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Abstract

MV-algebras are semantic for  Lukasiewicz logic and MV-algebras generated for finite
chain are Heyting algebras where the Gödel implication can be written in terms of De
Morgan and Moisil’s modal operators. In our work, a fragment of  Lukasiewicz logic
is studied in the trivalent case. The propositional and first order logic is presented.
The maximal consistent theories is studied as Monteiro’s maximal deductive system
of the Lindenbaum-Tarski algebra, in both cases. Consequently, the strong adequacy
theorem with respect to the suitable algebraic structures is proven. Our algebraic
strong completeness theorem does not need a negation in the language, in this sense
Rasiowa’s work is improved. The techniques presented in this work are adaptable to the
other algebrizable logics where the variety of algebras from these logics is semisimple.

1 Trivalent modal Hilbert algebras with supremum

In this section, we shall introduce and study {→,∨,4, 1}-reduct of 3-valued MV-algebra.

Definition 1 An algebra 〈A,→,∨,4, 1〉 is trivalent modal Hilbert algebra with supremum
(for short, H∨,4

3 -algebra) if the following properties hold:

(1) the reduct 〈A,∨, 1〉 is a join-semilattice with greatest element 1, and the conditions (a)
x→ (x ∨ y) = 1 and (b) (x→ y) → ((x ∨ y) → y) = 1 hold.

(2) The reduct 〈A,→, 1〉 is a Hilbert algebra that verifies: ((x → y) → z) → ((z → x) →
z) → z = 1, and the operator 4 verifiy the following identities: (M1) 4x → x = 1,
(M2) ((y → 4y) → (x → 44x)) → 4(x → y) = 4x → 44y, and (M3) (4x →
4y) →4x = 4x.

Theorem 2 The variety of H∨,4
3 -algebras is semisimple. The simple algebras are C→,∨

3

and C→,∨
2 .

Let Fms be the absolutely free algebra over the language Σ = {→,∨,4} generated by a
set V ar of variables. Consider now the following logic:

Definition 3 We denote by H3
∨,4 the Hilbert calculus determined by the followings axioms

and inference rules, where α, β, γ, ... ∈ Fm:
Axiom schemas
(Ax1) α → (β → α), (Ax2) (α → (β → γ) → ((α → β) → (α → γ)), (Ax3)

((α → (β → γ)) → (((γ → α) → γ) → γ), (Ax4) α → (α ∨ β), (Ax5) β → (α ∨ β),
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(Ax6) (α → γ) → ((β → γ) → ((α ∨ β) → γ)), (Ax7) 4α → α, (Ax8) 4(4α →
β) → (4α → 4β), (Ax9) ((β → 4β) → (α → 4(α → β))) → 4(α → β), (Ax10)
((4α→ β) → γ) → ((4α→ γ) → γ).
Inference rules

(MP), (NEC-S)
Γ `∨ α

Γ `∨ 4α
.

Let Γ ∪ {α} be a set formulas of H3
∨,4, we define the derivation of α from Γ in usual

way and denote by Γ `∨ α.

Theorem 4 (Lindenbaum- Los) Let L be a Tarskian and finitary logic (see [2, pag. 48])
over the language L. Let Γ ∪ {ϕ} ⊆ L be such that Γ 6` ϕ. Then exists a set Ω such that
Γ ⊆ Ω ⊆ L with Ω maximal non-trivial with respect to ϕ in L.

Theorem 5 Let Γ ∪ {ϕ} ⊆ Fms, with Γ non-trivial maximal respect to ϕ in H3
∨,4. Let

Γ/ ≡∨= {α : α ∈ Γ} be a subset of the trivalent modal Hilbert algebra with supremum
Fm/ ≡∨, then: 1. If α ∈ Γ and α = β then β ∈ Γ, 2. Γ/ ≡∨ is a modal deductive system of
Fm/ ≡∨. Also, if ϕ /∈ Γ/ ≡∨ and for any modal deductive system D which contains properly
to Γ/ ≡∨, then ϕ ∈ D.

The notion deductive systems considered in the last Theorem, part 2, was named Systèmes
deductifs liés à ”a” by A. Monteiro, where a is an element of some given algebra such that
the congruences are determined by deductive systems [3, pag. 19]. This was studied by
Monteiro himself and other authors for diferent algebraic system where it is possible to
define an implication in terms of the operations of lenguage form this systems.

