, the set of neighbourhoods of a node in a nested sequent
includes the set of all its children, as well as every set of children labelled with the same label.
Whether it contains the empty set or not depends on whether there is a formula of the form
(3V]A in its succedent. This construction then yields countermodels from failed proof search:

Theorem 8. If S is a saturated nested sequent obtained by backwards proof search from a
non-nested sequent T = A, then IS is a neighbourhood model, and the root w of S satisfies for
every formula A: if A €T, then w € [A], and if A € A, the w ¢ [A].

An implementation of the resulting proof search procedure which yields either a derivation
or a countermodel is available under http://subsell.logic.at/bprover/nnProver/.

While here we considered only monotone logic M, we expect the calculus My to be extensible
to a large class of extensions of M. Hence it should provide the basis for an ideal meeting ground
for syntax and semantics in the context of non-normal monotone modal logics.
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