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1 Introduction

In [BBÖS16] a topological semantics for evidence-based belief and knowledge is introduced,
where epistemic sentences are built in a language L∀KB��0

, which includes modalities allowing
us to talk about defeasible knowledge (K), infallible knowledge ([∀]), belief (B), basic evidence
(�0) and combined evidence (�).

Definition 1 (The dense interior semantics). Sentences of L∀KB��0
are read on topological

evidence models (topo-e-models), which are tuples (X, τ,E0, V ) where (X, τ) is a topological
space, E0 is a subbasis of τ and V : Prop→ 2X is a valuation.

The semantics of a formula φ is as follows: ‖p‖ = V (p); ‖φ∧ψ‖ = ‖φ‖∩‖ψ‖; ‖¬φ‖ = X\‖φ‖;
‖�φ‖ = Int ‖φ‖; x ∈ ‖Kφ‖ iff x ∈ Int ‖φ‖ and Int ‖φ‖ is dense1; x ∈ ‖Bφ‖ iff Int ‖φ‖ is dense;
x ∈ ‖[∀]φ‖ iff ‖φ‖ = X; x ∈ ‖�0φ‖ iff there is e ∈ E0 with x ∈ e ⊆ ‖φ‖; x ∈ ‖�φ‖ iff
x ∈ Int ‖φ‖.

Crucially, using topological spaces to model epistemic sentences grants us an evidential per-
spective of knowledge and belief. Indeed, we can see the opens in the topology as the pieces of
evidence the agent has (and thus our modality �, which encodes “having evidence”, becomes
the topological interior operator). For some proposition φ to constitute (defeasible) knowledge,
we demand that the agent has a factive justification for φ, i.e. a piece of evidence that cannot be
contradicted by any other evidence the agent has. In topological terms, a justification amounts
to a dense piece of evidence. Having a (not necessarily factive) justification constitues belief.
The set X encodes all the possible worlds which are consistent with the agent’s information,
thus for the agent to know φ infallibly ([∀]φ), φ needs to hold throughout X.

The fragment of this language that only contains the Booleans and the K modality, LK ,
has S4.2 as its logic.

The framework introduced in [BBÖS16] is single-agent. A multi-agent generalisation is
presented in this text, along with some “generic models” and a notion of group knowledge.
Our proposal differs conceptually from previous multi-agent approaches to the dense interior
semantics [Ö17, Ram15].

2 Going Multi-Agent

For clarity of presentation we work in a two-agent system.2 Our language now contains modali-
ties Ki, Bi, [∀]i,�i,�0

i for i = 1, 2, each encoding the same notion as in the single-agent system.

∗This paper compiles the results contained in Chapters 3 to 5 of Saúl Fernández González’s Master’s thesis
[FG18]. The authors wish to thank Guram Bezhanishvili for his input.

1A set U ⊆ X is dense whenever ClU = X, or equivalently when it has nonempty intersection with every
nonempty open set.

2Extending these results to n ≥ 2 agents is straightforward, see [FG18, Section 6.1].
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The Problem of Density. The first issue one comes across when defining a multi-agent
semantics is that of accounting for the notion of defeasibility, which, as we have seen, is closely
tied to density. A first (naive) approach would be to consider two topologies and a valuation
defined on a common space, (X, τ1, τ2, V ) and simply have: x ∈ ‖Kiφ‖ iff there exists some
τi-dense open set such that x ∈ U ⊆ ‖φ‖. This does not work, neither conceptually (for we
are assuming that the set of worlds compatible with each agent’s information is the same for
both agents) nor logically (adopting this semantics gives us highly undesirable theorems such
as ¬K1¬K1p → K2¬K1¬K1p). Seeing as each agent’s knowledge is an S4.2 modality and no
interaction between the agents is being assumed, one would expect the two-agent logic to simply
combine the S4.2 axioms for each of the agents.

Simply defining two topologies on the whole space is not the right move. Instead, we want
to make explicit, at each world x ∈ X, which subsets of worlds in X are compatible with each
agent’s information. A straightforward way to do this is via the use of partitions.

Topological-partitional models.

Definition 2. A topological-partitional model is a tuple (X, τ1, τ2,Π1,Π2, V ) where X is a set,
τ1 and τ2 are topologies defined on X, Π1 and Π2 are partitions and V is a valuation.

For U ⊆ X we write Πi[U ] := {π ∈ Πi : U ∩ π 6= ∅}. For i = 1, 2 and π ∈ Πi[U ] we say U is
i-locally dense in π whenever U ∩ π is dense in the subspace topology (π, τi|π); we simply say
U is i-locally dense if it is locally dense in every π ∈ Πi[U ].

For the remainder of this text, we limit ourselves to the fragment of the language including the
K1 and K2 modalities.

Definition 3 (Semantics). We read x ∈ ‖Kiφ‖ iff there exists an i-locally dense τi-open set U
with x ∈ U ⊆ ‖φ‖.

This definition generalises one-agent models, appears to hold water conceptually and, moreover,
gives us the logic one would expectedly extrapolate from the one-agent case.

Lemma 4. If (X,≤1,≤2) is a birelational frame where each ≤i is reflexive, transitive and
weakly directed (i.e. x ≤i y, z implies there exists some t ≥i y, z), then the collection τi of
≤i-upsets and the set Πi of ≤i-connected components give us a topological-partitional model
(X, τ1, τ2,Π1,Π2) in which the semantics of Def. 2 and the Kripke semantics coincide.

