Multialgebraic First-Order Structures for **QmbC**

Marcelo E. Coniglio¹³*, Aldo Figallo-Orellano²³†, and Ana Claudia Golzio^{3‡}

¹ IFCH, University of Campinas (Unicamp), Campinas, SP, Brazil. coniglio@cle.unicamp.br

Abstract

In this paper we present an adequate semantics for the first-order paraconsistent logic **QmbC**. That semantics is based on multialgebras known as *swap structures*.

1 The logic QmbC

The class of paraconsistent logics known as Logics of Formal Inconsistency (LFIs, for short) was introduced by W. Carnielli and J. Marcos in [3] and studied in [2] and [1]. LFIs are characterized for having a (primitive or derived) consistency connective \circ which allows to recover the explosion law in a controlled way. The logic mbC is the weakest system in the hierarchy of LFIs and the system QmbC is the extension of mbC to first-order languages. The goal of this paper is to introduce an algebraic-like semantics for QmbC based on multialgebraic structures called swap structures (see [1]), which naturally induce non-deterministic matrices. The semantical framework for QmbC we present here can be seen as a generalization of the standard semantics approach for classical first-order logic, in which a logical matrix induced by a Boolean algebra is replaced by a non-deterministic matrix induced by a Boolean algebra.

The logic **mbC** (see [2, 1]) is defined over the propositional signature $\Sigma = \{\land, \lor, \rightarrow, \neg, \circ\}$ by adding to **CPL**⁺ (positive classical propositional logic) the following axiom schemas:

(Ax10)
$$\alpha \vee \neg \alpha$$
 and **(Ax11)** $\circ \alpha \rightarrow (\alpha \rightarrow (\neg \alpha \rightarrow \beta))$.

Recall that a multialgebra (or hyperalgebra) over a signature Σ' is a pair $\mathcal{A} = \langle A, \sigma_{\mathcal{A}} \rangle$ such that A is a nonempty set (the support of \mathcal{A}) and $\sigma_{\mathcal{A}}$ is a mapping assigning to each n-ary # in Σ' , a function (called multioperation or hyperoperation) $\#^{\mathcal{A}} : A^n \to (\mathcal{P}(A) - \{\emptyset\})$. In particular, $\emptyset \neq \#^{\mathcal{A}} \subseteq A$ if # is a constant in Σ' . A non-deterministic matrix (or Nmatrix) over Σ' is a pair $\mathcal{M} = \langle \mathcal{A}, D \rangle$ such that \mathcal{A} is a multialgebra over Σ' with support A, and D is a subset of A. The elements in D are called designated elements.

Let $\mathcal{A} = (A, \wedge, \vee, \to, 0, 1)$ be a complete Boolean algebra, and $B_{\mathcal{A}} = \{z \in A^3 : z_1 \vee z_2 = 1 \text{ and } z_1 \wedge z_2 \wedge z_3 = 0\}$, where z_i denote the *ith*-projection of z. A swap structure for **mbC** over \mathcal{A} is any multialgebra $\mathcal{B} = (B, \tilde{\wedge}, \tilde{\vee}, \tilde{\to}, \tilde{\neg}, \tilde{\circ})$ over Σ , such that $B \subseteq B_{\mathcal{A}}$ and, for every z and w in B:

- (i) $\emptyset \neq z \tilde{\#} w \subseteq \{u \in B : u_1 = z_1 \# w_1\}$, for each $\# \in \{\land, \lor, \rightarrow\}$;
- (ii) $\emptyset \neq \tilde{\neg} z \subseteq \{u \in B : u_1 = z_2\};$
- (iii) $\emptyset \neq \tilde{\circ} z \subseteq \{u \in B : u_1 = z_3\}$

Department of Mathematics, National University of South (UNS), Bahia Blanca, Argentina aldofigallo@gmail.com

³ Centre for Logic, Epistemology and The History of Science (CLE), Unicamp, Campinas, SP, Brazil. anaclaudiagolzio@yahoo.com.br

^{*}Coniglio was financially supported by an individual research grant from CNPq, Brazil (308524/2014-4).