Lemma 6 Let Γ ∪ {ϕ} ⊆ Fms, with Γ non-trivial maximal respect to ϕ in H3
∨,4. If α /∈ Γ

then 4α→ β ∈ Γ for any β ∈ Fms.

Theorem 7 Let Γ ∪ {ϕ} ⊆ Fms, with Γ non-trivial maximal respect to ϕ in H3
∨,4. The

map v : Fms → C3, defined by:

v(α) =


0 if α ∈ Γ0

1/2 if α ∈ Γ1/2

1 if α ∈ Γ
for all α ∈ Fms it is a valuation for H3

∨,4, where Γ1/2 = {α ∈ Fms : α /∈ Γ,∇α ∈ Γ}
and Γ0 = {α ∈ Fms : α,∇α /∈ Γ}.

Theorem 8 (Soundness and completeness of H3
∨,4 w.r.t. H∨,4

3 -algebras) Let Γ ∪ {ϕ} ⊆
Fms, Γ `∨ ϕ if and only if Γ �H3

∨,4
ϕ.

2 Model Theory and first order logics of H∨,4
3 without identities

Let Λ be the propositional signature of H∨,4
3 , the simbols ∀ (universal quantifier) and ∃

(existential quantifier), with the punctuation marks (commas and parenthesis). Let V ar =
{v1, v2, ...} a numerable set of individual variables. A first order signature Σ = 〈P,F , C〉
consists of: a set C of individual constants; for each n ≥ 1, F a set of functions with n-ary,
for each n ≥ 1, P a set of predicates with n-ary. It will be denoted by TΣ and FmΣ the sets
of all terms and formulas, respectively.
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Let Σ be a first order signature. The logic QH∨,4
3 over Σ is obtained from the axioms

and rules of H∨,4
3 by substituting variables by formulas of FmΣ, by extending the following

axioms and rules:
Axioms Schemas (Ax11) ϕt

x → ∃xϕ, if t is a term free for x in ϕ, (Ax12) ∀xϕ→ ϕt
x,

if t is a term free for x in ϕ, (Ax13) 4∃xϕ ↔ ∃x4ϕ, (Ax14) 4∀xϕ ↔ ∀x4ϕ, (Ax15)
∀x(α → β) → (α → ∀xβ) if α does not contain free occurrences of x. Inferences Rules

(R3)
ϕ→ ψ

∃xϕ→ ψ
, (R4)

ϕ→ ψ

ϕ→ ∀xψ
where x does not occur free in ϕ.

Let Σ be a first-order signature. A first-order structure over Σ is pair U = 〈A, ·U〉
where A is a non-empty set and ·U is a interpretation mapping defined on Σ as follows: for
each individual constant symbol c of Σ, cU ∈ A; for each function symbol f n-ary of Σ,
fU : An → A; for each predicate symbol P n-ary of Σ, PU : An → B, where B is a complete
H∨,4

3 -algebra.
For a given Σ-structure 〈A, ·U〉, let us consider the signature Σ′ = Σ ∪ {ca}a∈A which is

the signature Σ extended by a set with new constants. Let us denote the extended language
by Fm(Σ′). We want to define the truth value a closed formula. For this task, we consider
the structure U and the map m : CTΣ′ → A, where CTΣ′ is the set of closed terms (without
free variables) of the language FmΣ′ , is defined as follows: if τ is ca, then m(τ) = m(ca) = a;
if τ is f(τ1, ..., τn) and τi ∈ CTΣ′ , then m(τ) = fU(m(τ1), ...,m(τn)).

Let ϕ be a closed formula (sentence) from Σ′, then we define m : FmΣ′ → B inductively
over the complexity of ϕ as follows: if ϕ is P (τ1, · · · , τn) with P a n-ary predicate and
τi ∈ CTΣ′ , then m(ϕ) = PU(m(τ1), ...,m(τn)); if ϕ is γ ∨ ψ then m(ϕ) = m(γ) ∨m(ψ); if
ϕ is γ → ψ then m(ϕ) = m(γ) → m(ψ); if ϕ is 4ψ then m(ϕ) = 4m(ψ); let ψ = ψ(x) a
formula with x is a unique free variable, we denote ψca

x the formula obtained by replacing x
for ca. Then: if ϕ is ∃xψ then m(ϕ) =

∨
ca∈Σ′

m(ψca
x ); if ϕ is ∀xψ then m(ϕ) =

∧
ca∈Σ′

m(ψca
x ).

