Positive Subreducts in Finitely Generated Varieties of MV-algebras

Leonardo M. Cabrer, Peter Jipsen¹, and Tomáš Kroupa²

Chapman University, Orange, USA jipsen@chapman.edu
The Czech Academy of Sciences, Prague, Czech Republic kroupa@utia.cas.cz

Abstract

Positive MV-algebras are negation-free and implication-free subreducts of MV-algebras. In this contribution we show that a finite axiomatic basis exists for the quasivariety of positive MV-algebras coming from any finitely generated variety of MV-algebras.

1 Positive subreducts of MV-algebras

Let \mathcal{MV} be the variety of MV-algebras [1] in the language containing all the usual definable operations and constants. Using this signature we denote an MV-algebra $\mathbf{M} \in \mathcal{MV}$ as

$$\mathbf{M} = \langle M, \oplus, \odot, \vee, \wedge, \rightarrow, \neg, 0, 1 \rangle.$$

An algebra

$$\mathbf{A} = \langle A, \oplus, \odot, \vee, \wedge, 0, 1 \rangle$$

is a positive subreduct of M if A is a subreduct of M.

Definition 1. Let $F = \{\oplus, \odot, \vee, \wedge, 0, 1\}$ be a set of function symbols, where $\oplus, \odot, \vee, \wedge$ are interpreted as binary operations and 0, 1 as constants. An algebra \mathbf{P} of type F is a *positive MV-algebra* if it is isomorphic to a positive subreduct of some MV-algebra.

Clearly, every MV-algebra gives rise to a positive MV-algebra and every bounded distributive lattice is a positive MV-algebra. In fact, positive MV-algebras are to MV-algebras as distributive lattices are to Boolean algebras.

Example 1 (Lower Chang algebra). Let C be Chang algebra and

Rad
$$\mathbf{C} = \{0, \varepsilon, 2\varepsilon, \dots\}$$

be its radical, where the symbol ε denotes the least positive infinitesimal. Then the algebra \mathbf{C}_l having the universe Rad $\mathbf{C} \cup \{1\}$ is a positive subreduct of \mathbf{C} .

Example 2 (Non-decreasing McNaughton functions). For each natural number n, the free n-generated MV-algebra is isomorphic to the algebra \mathbf{F}_n of McNaughton functions $[0,1]^n \to [0,1]$. Then the algebra \mathbf{F}_n^{\leq} of nondecreasing McNaughton functions is a positive subreduct of \mathbf{F}_n .

The class of all positive MV-algebras is denoted by \mathcal{P} . Since \mathcal{P} is a class of algebras containing the trivial algebra and closed under isomorphisms, subalgebras, direct products and ultraproducts, it is a quasivariety. The following example shows that \mathcal{P} is not a variety.

Example 3. Let θ be an equivalence relation on the algebra \mathbf{C}_l from Example 1 with classes $\{0\}, \{\varepsilon, 2\varepsilon, \dots\}$, and $\{1\}$. Then θ is a \mathcal{P} -congruence on \mathbf{C}_l . The quotient \mathbf{C}_l/θ is isomorphic to the three-element algebra $\{\bar{0}, \bar{\varepsilon}, \bar{1}\}$ that satisfies the identities $\bar{\varepsilon} \oplus \bar{\varepsilon} = \bar{\varepsilon}$ and $\bar{\varepsilon} \odot \bar{\varepsilon} = \bar{0}$. However, the two equations cannot hold simultaneously in any MV-algebra. Hence, \mathbf{C}_l/θ is not a positive MV-algebra.

It can be shown that the quasivariety \mathcal{P} is generated by the positive reduct of the standard MV-algebra [0,1]. Moreover, the free *n*-generated positive MV-algebra is isomorphic to the positive subreduct \mathbf{F}_n^{\leq} from Example 2.

2 Axiomatization

We define a class \mathcal{Q} of algebras of type $F = \{\oplus, \odot, \vee, \wedge, 0, 1\}$. Specifically, an algebra $\mathbf{A} = \langle A, \oplus, \odot, \vee, \wedge, 0, 1 \rangle$ belongs to \mathcal{Q} if \mathbf{A} satisfies the following identities and quasi-identities:

- 1. $\langle A, \vee, \wedge, 0, 1 \rangle$ is a bounded distributive lattice
- 2. $\langle A, \oplus, 0 \rangle$ and $\langle A, \odot, 1 \rangle$ are commutative monoids
- 3. $x \oplus 1 = 1$ and $x \odot 0 = 0$
- 4. $x \oplus (y \land z) = (x \oplus y) \land (x \oplus z)$ and $x \odot (y \lor z) = (x \odot y) \lor (x \odot z)$
- 5. $x \oplus (y \lor z) = (x \oplus y) \lor (x \oplus z)$ and $x \odot (y \land z) = (x \odot y) \land (x \odot z)$
- 6. $x \oplus y = (x \oplus y) \oplus (x \odot y)$
- 7. $x \oplus y = (x \vee y) \oplus (x \wedge y)$
- 8. $x \odot y = (x \odot y) \odot (x \oplus y)$
- 9. If $x \oplus y = x$, then $z \oplus y \leq z \vee x$
- 10. If $x \oplus y = x \oplus z$ and $x \odot y = x \odot z$, then y = z

Every positive MV-algebra is a member of \mathcal{Q} since 1.–10. are valid for any MV-algebra. The main open problem is to prove the opposite, that is, to show that any $\mathbf{A} \in \mathcal{Q}$ is a positive MV-algebra. We solve this problem for those $\mathbf{A} \in \mathcal{Q}$ satisfying additional identities of a special form. Namely let \mathcal{V} be any finitely generated variety of MV-algebras. Di Nola and Lettieri proved in [3] that there exists a finite set S of identities axiomatizing the variety \mathcal{V} within \mathcal{MV} , and every identity in S uses only terms of the language $\{\oplus, \odot, \vee, \wedge, 0, 1\}$.

Theorem 1. The quasivariety of positive subreducts of V is axiomatized by the quasi-identities 1.-10. and the identities from S.

The essential ingredient of the proof of Theorem 1 is a certain non-trivial generalization of the technique of good sequences, which was introduced by Mundici [2]. It remains an open problem to extend this result beyond finitely generated varieties of MV-algebras, possibly using an axiomatization different from 1.–10.

References

- [1] R. L. O. Cignoli, I. M. L. D'Ottaviano, and D. Mundici. Algebraic foundations of many-valued reasoning, volume 7 of Trends in Logic—Studia Logica Library. Kluwer Academic Publishers, Dordrecht, 2000.
- [2] D. Mundici. Interpretation of AF C^* -algebras in Łukasiewicz sentential calculus. Journal of Functional Analysis, 65(1):15–63, 1986.
- [3] A. Di Nola and A. Lettieri. Equational characterization of all varieties of MV-algebras. *Journal of Algebra*, 221(2):463–474, 1999.