[†]Figallo-Orellano was financially supported by a post-doctoral grant from Fapesp, Brazil (2016/21928-0)

 $^{^{\}ddagger}$ Golzio was financially supported by a doctoral grant from Fapesp, Brazil (2013/04568-1) and by post-doctoral grant from CNPq, Brazil (150064/2018-7).

The support B will be also denoted by $|\mathcal{B}|$. The full swap structure for mbC over \mathcal{A} , denoted by $\mathcal{B}_{\mathcal{A}}$, is the unique swap structure for mbC over \mathcal{A} with domain $B_{\mathcal{A}}$, in which ' \subseteq ' is replaced by '=' in items (i)-(iii) above.

Definition 1.1 ([1], Definition 7.1.5). Let Θ be a first-order signature. The logic **QmbC** over Θ is obtained from the Hilbert calculus **mbC** by adding the following axioms and rules:

(Ax12)
$$\varphi[x/t] \to \exists x \varphi$$
, if t is a term free for x in φ

(Ax13)
$$\forall x\varphi \rightarrow \varphi[x/t]$$
, if t is a term free for x in φ

(Ax14) $\alpha \to \beta$, whenever α is a variant of β

$$(\exists -\mathbf{In}) \frac{\varphi \to \psi}{\exists x \varphi \to \psi}$$
, where x does not occur free in ψ

$$(\forall -\mathbf{In}) \frac{\varphi \to \psi}{\varphi \to \forall x \psi}$$
, where x does not occur free in φ

If Θ is a first-order signature then $For(\Theta)$, $Sen(\Theta)$ and $CTer(\Theta)$ will denote the set of formulas, closed formulas and closed terms over Θ . Var is the set of individual variables. The consequence relation of \mathbf{QmbC} will be denoted by $\vdash_{\mathbf{QmbC}}$. If $\Gamma \cup \{\varphi\} \subseteq For(\Theta)$, then $\Gamma \vdash_{\mathbf{QmbC}} \varphi$ will denote that there exists a derivation in \mathbf{QmbC} of φ from Γ .

2 First-Order Swap Structures: Soundness

Given a swap structure \mathcal{B} for \mathbf{mbC} , the non-deterministic matrix induced by \mathcal{B} is $\mathcal{M}(\mathcal{B}) = (\mathcal{B}, D)$ such that $D = \{z \in |\mathcal{B}| : z_1 = 1\}$. The logic \mathbf{mbC} is sound and complete w.r.t. swap structures semantics, see [1], Chapter 6.

A (first-order) structure over $\mathcal{M}(\mathcal{B})$ and Θ is a pair $\mathfrak{A} = \langle U, I_{\mathfrak{A}} \rangle$ such that U is a nonempty set (the domain of the structure) and $I_{\mathfrak{A}}$ is an interpretation mapping which assigns to each individual constant $c \in \mathcal{C}$, an element $c^{\mathfrak{A}}$ of U; to each function symbol f of arity n, a function $f^{\mathfrak{A}}: U^n \to U$; and to each predicate symbol P of arity n, a function $P^{\mathfrak{A}}: U^n \to |\mathcal{B}|$.

Let \mathfrak{A} be a structure over $\mathcal{M}(\mathcal{B})$ and Θ . A function $\mu: Var \to U$ is called an assignment over \mathfrak{A} . Let \mathfrak{A} be a structure and let $\mu: Var \to U$ be an assignment. For each term t, we define $||t||_{\mu}^{\mathfrak{A}} \in U$ such that: $||c||_{\mu}^{\mathfrak{A}} = c^{\mathfrak{A}}$ if c is an individual constant; $||x||_{\mu}^{\mathfrak{A}} = \mu(x)$ if x is a variable; $||f(t_1, \ldots, t_n)||_{\mu}^{\mathfrak{A}} = f^{\mathfrak{A}}(||t_1||_{\mu}^{\mathfrak{A}}, \ldots, ||t_n||_{\mu}^{\mathfrak{A}})$ if f is a function symbol of arity n and t_1, \ldots, t_n are terms. If t is closed (i.e., has no variables) we will simply write $||t||^{\mathfrak{A}}$, since μ plays no role.

