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1 Abstract

The ubiquitous notion of resources is a basic one in many fields but has become more and more
central in the design and validation of modern computer systems over the past twenty years.
Resource management encompasses various kinds of behaviours and interactions including con-
sumption and production, sharing and separation, spatial distribution and mobility, temporal
evolution, sequentiality or non-determinism, ownership and access control. Dealing with vari-
ous aspects of resource management is mostly in the territory of substructural logics, and more
precisely, resource logics such as Linear Logic (LL) [5] with its resource consumption interpre-
tation, the logic of Bunched Implications (BI) [8] with its resource sharing interpretation, or
order-aware non-commutative logic (NL) [1]. As specification logics, they allow the modelling
of features like interactions, resource distribution and mobility, non-determinism, sequentiality
or coordination of entities. Separation Logic and its memory model, of which BI is the logical
kernel, has gained momentum and proved itself very successful as an assertion language for
verifying programs that handle mutable data structures via pointers [6, 9].

From a semantic point of view, resource interactions such as production and consumption, or
separation and sharing are handled in resource models at the level of resource composition. For
example, various semantics have been proposed to capture the resource sharing interpretation of
BI including monoidal, relational or topological resource semantics [4]. From a proof-theoretic
and purely syntactical point of view, the subtleties of a particular resource composition usually
leads to the definition of distinct sets of connectives (e.g., additive vs multiplicative, commu-
tative vs non-commutative). Capturing the interaction between various kinds of connectives
often results in structures more elaborated than set of multi-sets of formulas. For example,
the label-free sequent calculus for BI, which is called LBI, admits sequent the left-hand part of
which are structured as bunches [7, 8]. Resource interaction is usually much simpler to handle
in labelled proof-systems since labels and label constraints are allowed to reflect and mimic,
inside the calculus, the fundamental properties of the resource models they are drawn from. For
example, various labelled tableaux calculi, all called TBI, have been proposed for the various
semantics of BI [4]. A labelled tableaux calculus has been also developed for Separation Logic
and its memory model [3].

Our aim is to study the relationships between labelled and label-free proof-systems in BI
logic and, more precisely, with the label-free sequent calculus LBI. The relational, topological
and monoidal semantics with a Beth interpretation of the additive disjunction have all been
proven sound and complete w.r.t. LBl and TBI in [4, 7, 8]. However, the monoidal semantics in
which the additive disjunction has the usual Kripke interpretation and which admits explicitly
inconsistent resources together with a total (and not partial) resource composition operator has
only been proven complete w.r.t. TBI. Its status w.r.t. LBI is not known and still a difficult
open problem. Many attempts at solving the problem from a purely semantic point of view have
failed over the past fifteen years. Instead we propose a three-step syntactic approach to proving
the completeness of the Kripke monoidal semantics of BI that relies on proof translations.



As a first step, we recently proposed a single-conclusioned sequent-style labelled proof-
system called GBI, that can be seen as a kind of intermediate calculus between TBI and LBI.
GBI shares with TBI the idea of sets of labels and contraints arranged as a resource graph, but
the resource graph is partially constructed on the fly using explicit structural rules on labels
and constraints rather than being obtained as the result of a closure operator.

The main result in [2] was the definition of an effective (algorithmic) procedure that sys-
tematically translates any LBI-proof into a GBI-proof. This translation is not a one-to-one
correspondence sending each LBI-rule occurring in the original proof to its corresponding GBI
counterpart in the translated proof. Indeed, most of the translations patterns require several
additional structural steps to obtain an actual GBI-proof. However, these patterns are such
that the rule-application strategy of the original proof will be contained in the translated proof,
making our translation structure preserving in that particular sense.

In [2] we also started to investigate how GBI-proofs could relate to LBI-proofs. Taking
advantage of the structure preserving property of the translation we gave a reconstruction
algorithm that tries to rebuild a LBI-proof of a formula F', from scratch, knowing only the rule-
application strategy followed in a given (normal) GBI-proof of F. The completeness of this
reconstruction algorithm, 4.e., that it might never get stuck, depends on the completeness of
the insertion of semi-distributivity steps in the LBI-proof that are meant to fill in the gaps left by
the application of structural rules of GBI (in the given GBI-proof) with no LBI counterpart. The
completeness of these intermediate semi-distributivity steps was (and still is) only conjectured
and far from obvious.

In this paper, we take a second step and further develop our study of how to translate GBI-
proofs into LBI-proofs. We first define a kind of tree-like property for GBI labelled sequents.
This tree property allows us to translate the left-hand side of a labelled sequent to a bunch
according to the label of the formula on its right-hand side. Refining our analysis of the
translation given in [2], we show that every sequent in a GBI-proof obtained by translation
of an LBI-proof satisfies our tree property. We also show that all GBI rules preserve the tree
property from conclusion to premisses except for the rules of contraction and weakening. The
main contribution then follows as we define a restriction of GBI, called GBIy, in which the only
instances of the weakening and contraction rules that are considered as suitable are the ones
preserving the tree property and we show that GBIl,-proofs can effectively and systematically
be translated to LBI-proofs. Let us remark that the main result does not depend on a GBI-proof
being built from an assembly of LBI translation patterns, i.e., on the fact that a GBI-proof
actually corresponds to some translated image of an LBI-proof. We thus observe that our tree-
property can serve as a criterion for defining a notion of normal GBI-proofs for which normality
also means LBI-translatability.

Ongoing and future work will focus on making the third and final step of showing that total
Kripke monoidal models with explicit inconsistency are complete w.r.t. the label-free sequent
calculus LBI. Several directions and approaches can be taken to achieve this final goal. A first
interesting direction is to find an effective (algorithmic) procedure of translating TBI-proofs into
GBIp-proofs since TBI is known to be sound and complete w.r.t. total KRMs. This direction
is challenging because TBI is a multi-conclusioned system in which generative rules can be used
as many times as needed (which avoids backtracking) to saturate the proof-search space and be
able to build a countermodel from Hintikka sets in case of non-provability. A second direction
relies on the construction of counter-models in the KRM semantics of BI directly from failed
GBIp-proof attempts. This direction is also challenging as it requires building countermodels
from a single-conclusioned proof-system in which backtracking is allowed.
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