The One-Variable Fragment of Corsi Logic

Xavier Caicedo¹, George Metcalfe², Ricardo Rodríguez³, and Olim Tuyt²

Departamento de Matemáticas, Universidad de los Andes, Bogotá, Colombia xcaicedo@uniandes.edu.co

² Mathematical Institute, University of Bern, Switzerland {george.metcalfe,olim.tuyt}@math.unibe.ch

It is well-known that the one-variable fragments of first-order classical logic and intuitionistic logic can be understood as notational variants of the modal logic S5 and the intuitionistic modal logic MIPC, respectively. Similarly, the one-variable fragment of first-order Gödel logic may be viewed as a notational variant of the many-valued Gödel modal logic S5(\mathbf{G})^C, axiomatized in [4] as an extension of MIPC with the prelinearity axiom $(\varphi \to \psi) \lor (\psi \to \varphi)$ and the constant domains axiom $\Box(\Box\varphi\lor\psi)\to(\Box\varphi\lor\Box\psi)$. Further results and general methods for establishing correspondences between one-variable fragments of first-order intermediate logics and intermediate modal logics have been obtained in, e.g., [7, 1].

In this work, we establish such a correspondence for a weaker extension of propositional Gödel logic: the first-order logic of totally ordered intuitionistic Kripke models with increasing domains QLC, axiomatized by Corsi in [5] as an extension of first-order intuitionistic logic with the prelinearity axiom, and often referred to as "Corsi logic". We show that its one-variable fragment QLC₁ corresponds both to the Gödel modal logic $S5(\mathbf{G})$, axiomatized in [4] as an extension of MIPC with the prelinearity axiom, and also to a one-variable fragment of a "Scott logic" studied in, e.g., [6]. Since $S5(\mathbf{G})$ enjoys an algebraic finite model property (see [1]), validity in both this logic and QLC₁ are decidable, and indeed — as can be shown using methods from [3] — co-NP-complete.

Let us first recall the Kripke semantics for Corsi logic, restricted for convenience to its one-variable fragment. A $\mathsf{QLC}_1\text{-}model$ is a 4-tuple $\mathcal{M} = \langle W, \preceq, D, I \rangle$ such that

- \bullet W is a non-empty set;
- \leq is a total order on W;
- for all $w \in W$, D_w is a non-empty set called the *domain* of w, and $D_w \subseteq D_v$ whenever $w \preceq v$;
- for all $w \in W$, I_w maps each unary predicate P to some $I_w(P) \subseteq D_w$, and $I_w(P) \subseteq I_v(P)$ whenever $w \preceq v$.

We define inductively for $w \in W$ and $a \in D_w$:

```
\begin{array}{lll} \mathcal{M},w\models^{a}\bot&\Leftrightarrow&\text{never}\\ \mathcal{M},w\models^{a}\top&\Leftrightarrow&\text{always}\\ \mathcal{M},w\models^{a}P(x)&\Leftrightarrow&a\in I_{w}(P)\\ \mathcal{M},w\models^{a}\varphi\wedge\psi&\Leftrightarrow&\mathcal{M},w\models^{a}\varphi&\text{and}~\mathcal{M},w\models^{a}\psi\\ \mathcal{M},w\models^{a}\varphi\vee\psi&\Leftrightarrow&\mathcal{M},w\models^{a}\varphi&\text{or}~\mathcal{M},w\models^{a}\psi\\ \mathcal{M},w\models^{a}\varphi\to\psi&\Leftrightarrow&\mathcal{M},v\models^{a}\varphi&\text{implies}~\mathcal{M},v\models^{a}\psi&\text{for all}~v\succeq w\\ \mathcal{M},w\models^{a}(\forall x)\varphi&\Leftrightarrow&\mathcal{M},v\models^{b}\varphi&\text{for all}~v\succeq w&\text{and}~b\in D_{v}\\ \mathcal{M},w\models^{a}(\exists x)\varphi&\Leftrightarrow&\mathcal{M},w\models^{b}\varphi&\text{for some}~b\in D_{w}. \end{array}
```

³ Departamento de Computación, Universidad de Buenos Aires, Argentina ricardo@dc.uba.ar

We write $\mathcal{M} \models \varphi$ if $\mathcal{M}, w \models^a \varphi$ for all $w \in W$, and $a \in D_w$. We say that a one-variable first-order formula φ is QLC_1 -valid if $\mathcal{M} \models \varphi$ for all QLC_1 -models \mathcal{M} . As mentioned above, it follows from results of Corsi [5] that φ is QLC_1 -valid if and only if it is derivable in first-order intuitionistic logic extended with the prelinearity axiom.