Given a structure \mathfrak{A} over Θ , the signature Θ_U is obtained from \mathfrak{A} by adding to Θ a new individual constant \bar{a} for any $a \in U$. The expansion $\widehat{\mathfrak{A}}$ of \mathfrak{A} to Θ_U is defined by interpreting \bar{a} as a. Any assignment $\mu: Var \to U$ induces a function $\widehat{\mu}: For(\Theta_U) \to Sen(\Theta_U)$ such that $\widehat{\mu}(\varphi)$ is the sentence obtained from φ by replacing any free variable x by the constant $\overline{\mu(x)}$.

Definition 2.1 (QmbC-valuations). Let $\mathcal{M}(\mathcal{B}) = (\mathcal{B}, D)$ be the non-deterministic matrix induced by a swap structure \mathcal{B} for mbC, and let \mathfrak{A} be a structure over Θ and $\mathcal{M}(\mathcal{B})$. A mapping $v : Sen(\Theta_U) \to |\mathcal{B}|$ is a QmbC-valuation over \mathfrak{A} and $\mathcal{M}(\mathcal{B})$, if it satisfies the following clauses:

clauses.
(i)
$$v(P(t_1,\ldots,t_n)) = P^{\widehat{\mathfrak{A}}}(||t_1||^{\widehat{\mathfrak{A}}},\ldots,||t_n||^{\widehat{\mathfrak{A}}})$$
, if $P(t_1,\ldots,t_n)$ is atomic;
(ii) $v(\#\varphi) \in \#v(\varphi)$, for every $\# \in \{\neg, \circ\}$;

¹That is, φ can be obtained from ψ by means of addition or deletion of void quantifiers, or by renaming bound variables (keeping the same free variables in the same places).

```
(iii) v(\varphi\#\psi) \in v(\varphi)\tilde{\#}v(\psi), for every \# \in \{\land, \lor, \to\};

(iv) v(\forall x\varphi) \in \{z \in |\mathcal{B}| : z_1 = \bigwedge\{v(\varphi[x/\bar{a}]) : a \in U\}\};

(v) v(\exists x\varphi) \in \{z \in |\mathcal{B}| : z_1 = \bigvee\{v(\varphi[x/\bar{a}]) : a \in U\}\};

(vi) Let t be free for z in \varphi and \psi, \mu an assignment and b = ||t||^{\widehat{\mathfrak{A}}}_{\mu}. Then:

(vi.1) if v(\widehat{\mu}(\varphi[z/t])) = v(\widehat{\mu}(\varphi[z/\bar{b}])), then v(\widehat{\mu}(\#\varphi[z/t])) = v(\widehat{\mu}(\#\varphi[z/\bar{b}])), for \# \in \{\neg, \circ\};

(vi.2) if v(\widehat{\mu}(\varphi[z/t])) = v(\widehat{\mu}(\varphi[z/\bar{b}])) and v(\widehat{\mu}(\psi[z/t])) = v(\widehat{\mu}(\psi[z/\bar{b}])), then v(\widehat{\mu}(\varphi\#\psi[z/t])) = v(\widehat{\mu}(\varphi\#\psi[z/\bar{b}])), for \# \in \{\land, \lor, \to\};

(vi.3) let x be such that x \neq z and x does not occur in t, and let \mu_a^x such that \mu_a^x(y) = \mu(y), if y \neq x and \mu_a^x(y) = a, if y = x. If v(\widehat{\mu}_a^x(\varphi[z/t])) = v(\widehat{\mu}_a^x(\varphi[z/\bar{b}])), for every a \in U, then v(\widehat{\mu}((Qx\varphi)[z/t])) = v(\widehat{\mu}((Qx\varphi)[z/\bar{b}])), for Q \in \{\forall, \exists\};

(vii) If \alpha and \alpha' are variant, then v(\alpha) = v(\alpha').
```

Given μ and v let $v_{\mu}: For(\Theta_U) \to |\mathcal{B}|$ such that $v_{\mu}(\varphi) = v(\widehat{\mu}(\varphi))$ for every φ .

