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1 Introduction

Topological semantics of modal logic has a long history. It was shown by McKinsey and Tarski
[11] that if we interpret 2 as interior and hence 3 as closure, then S4 is the modal logic of
all topological spaces. Many topological completeness results have been obtained since the
inception of topological semantics. We list some relevant results: (1) S4 is the logic of any
crowded metric space [11, 13] (this result is often referred to as the McKinsey-Tarski theorem);
(2) Grz is the logic of any ordinal space α ≥ ωω [1, 8]; (3) Grzn (for nonzero n ∈ ω) is the logic
of any ordinal space α satisfying ωn−1 + 1 ≤ α ≤ ωn [1] (see also [7, Sec. 6]); (4) S4.1 is the
logic of the Pe lczyński compactification of the discrete space ω (that is, the compactification of
ω whose remainder is homeomorphic to the Cantor space) [6, Cor. 3.19]. If in (2) we restrict to
a countable α, then all the above completeness results concern metric spaces. In fact, as was
shown in [3], the above logics are the only logics arising from metric spaces.

The McKinsey-Tarski theorem yields that S4 is the logic of the Cantor space. An alternative
proof of this result was given in [12] (see also [2]), where the infinite binary tree was utilized.
Kremer [10] used the infinite binary tree with limits to prove that S4 is strongly complete for
any crowded metric space. Further utility of trees with limits is demonstrated in [4].

Herein we summarize a general technique of topologizing trees which allows us to provide
a uniform approach to topological completeness results for zero-dimensional Hausdorff spaces.
It also allows us to obtain new topological completeness results with respect to non-metrizable
spaces. Embedding these spaces into well-known extremally disconnected spaces (ED-spaces for
short) then yields new completeness results for the logics above S4.2 indicated in Figure 1.

It was proved in [5] that S4.1.2 is the logic of the Čech-Stone compactification βω of the
discrete space ω, and this result was utilized in [6] to show that S4.2 is the logic of the Gleason
cover of the real unit interval [0, 1]. However, these results require a set-theoretic axiom beyond
ZFC, and it remains an open problem whether these results are true in ZFC. In contrast, all
our results are obtained within ZFC.

We briefly outline some of the techniques employed to obtain the indicated completeness
results. A unified way of obtaining a zero-dimensional topology on an infinite tree with limits,
say T , is by designating a particular Boolean algebra of subsets of T as a basis. If T has
countable branching, then the topology ends up being metrizable. If the branching is 1, then
the obtained space is homeomorphic to the ordinal space ω + 1; if the branching is ≥ 2 but
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Figure 1: Some well-known extensions of S4.

finite, then it is homeomorphic to the Pe lczyński compactification of ω; and if the branching
is countably infinite, then there are subspaces homeomorphic to the space of rational numbers,
the Baire space, as well as to the ordinal spaces ωn + 1.

For uncountable branching, it is required to designate a Boolean σ-algebra as a basis for the
topology. This leads to topological completeness results for S4,S4.1,Grz, and Grzn with respect
to non-metrizable zero-dimensional Hausdorff spaces.

To obtain topological completeness results for logics extending S4.2, we select a dense sub-
space of either the Čech-Stone compactification βD of a discrete space D with large cardinality
or the Gleason cover E of a large enough power of [0, 1]. This selection is realized by embedding
a subspace of an uncountable branching tree with limits into either βD or E. The latter gives
rise to S4.2, while the former yields the other logics of interest extending S4.2. We point out
that these constructions can be done in ZFC.

2 Topologizing trees and topological completeness results

Let κ be a nonzero cardinal. The κ-ary tree with limits is Tκ = (Tκ,≤) where Tκ is the set of
all sequences, both finite and infinite, in κ and ≤ is the initial segment partial ordering of Tκ.
For any σ ∈ Tκ, let ↑σ = {ς ∈ Tκ | σ ≤ ς}. The following table presents some topologies on Tκ;
τ is a spectral topology, π is the patch topology of τ , and we introduce the σ-patch topology Π
of τ .