The semantics for the modal logic $\mathsf{S5}(\mathbf{G})$ is defined for a set of formulas Fm built as usual over the language of intuitionistic logic extended with \square and \diamondsuit and a countably infinite set of variables Var, where \mathbf{G} denotes the standard Gödel algebra $\langle [0,1], \wedge, \vee, \rightarrow, 0, 1 \rangle$. An $\mathsf{S5}(\mathbf{G})$ model $\mathfrak{M} = \langle W, R, V \rangle$ consists of a non-empty set of worlds W, a [0,1]-accessibility relation $R \colon W \times W \to [0,1]$ satisfying for all $u,v,w \in W$,

$$Rww = 1$$
, $Rwv = Rvw$, and $Ruv \wedge Rvw \leq Ruw$,

and a valuation map $V: \text{Var} \times W \to [0,1]$. The valuation map is extended to $V: \text{Fm} \times W \to [0,1]$ by $V(\bot, w) = 0, \ V(\top, w) = 1, \ V(\varphi_1 \star \varphi_2, w) = V(\varphi_1, w) \star V(\varphi_2, w)$ for $\star \in \{\land, \lor, \to\}$, and

$$V(\Box \varphi, w) = \bigwedge \{Rwv \to V(\varphi, v) \mid v \in W\}$$
$$V(\Diamond \varphi, w) = \bigvee \{Rwv \land V(\varphi, v) \mid v \in W\}.$$

We say that $\varphi \in \operatorname{Fm}$ is $\operatorname{S5}(\mathbf{G})$ -valid if $V(\varphi, w) = 1$ for all $\operatorname{S5}(\mathbf{G})$ -models $\langle W, R, V \rangle$ and $w \in W$. Let us make the correspondence between one-variable fragments and modal logics explicit, recalling the following standard translations $(-)^*$ and $(-)^\circ$ between the propositional language of $\operatorname{S5}(\mathbf{G})$ and the one-variable first-order language of QLC_1 , assuming $\star \in \{\wedge, \vee, \to\}$:

$$\begin{array}{cccc}
\bot^* = \bot & & \bot^\circ = \bot \\
\top^* = \top & & \top^\circ = \top \\
(P(x))^* = p & p^\circ = P(x) \\
(\varphi \star \psi)^* = \varphi^* \star \psi^* & (\varphi \star \psi)^\circ = \varphi^\circ \star \psi^\circ \\
((\forall x)\varphi)^* = \Box \varphi^* & (\Box \varphi)^\circ = (\forall x)\varphi^\circ \\
((\exists x)\varphi)^* = \diamondsuit \varphi^* & (\diamondsuit \varphi)^\circ = (\exists x)\varphi^\circ.
\end{array}$$

Note that the composition of $(-)^{\circ}$ and $(-)^{*}$ is the identity map. Therefore to show that $\mathsf{S5}(\mathbf{G})$ corresponds to the one-variable fragment of QLC, it suffices to show that $\varphi \in \mathsf{Fm}$ is $\mathsf{S5}(\mathbf{G})$ -valid if and only if φ° is QLC_1 -valid. It is easily shown that the translations under $(-)^{\circ}$ of the axioms and rules of the axiomatization of $\mathsf{S5}(\mathbf{G})$ given in [4] are QLC_1 -valid and preserve QLC_1 -validity, respectively. Hence if φ is $\mathsf{S5}(\mathbf{G})$ -valid, then φ° is QLC_1 -valid. To prove the converse, we proceed contrapositively and show that if $\varphi \in \mathsf{Fm}$ fails in some $\mathsf{S5}(\mathbf{G})$ -model, then φ° fails in some QLC_1 -model.

Let us say that an $\mathsf{S5}(\mathbf{G})$ -model $\mathcal{M} = \langle W, R, V \rangle$ is *irrational* if $V(\varphi, w)$ is irrational, 0, or 1 for all $\varphi \in \mathsf{Fm}$ and $w \in W$. We first prove the following useful lemma.

Lemma 1. For any countable $\mathsf{S5}(\mathbf{G})$ -model $\mathcal{M} = \langle W, R, V \rangle$, there exists an irrational $\mathsf{S5}(\mathbf{G})$ -model $\mathcal{M}' = \langle W, R', V' \rangle$ such that $V(\varphi, w) < V(\psi, w)$ if and only if $V'(\varphi, w) < V'(\psi, w)$ for all $\varphi, \psi \in \mathsf{Fm}$ and $w \in W$.

Next we consider any irrational $\mathsf{S5}(\mathbf{G})$ -model $\mathcal{M} = \langle W, R, V \rangle$ and fix $w_0 \in W$. We let $(0,1)_{\mathbb{Q}}$ denote $(0,1) \cap \mathbb{Q}$ and define a corresponding one-variable Corsi model

$$\mathcal{M}_{\circ} = \langle (0,1)_{\mathbb{Q}}, \geq, D, I \rangle$$

such that for all $\alpha \in (0,1)_{\mathbb{Q}}$,

- $D_{\alpha} = \{v \in W \mid Rw_0 v > \alpha\};$
- $I_{\alpha}(P) = \{v \in W \mid V(p, v) \geq \alpha\} \cap D_{\alpha}$ for each unary predicate P.

