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1 Introduction

Topological semantics of modal logic has a long history. It was shown by McKinsey and Tarski
[11] that if we interpret O as interior and hence < as closure, then S4 is the modal logic of
all topological spaces. Many topological completeness results have been obtained since the
inception of topological semantics. We list some relevant results: (1) S4 is the logic of any
crowded metric space [11, 13] (this result is often referred to as the McKinsey-Tarski theorem);
(2) Grz is the logic of any ordinal space a > w* [1, 8]; (3) Grz,, (for nonzero n € w) is the logic
of any ordinal space a satisfying w" ' +1 < a < w" [1] (see also [7, Sec. 6]); (4) S4.1 is the
logic of the Pelezyriski compactification of the discrete space w (that is, the compactification of
w whose remainder is homeomorphic to the Cantor space) [6, Cor. 3.19]. If in (2) we restrict to
a countable «, then all the above completeness results concern metric spaces. In fact, as was
shown in [3], the above logics are the only logics arising from metric spaces.

The McKinsey-Tarski theorem yields that S4 is the logic of the Cantor space. An alternative
proof of this result was given in [12] (see also [2]), where the infinite binary tree was utilized.
Kremer [10] used the infinite binary tree with limits to prove that S4 is strongly complete for
any crowded metric space. Further utility of trees with limits is demonstrated in [4].

Herein we summarize a general technique of topologizing trees which allows us to provide
a uniform approach to topological completeness results for zero-dimensional Hausdorff spaces.
It also allows us to obtain new topological completeness results with respect to non-metrizable
spaces. Embedding these spaces into well-known extremally disconnected spaces (ED-spaces for
short) then yields new completeness results for the logics above S4.2 indicated in Figure 1.

It was proved in [5] that S4.1.2 is the logic of the Cech-Stone compactification Sw of the
discrete space w, and this result was utilized in [6] to show that S4.2 is the logic of the Gleason
cover of the real unit interval [0, 1]. However, these results require a set-theoretic axiom beyond
ZFC, and it remains an open problem whether these results are true in ZFC. In contrast, all
our results are obtained within ZFC.

We briefly outline some of the techniques employed to obtain the indicated completeness
results. A unified way of obtaining a zero-dimensional topology on an infinite tree with limits,
say T, is by designating a particular Boolean algebra of subsets of T as a basis. If T has
countable branching, then the topology ends up being metrizable. If the branching is 1, then
the obtained space is homeomorphic to the ordinal space w + 1; if the branching is > 2 but
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Figure 1: Some well-known extensions of S4.

finite, then it is homeomorphic to the Pelczyriski compactification of w; and if the branching
is countably infinite, then there are subspaces homeomorphic to the space of rational numbers,
the Baire space, as well as to the ordinal spaces w™ + 1.

For uncountable branching, it is required to designate a Boolean o-algebra as a basis for the
topology. This leads to topological completeness results for S4,54.1, Grz, and Grz,, with respect
to non-metrizable zero-dimensional Hausdorff spaces.

To obtain topological completeness results for logics extending S4.2, we select a dense sub-
space of either the Cech-Stone compactification 3D of a discrete space D with large cardinality
or the Gleason cover F of a large enough power of [0, 1]. This selection is realized by embedding
a subspace of an uncountable branching tree with limits into either 8D or E. The latter gives
rise to S4.2, while the former yields the other logics of interest extending S4.2. We point out
that these constructions can be done in ZFC.

2 Topologizing trees and topological completeness results

Let x be a nonzero cardinal. The k-ary tree with limits is T, = (T, <) where T}, is the set of
all sequences, both finite and infinite, in x and < is the initial segment partial ordering of T}.
For any o € T, let fo = {¢ € T, | 0 < ¢}. The following table presents some topologies on T};
T is a spectral topology, 7 is the patch topology of 7, and we introduce the o-patch topology IT
of 7.

[ Topology | Generated by |

T the set . := {Tolo € T} is a finite sequence}
T the least Boolean algebra & containing .
II the least Boolean o-algebra 7 containing %

2.1 The patch topology 7w

Here we are concerned with the space T, := (T, ) and its subspaces T°, ¥ and T7 (n €

K

w) whose underlying sets are T>° = {0 € T, | o is an infinite sequence}, T¥ = {0 € T, |
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o is a finite sequence}, and T = {0 € T,; | o is a finite sequence of length n}, respectively. It
ends up that ¥, is metrizable iff k is countable. The following table for 1 < x < w indicates a
subspace X of T,; and a well known space Y that are homeomorphic.