Theorem 2.2 (Substitution Lemma). Given $\mathcal{M}(\mathcal{B})$, \mathfrak{A} , a QmbC-valuation v and an assignment μ , if t is free for z in φ and $b = ||t||_{\mu}^{\widehat{\mathfrak{A}}}$, then: $v_{\mu}(\varphi[z/t]) = v_{\mu}(\varphi[z/\bar{b}])$.

Definition 2.3. Given $\mathcal{M}(\mathcal{B})$ and \mathfrak{A} , let $\Gamma \cup \{\varphi\} \subseteq For(\Theta_U)$. Then φ is a semantical consequence of Γ over $(\mathfrak{A}, \mathcal{M}(\mathcal{B}))$, denoted by $\Gamma \models_{(\mathfrak{A}, \mathcal{M}(\mathcal{B}))} \varphi$, if the following holds: for every \mathbf{QmbC} -valuation v over $(\mathfrak{A}, \mathcal{M}(\mathcal{B}))$, if $v_{\mu}(\gamma) \in D$, for every $\gamma \in \Gamma$ and every μ , then $v_{\mu}(\varphi) \in D$, for every μ . And φ is said to be a semantical consequence of Γ in \mathbf{QmbC} w.r.t. first-order swap structures, denoted by $\Gamma \models_{\mathbf{QmbC}} \varphi$, if $\Gamma \models_{(\mathfrak{A}, \mathcal{M}(\mathcal{B}))} \varphi$ for every $(\mathfrak{A}, \mathcal{M}(\mathcal{B}))$.

Theorem 2.4 (Soundness of **QmbC** w.r.t. first-order swap structures). For every set $\Gamma \cup \{\varphi\} \subseteq For(\Theta)$: if $\Gamma \vdash_{QmbC} \varphi$, then $\Gamma \models_{QmbC} \varphi$.

3 First-Order Swap Structures: Completeness

QmbC (by restricting \vdash_{OmbC} to sentences) and such that $\Gamma \subseteq \Delta$.

Let $\Delta \subseteq Sen(\Theta)$ and let C be a nonempty set of constants of the signature Θ . Then, Δ is called a C-Henkin theory in \mathbf{QmbC} if it satisfies the following: for every sentence of the form $\exists x \varphi$ in $Sen(\Theta)$, there exists a constant c in C such that if $\Delta \vdash_{\mathbf{QmbC}} \exists x \varphi$ then $\Delta \vdash_{\mathbf{QmbC}} \varphi[x/c]$.

Let Θ_C be the signature obtained from Θ by adding a set C of new individual constants. The consequence relation $\vdash^C_{\mathbf{QmbC}}$ is the consequence relation of \mathbf{QmbC} over the signature Θ_C . Recall that, given a Tarskian and finitary logic $\mathbf{L} = \langle For, \vdash \rangle$ (where For is the set of formulas of \mathbf{L}), and given a set $\Gamma \cup \{\varphi\} \subseteq For$, the set Γ is said to be maximally non-trivial

with respect to φ in **L** if the following holds: (i) $\Gamma \nvdash \varphi$, and (ii) $\Gamma, \psi \vdash \varphi$ for every $\psi \notin \Gamma$. **Proposition 3.1** ([1], Corollary 7.5.4). Let $\Gamma \cup \{\varphi\} \subseteq Sen(\Theta)$ such that $\Gamma \nvdash_{QmbC} \varphi$. Then, there exists a set of sentences $\Delta \subseteq Sen(\Theta)$ which is maximally non-trivial with respect to φ in

Definition 3.2. Let $\Delta \subseteq Sen(\Theta)$ be a C-Henkin and non-trivial theory in \mathbf{QmbC} . Let $\equiv_{\Delta} \subseteq Sen(\Theta)^2$ be the relation in $Sen(\Theta)$ defined as follows: $\alpha \equiv_{\Delta} \beta$ iff $\Delta \vdash_{\mathbf{QmbC}} \alpha \to \beta$ and $\Delta \vdash_{\mathbf{QmbC}} \beta \to \alpha$.