We are then able to prove the following lemma by induction on the complexity of $\varphi \in \text{Fm}$. The fact that \mathcal{M} is irrational ensures that $V(\varphi, w) \geq \alpha$ if and only if $V(\varphi, w) > \alpha$ for all $\alpha \in (0, 1)_{\mathbb{Q}}$, which is particularly important when considering the case for $\varphi = \Diamond \psi$.

Lemma 2. For any $\varphi \in \text{Fm}$, $\alpha \in (0,1)_{\mathbb{Q}}$, and $w \in D_{\alpha}$,

$$\mathcal{M}_{\circ}, \alpha \models^{w} \varphi^{\circ} \iff V(\varphi, w) \geq \alpha.$$

Hence, if $\varphi \in \text{Fm}$ is not $\mathsf{S5}(\mathbf{G})$ -valid, there exists, by Lemma 1, an irrational $\mathsf{S5}(\mathbf{G})$ -model $\mathcal{M} = \langle W, R, V \rangle$ and $w \in W$ such that $V(\varphi, w) < \alpha < 1$ for some $\alpha \in (0,1)$, and then, by Lemma 2, a QLC_1 -model $\mathcal{M}_{\circ} = \langle (0,1)_{\mathbb{Q}}, \geq, D, I \rangle$ such that $\mathcal{M}_{\circ}, \alpha \not\models^w \varphi^{\circ}$. That is, φ° is not QLC_1 -valid, and we obtain the following result.

Theorem 1. A formula $\varphi \in \text{Fm is S5}(\mathbf{G})$ -valid if and only if φ° is QLC_1 -valid.

We have also established a correspondence between S5(G) and the one-variable fragment of a "Scott logic" studied in, e.g., [6], that is closely related to the semantics of a many-valued possibilistic logic defined in [2]. Let us call a SL_1 -model a triple $\mathcal{M} = \langle D, \pi, I \rangle$ such that

- *D* is a non-empty set;
- $\pi: D \to [0,1]$ is a map satisfying $\pi(a) = 1$ for some $a \in D$;
- for each unary predicate P, I(P) is a map assigning to any $a \in D$ some $I_a(P) \in [0, 1]$.

The interpretation I_a is extended to formulas by the clauses $I_a(\bot) = 0$, $I_a(\top) = 1$, $I_a(\varphi \star \psi) = I_a(\varphi) \star I_a(\psi)$ for $\star \in \{\land, \lor, \to\}$, and

$$I_a((\forall x)\varphi) = \bigwedge \{\pi(b) \to I_b(\varphi) \mid b \in D\}$$
$$I_a((\exists x)\varphi) = \bigvee \{\pi(b) \land I_b(\varphi) \mid b \in D\}.$$

We say that a one-variable first-order formula φ is SL_1 -valid if $I_a(\varphi) = 1$ for all SL_1 -models $\langle D, \pi, I \rangle$ and $a \in D$. Using Theorem 1 and a result from [6] relating Scott logics to first-order logics of totally ordered intuitionistic Kripke models, we obtain the following correspondence

Theorem 2. A formula $\varphi \in \text{Fm is S5}(\mathbf{G})$ -valid if and only if $(\Box \varphi)^{\circ}$ is SL_1 -valid.

Let us mention finally that S5(G) enjoys an algebraic finite model property (see [1]), and hence validity in this logic and QLC_1 are decidable. Moreover, using a version of the non-standard semantics developed in [3] to obtain a polynomial bound on the size of the algebras to be checked, we are able to obtain the following sharpened result.

Theorem 3. The validity problem for S5(G) is co-NP-complete.

References

[1] G. Bezhanishvili. Varieties of monadic Heyting algebras - part I. *Studia Logica*, 61(3):367–402, 1998.

- [2] F. Bou, F. Esteva, L. Godo, and R. Rodríguez. Possibilistic semantics for a modal KD45 extension of Gödel fuzzy logic. In *Proceedings of IPMU 2016*, pages 123–135. Springer, 2016.
- [3] X. Caicedo, G. Metcalfe, R. Rodríguez, and J. Rogger. Decidability in order-based modal logics. *Journal of Computer System Sciences*, 88:53–74, 2017.
- [4] X. Caicedo and R. Rodríguez. Bi-modal Gödel logic over [0,1]-valued Kripke frames. *Journal of Logic and Computation*, 25(1):37–55, 2015.
- [5] G. Corsi. Completeness theorem for Dummett's LC quantified. *Studia Logica*, 51:317–335, 1992.
- [6] R. Iemhoff. A note on linear Kripke models. Journal of Logic and Computation, 15(4):489–506, 2005.
- [7] H. Ono and N. Suzuki. Relations between intuitionistic modal logics and intermediate predicate logics. *Reports on Mathematical Logic*, 22:65–87, 1988.