Now, the Kripke logic of such frames is the fusion S4.2K1
+ S4.2K2

, i.e. the least normal modal
logic containing the S4.2 axioms for each Ki. As an immediate consequence:

Corollary 5. S4.2K1 + S4.2K2 is the LK1K2-logic of topological-partitional models.

3 Generic Models

[FG18] is partially concerned with finding generic models for topological evidence logics, i.e.
single topological spaces whose logic (relative to a certain fragment L) is precisely the sound
and complete L-logic of topo-e-models. Let us showcase two examples of two-agent generic
models for the LK1K2 fragment. These are particular topological-partitional models whose
logic is precisely S4.2K1 + S4.2K2 .

2
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The Quaternary Tree T2,2. The quaternary tree T2,2 is the full infinite tree with two rela-
tions R1 and R2 where every node has exactly four successors: a left Ri-successor and a right
Ri-successor for i = 1, 2. Let ≤i be the reflexive and transitive closure of Ri.

We can, as we did before, define two topologies τi and two partitions Πi on T2,2 in a very
natural way, namely by taking, respectively, the set of ≤i-upsets and the set of ≤i-connected
components. And we get:

Theorem 6. S4.2K1 + S4.2K2 is sound and complete with respect to (T2,2, τ1,2,Π1,2).

The completeness proof uses the fact that S4.2K1 + S4.2K2 is complete with respect to finite
rooted birelational Kripke frames in which both relations are reflexive, transitive and weakly
directed, plus the fact proven in [vBBtCS06] that, given a preordered birelational finite frame
W , there is an onto map f : T2,2 →W which is continuous and open in both topologies.

The result then follows immediately from:

Lemma 7. Given an S4.2 + S4.2 frame W and a map f as described above, plus a valuation
V on W , we have that W,V, fx � φ under the Kripke semantics if and only if T2,2, V

f , x � φ
under the semantics of Def. 2, where V f (p) = {x ∈ T2,2 : fx ∈ V (p)}.

Proof sketch. The proof of this lemma is an induction on formulas. The right to left direction
for the induction step corresponding to Ki uses the fact that, if U is a connected i-upset in W
with fx ∈ U , then U ′ = {z : z ≥i y for some y ∈ [x]Πi

with fy ∈ U} is an i-locally dense open
set in T2,2 with x ∈ U ⊆ [x]Πi

. �

The rational plane Q×Q. We can define two topologies on Q by “lifting” the open sets in
the rational line horizontally or vertically. Formally, the horizontal topology τH is the topology
generated by {U × {y} : U is open, y ∈ Q}. Similarly, the vertical topology τV is generated by
the sets {y} × U . We have the following result:

Proposition 8. There exist partitions ΠH and ΠV such that (Q × Q, τH,V ,ΠH,V ) is a
topological-partitional model whose logic is S4.2K1

+ S4.2K2
.

Proof sketch. It is shown in [vBBtCS06] that there exists a surjective map g : Q × Q → T2,2

which is open and continuous in both topologies. Given such a map and a valuation V on
T2,2, we can define a valuation V g on Q × Q as above and two equivalence relations: x ∼H y
iff [gx]Π1 = [gy]Π1 , and x ∼V y iff [gx]Π2 = [gy]Π2 . As we did before, we can prove that
(Q×Q, τH , τV ,ΠH ,ΠV ), V g, x � φ iff T2,2, V, gx � φ, whence completeness follows. �

4 Distributed Knowledge

Once a multi-agent framework is defined, the obvious next step is to account for some notion of
knowledge of the group. We will focus on distributed or implicit knowledge, i.e., a modality that
accounts for that which the group of agents knows implicitly, or what would become known if
the agents were to share their information.

One way to do this is to follow the evidence-based spirit inherent to the dense interior
semantics. On this account, we would code distributed knowledge as the knowledge modality
which corresponds to a fictional agent who has all the pieces of evidence the agents have (we can
code this via the join topology τ1∨τ2, which is the smallest topology containing τ1 and τ2), and
only considers a world compatible with x when all agents in the group do (the partition of this
agent being {π1 ∩ π2 : πi ∈ Πi}). Coding distributed knowledge like this gives us some rather

3



Multi-Agent Topological Evidence Logics Baltag, Bezhanishvili, Fernández González

strange results: unlike more standard notions, it can obtain that an agent knows a proposition
but, due to the density condition on this new topology, the group does not (for an example, see
[FG18, Example 5.2.3]).

Our proposal differs from this. Here we follow [HM92] when they refer to this notion as “that
which a fictitious ‘wise man’ (one who knows exactly which each individual agent knows) would
know”. Instead of conglomerating the evidence of all the agents, we account exclusively for what
they know, and we treat this information as indefeasible. Thus, our account of distributed
knowledge, which is not strictly evidence-based, interacts with the Ki modalities in a more
standard way, much like in relational semantics.

Definition 9 (Semantics for distributed knowledge). Our language includes the operators
K1, K2 and an operator D for distributed knowledge. In a topological-partitional model
(X, τ1, τ2,Π1,Π2, V ), we read x ∈ ‖Dφ‖ iff for i = 1, 2 there exist i-locally dense sets Ui ∈ τi
such that x ∈ U1 ∩ U2 ⊆ ‖φ‖.

That is to say, φ constitutes distributed knowledge whenever the agents have indefeasible
pieces of evidence which, when put together, entail φ.

As mentioned above, the logic of distributed knowledge is unsurprising:

Definition 10. LogicK1K2D is the least set of formulas containing the S4.2 axioms and rules
for K1 and K2, the S4 axioms and rules for D plus the axiom Kiφ→ Dφ for i = 1, 2.

Theorem 11. LogicK1K2D is sound and complete with respect to topological-partitional models.

References
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