Clearly \equiv_{Δ} is an equivalence relation. In the quotient set $A_{\Delta} \stackrel{\text{def}}{=} Sen(\Theta)/_{\equiv_{\Delta}}$ define \wedge, \vee, \to as follows: $[\alpha]_{\Delta}\#[\beta]_{\Delta} \stackrel{\text{def}}{=} [\alpha\#\beta]_{\Delta}$ for any $\# \in \{\wedge, \vee, \to\}$, where $[\alpha]_{\Delta}$ is the equivalence class of α w.r.t. Δ . Then, $A_{\Delta} \stackrel{\text{def}}{=} \langle A_{\Delta}, \wedge, \vee, \to, 0_{\Delta}, 1_{\Delta} \rangle$ is a Boolean algebra with $0_{\Delta} \stackrel{\text{def}}{=} [\varphi \wedge \neg \varphi \wedge \circ \varphi]_{\Delta}$ and $1_{\Delta} \stackrel{\text{def}}{=} [\varphi \vee \neg \varphi]_{\Delta}$, for any φ . Moreover, for every formula $\psi(x)$ with at most x occurring free, $[\forall x\psi]_{\Delta} = \bigwedge_{A_{\Delta}} \{[\psi[x/t]_{\Delta} : t \in CTer(\Theta)\}$, and $[\exists x\psi]_{\Delta} = \bigvee_{A_{\Delta}} \{[\psi[x/t]_{\Delta} : t \in CTer(\Theta)\}$.

Let \mathcal{CA}_{Δ} be the MacNeille-Tarski completion of \mathcal{A}_{Δ} and let $*: \mathcal{A}_{\Delta} \to \mathcal{CA}_{\Delta}$ be the associated monomorphism. Let \mathcal{B}_{Δ} be the full swap structure over \mathcal{CA}_{Δ} with associated Nmatrix $\mathcal{M}(\mathcal{B}_{\Delta}) \stackrel{\text{def}}{=} (\mathcal{B}_{\Delta}, D_{\Delta})$. Note that $(([\alpha]_{\Delta})^*, ([\beta]_{\Delta})^*, ([\gamma]_{\Delta})^*) \in D_{\Delta}$ iff $\Delta \vdash_{\mathbf{QmbC}} \alpha$.

Definition 3.3. Let $\Delta \subseteq Sen(\Theta)$ be C-Henkin and non-trivial in \mathbf{QmbC} , let $\mathcal{M}(\mathcal{B}_{\Delta})$ be as above, and let $U = CTer(\Theta)$. The canonical structure induced by Δ is the structure $\mathfrak{A}_{\Delta} = \langle U, I_{\mathfrak{A}_{\Delta}} \rangle$ over $\mathcal{M}(\mathcal{B}_{\Delta})$ and Θ such that: $c^{\mathfrak{A}_{\Delta}} = c$ for each constant c; $f^{\mathfrak{A}_{\Delta}} : U^n \to U$ is such that $f^{\mathfrak{A}_{\Delta}}(t_1, \ldots, t_n) = f(t_1, \ldots, t_n)$ for each n-ary function symbol f; and $P^{\mathfrak{A}_{\Delta}}(t_1, \ldots, t_n) = (([\varphi]_{\Delta})^*, ([\neg \varphi]_{\Delta})^*, ([\neg \varphi]_{\Delta})^*)$ where $\varphi = P(t_1, \ldots, t_n)$, for each n-ary predicate symbol P.

Let $(\cdot)^{\triangleright}: Ter(\Theta_U) \to Ter(\Theta)$ be the mapping such that $(t)^{\triangleright}$ is the term obtained from t by substituting every occurrence of a constant \bar{s} by the term s itself. Observe that $(t)^{\triangleright} = ||t||^{\widehat{\mathfrak{A}_{\Delta}}}$ for every $t \in CTer(\Theta_U)$. This mapping can be naturally extended to a mapping $(\cdot)^{\triangleright}: For(\Theta_U) \to For(\Theta)$ such that $(\varphi)^{\triangleright}$ is the formula in $For(\Theta)$ obtained from $\varphi \in For(\Theta_U)$ by substituting every occurrence of a constant \bar{t} by the term t itself.