IBS | Y |
T the ordinal space w + 1
T> (2 < Kk <w) | the Cantor discontinuum
% (2 <k <w) | the Pelezyniski compactification of the countable discrete space w
K the Baire space
T the space of irrational numbers
T the space of rational numbers
T (n€w) the ordinal space w™ + 1

Assuming familiarity with S4, for n > 1, we recall the formulas bd; := ¢Op; — p; and
bd,+1 = <&(Oppy1 A —bdy) — pri1 as well as the logics S4.1 := S4 + OOCp — <SOp, Grz =
S4 4+ 0(0(p — Op) — p) — p, and Grz,, := Grz + bd,,. In the following table, the indicated
subspace X of T,; satisfies the properties defined by the logic L and every finite rooted L-frame
is an interior image of X, giving the logic of X is L. In conjunction with the above table, this
yields new proofs for many known topological completeness results.

(L [Xx [
S4 T, T, and TP (2 < Kk < w)
S4.1 T 2<k<w)

Grz D, T

Grz, 41 | TO (n € w)

2.2 The o-patch topology II

We now fucus on the space Ty, := (T};,II) and its subspaces TS, TY, and T} (n € w) whose
underlying sets are T;°, T, and T}, respectively. It turns out that T, is a P-space; that is, a
Tychonoff space such that every Gs-set is open, and T, is discrete iff x is countable. Thus, we
consider only uncountable . In the following table, just as we had for the patch topology, the
logic of the indicated subspace X of T, is L since X satisfies the properties defined by the logic
L and every finite rooted L-frame is an interior image of X. Hence, we obtain completeness for

the same logics as in the previous section but for non-metrizable spaces.

L B |
S4 T
S4.1 T,

Grz D, T
Grzp41 | T (n € w)

2.3 Moving to the ED setting

Finally, we transfer these results into the setting of ED-spaces. By an unpublished result of van
Douwen, see [9], the space T% embeds into the (remainder of the) Cech-Stone compactification
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B(2%) of the discrete space 2. Consider X := T% U 2" and X[ := T? U 2" as subspaces of
B(2%) where we identify both T and 2% with their image in 5(2*). Then X% and X7 are ED.
Moreover, 3(2%), and hence T%, can be embedded into a closed nowhere dense subspace F' of

the Gleason cover E of [0, 1]22K, where [0, 1] denotes the real unit interval. Identify TY with its
image in E. Then the subspace X, := T« U (E\ F) is ED.

We recall that S4.2, S4.1.2, Grz.2, and Grz.2,, are obtained respectively from S4, S4.1, Grz,
and Grz,, by postulating the formula ¢Op — O<Op, which expresses that a space is ED. As
previously, in the following table the space X satisfies the properties defined by the logic L and
every finite rooted L-frame is an interior image of X, giving the logic of X is L.

L [ X |
S4.0 X,
s412 | Xxv
Grz.2 Dcw Xi
Grz.2,42 | X' (n €w)

References

[1] M. A. Abashidze. Algebraic analysis of the Gédel-Lob modal system. PhD thesis, Thilisi State
University, 1987. In Russian.

[2] M. Aiello, J. van Benthem, and G. Bezhanishvili. Reasoning about space: The modal way. J.
Logic Comput., 13(6):889-920, 2003.

[3] G. Bezhanishvili, D. Gabelaia, and J. Lucero-Bryan. Modal logics of metric spaces. Rev. Symb.
Log., 8(1):178-191, 2015.

[4] G. Bezhanishvili, D. Gabelaia, and J. Lucero-Bryan. Topological completeness of logics above S4.
J. Symb. Logic, 80(2):520-566, 2015.

[5] G. Bezhanishvili and J. Harding. The modal logic of 8(N). Arch. Math. Logic, 48(3-4):231-242,
20009.

[6] G. Bezhanishvili and J. Harding. Modal logics of Stone spaces. Order, 29(2):271-292, 2012.

[7] G. Bezhanishvili and P. J. Morandi. Scattered and hereditarily irresolvable spaces in modal logic.
Arch. Math. Logic, 49(3):343-365, 2010.
[8] A. Blass. Infinitary combinatorics and modal logic. J. Symbolic Logic, 55(2):761-778, 1990.
[9] A. Dow and J. van Mill. An extremally disconnected Dowker space. Proc. Amer. Math. Soc.,
86(4):669-672, 1982.
[10] P. Kremer. Strong completeness of S4 for any dense-in-itself metric space. Rev. Symb. Log.,
6(3):545-570, 2013.
[11] J. C. C. McKinsey and A. Tarski. The algebra of topology. Annals of Mathematics, 45:141-191,
1944.
[12] G. Mints. A completeness proof for propositional S4 in Cantor space. In Logic at work, volume 24
of Stud. Fuzziness Soft Comput., pages 79-88. Physica, Heidelberg, 1999.
[13] H. Rasiowa and R. Sikorski. The mathematics of metamathematics. Monografie Matematyczne,
Tom 41. Panstwowe Wydawnictwo Naukowe, Warsaw, 1963.



	Introduction
	Topologizing trees and topological completeness results
	The patch topology 
	The -patch topology 
	Moving to the ED setting