We say that m : FmΣ′ → B is QH∨,4
3 -valuation or simply a valuation.

As usual, we can define Γ � α, that is, for any structure U, if U � ψ for every ψ ∈ Γ,
then U � α.

Lemma 9 Let α be a formula of QH∨,4
3 and β an instance of α, then there exits U such

that U � α implies U � β.

Theorem 10 Let Γ ∪ {ϕ} ⊆ FmΣ, if Γ `∨ ϕ then Γ �H3
∨,4

ϕ.

It is important to note that from Theorem 10 and Lemma 9, it is easy to see that every
instance of a theorem is valid.

It is clear that QH∨,4
3 is a tarskian logic. So, we can consider the notion of maximal

theories with respect to some formula and the notion of closed theories is defined in the
same way. Therefore, we have that Lindenbaum-  Los’ Theorem for QH∨,4

3 . Then, we have
the following

Now, let us consider the relation ≡ defined by x ≡ y iff ` x → y and ` y → x, then
we have the algebra FmΣ′/ ≡ is a H∨,4

3 -algebra and the proof is exactly the same as in the
propositional case.

Theorem 11 Let Γ ∪ {ϕ} ⊆ FmΣ, with Γ non-trivial maximal respect to ϕ in QH∨,4
3 . Let

Γ/ ≡∨= {α : α ∈ Γ} be a subset of the trivalent modal Hilbert algebra with supremum
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FmΣ/ ≡∨, then: 1. If α ∈ Γ and α = β, then β ∈ Γ. If α ∈ Γ/ ≡∨, then ∀xα ∈ Γ/ ≡∨; in
this case we say that Γ/ ≡∨ is monadic. 2. Γ/ ≡∨ is a modal deductive system of FmΣ/ ≡∨.
Also, if ϕ /∈ Γ/ ≡∨ and for any modal deductive system D being monadic in the sense of 1
and containing properly to Γ/ ≡∨, then ϕ ∈ D.

Theorem 12 Let Γ∪{ϕ} ⊆ FmΣ, with Γ non-trivial maximal respect to ϕ in QH3
∨,4. The

map v : FmΣ → C3, defined by:

v(α) =


0 if α ∈ Γ0

1/2 if α ∈ Γ1/2

1 if α ∈ Γ
for all α ∈ FmΣ it is a valuation for H3

∨,4, where Γ1/2 = {α ∈ FmΣ : α /∈ Γ,∇α ∈ Γ}
and Γ0 = {α ∈ FmΣ : α,∇α /∈ Γ}.

Theorem 13 Let Γ ∪ {ϕ} ⊆ FmΣ, if Γ �H3
∨,4

ϕ then Γ `∨ ϕ.

Proof: Let us suppose Γ �H3
∨,4

ϕ and Γ 6`∨ ϕ. Then, there exists ∆ maximal theory such
that Γ ⊆ ∆ and ∆ 6`∨ ϕ. From the latter and Theorem 12, there exists a structure U such
that ∆ 6�U ϕ but ∆ �A γ for every γ ∈ ∆, which is a contradiction.

�
It is possible to adapt our proof of strong Completeness Theorem in the propositional

and first order cases to logics from the certain semisimple varieties of algebras. This is so
because the maximal congruences play the same role as the maximal consistent theories in
the Lindenbaum-Tarski algebra. From the latter and results of universal algebra, we have the
algebra quotient by maximal congruences are isomorphic to semisimple algebras. Therefore,
we always have a homomorphism from the Lindenbaum-Tarski algebra to the semisimple
algebras. This homomorphism is the same one constructed by Carnielli and Coniglio to
prove strong completeness theorems for different logics ([2]). On the other hand, we can
observe that A. V. Figallo constructed this homomorphism to study different semisimple
varieties. The general presentation of these ideas will be part of a future work.
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