Topology Generated by

τ the set S := {↑σ|σ ∈ Tκ is a finite sequence}
π the least Boolean algebra B containing S
Π the least Boolean σ-algebra A containing S

2.1 The patch topology π

Here we are concerned with the space Tκ := (Tκ, π) and its subspaces T∞κ , Tωκ , and Tnκ (n ∈
ω) whose underlying sets are T∞κ = {σ ∈ Tκ | σ is an infinite sequence}, Tωκ = {σ ∈ Tκ |
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σ is a finite sequence}, and Tnκ = {σ ∈ Tκ | σ is a finite sequence of length n}, respectively. It
ends up that Tκ is metrizable iff κ is countable. The following table for 1 ≤ κ ≤ ω indicates a
subspace X of Tκ and a well known space Y that are homeomorphic.

X Y

T1 the ordinal space ω + 1
T∞κ (2 ≤ κ < ω) the Cantor discontinuum
Tκ (2 ≤ κ < ω) the Pe lczyński compactification of the countable discrete space ω
T∞ω the Baire space
T∞ω the space of irrational numbers
Tωω the space of rational numbers
Tnω (n ∈ ω) the ordinal space ωn + 1

Assuming familiarity with S4, for n ≥ 1, we recall the formulas bd1 := 32p1 → p1 and
bdn+1 := 3(2pn+1 ∧ ¬bdn) → pn+1 as well as the logics S4.1 := S4 + 23p → 32p, Grz :=
S4 + 2(2(p → 2p) → p) → p, and Grzn := Grz + bdn. In the following table, the indicated
subspace X of Tκ satisfies the properties defined by the logic L and every finite rooted L-frame
is an interior image of X, giving the logic of X is L. In conjunction with the above table, this
yields new proofs for many known topological completeness results.

L X

S4 Tωω, T
∞
ω , and T∞κ (2 ≤ κ < ω)

S4.1 Tκ (2 ≤ κ < ω)
Grz

⊕
n∈ω T

n
ω

Grzn+1 Tnω (n ∈ ω)

2.2 The σ-patch topology Π

We now fucus on the space Tκ := (Tκ,Π) and its subspaces T∞κ , Tωκ , and Tnκ (n ∈ ω) whose
underlying sets are T∞κ , Tωκ , and Tnκ , respectively. It turns out that Tκ is a P -space; that is, a
Tychonoff space such that every Gδ-set is open, and Tκ is discrete iff κ is countable. Thus, we
consider only uncountable κ. In the following table, just as we had for the patch topology, the
logic of the indicated subspace X of Tκ is L since X satisfies the properties defined by the logic
L and every finite rooted L-frame is an interior image of X. Hence, we obtain completeness for
the same logics as in the previous section but for non-metrizable spaces.

L X

S4 Tωκ
S4.1 Tκ
Grz

⊕
n∈ω Tnκ

Grzn+1 Tnκ (n ∈ ω)

2.3 Moving to the ED setting

Finally, we transfer these results into the setting of ED-spaces. By an unpublished result of van
Douwen, see [9], the space Tωκ embeds into the (remainder of the) Čech-Stone compactification
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β(2κ) of the discrete space 2κ. Consider Xω
κ := Tωκ ∪ 2κ and Xn

κ := Tnκ ∪ 2κ as subspaces of
β(2κ) where we identify both Tωκ and 2κ with their image in β(2κ). Then Xω

κ and Xn
κ are ED.

Moreover, β(2κ), and hence Tωκ , can be embedded into a closed nowhere dense subspace F of

the Gleason cover E of [0, 1]2
2κ

, where [0, 1] denotes the real unit interval. Identify Tωκ with its
image in E. Then the subspace Xκ := Tωκ ∪ (E \ F ) is ED.

We recall that S4.2, S4.1.2, Grz.2, and Grz.2n are obtained respectively from S4, S4.1, Grz,
and Grzn by postulating the formula 32p → 23p, which expresses that a space is ED. As
previously, in the following table the space X satisfies the properties defined by the logic L and
every finite rooted L-frame is an interior image of X, giving the logic of X is L.

L X

S4.2 Xκ

S4.1.2 Xω
κ

Grz.2
⊕

n∈ωX
n
κ

Grz.2n+2 Xn
κ (n ∈ ω)
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