Definition 3.4. Let $\Delta \subseteq Sen(\Theta)$ be a C-Henkin theory in **QmbC** for a nonempty set C of individual constants of Θ , such that Δ is maximally non-trivial with respect to φ in **QmbC**, for some sentence φ . The canonical **QmbC**-valuation induced by Δ over \mathfrak{A}_{Δ} and $\mathcal{M}(\mathcal{B}_{\Delta})$ is the mapping $v_{\Delta} : Sen(\Theta_U) \to |\mathcal{B}_{\Delta}|$ such that $v_{\Delta}(\psi) = (([(\psi)^{\triangleright}]_{\Delta})^*, ([\neg(\psi)^{\triangleright}]_{\Delta})^*, ([\neg(\psi)^{\triangleright}]_{\Delta})^*)$.

Remark 3.5. Note that $v_{\Delta}(\psi) \in D_{\Delta}$ iff $\Delta \vdash_{\mathbf{QmbC}} \psi$, for every sentence $\psi \in Sen(\Theta)$.

Theorem 3.6. The canonical QmbC-valuation v_{Δ} is a QmbC-valuation over \mathfrak{A}_{Δ} and $\mathcal{M}(\mathcal{B}_{\Delta})$.

Theorem 3.7 (Completeness for sentences of **QmbC** w.r.t. first-order swap structures). Let $\Gamma \cup \{\varphi\} \subseteq Sen(\Theta)$. If $\Gamma \vDash_{QmbC} \varphi$ then $\Gamma \vdash_{QmbC} \varphi$.

Proof. Suppose that $\Gamma \nvdash_{\mathbf{QmbC}} \varphi$. Then, there exists a C-Henkin theory Δ^H over Θ_C in \mathbf{QmbC} for a nonempty set C of new individual constants such that $\Gamma \subseteq \Delta^H$ and, for every $\alpha \in Sen(\Theta)$: $\Gamma \vdash_{\mathbf{QmbC}} \alpha$ iff $\Delta^H \vdash_{\mathbf{QmbC}}^C \alpha$. Hence, $\Delta^H \nvdash_{\mathbf{QmbC}}^C \varphi$ and so, by Proposition 3.1, there exists a set of sentences $\overline{\Delta^H}$ in Θ_C extending Δ^H which is maximally non-trivial with respect to φ in \mathbf{QmbC} , such that $\overline{\Delta^H}$ is a C-Henkin theory over Θ_C in \mathbf{QmbC} . Now, let $\mathcal{M}(\mathcal{B}_{\overline{\Delta^H}})$, $\mathfrak{A}_{\overline{\Delta^H}}$ and $v_{\overline{\Delta^H}}$ as above. Then, $v_{\overline{\Delta^H}}(\alpha) \in D_{\overline{\Delta^H}}$ iff $\overline{\Delta^H} \vdash_{\mathbf{QmbC}}^C \alpha$, for every α in $Sent(\Theta_C)$. From this, $v_{\overline{\Delta^H}}[\Gamma] \subseteq D_{\overline{\Delta^H}}$ and $v_{\overline{\Delta^H}}(\varphi) \notin D_{\overline{\Delta^H}}$. Finally, let \mathfrak{A} and v be the restriction to Θ of $\mathfrak{A}_{\overline{\Delta^H}}$ and $v_{\overline{\Delta^H}}$, respectively. Then, \mathfrak{A} is a structure over $\mathcal{M}(\mathcal{B}_{\overline{\Delta^H}})$, and v is a valuation for \mathbf{QmbC} over \mathfrak{A} and $\mathcal{M}(\mathcal{B}_{\overline{\Delta^H}})$ such that $v[\Gamma] \subseteq D_{\overline{\Delta^H}}$ but $v(\varphi) \notin D_{\overline{\Delta^H}}$. This shows that $\Gamma \nvDash_{\mathbf{QmbC}} \varphi$. \square

It is easy to extend **QmbC** by adding a standard equality predicate \approx such that $(a \approx^{\mathfrak{A}} b) \in D$ iff a = b. On the other hand, the extension of **QmbC** to other first-order **LFI**s based on well-known axiomatic extensions of **mbC** is straightforward, both syntactically and semantically.

References

- [1] Walter Carnielli and Marcelo E. Coniglio. Paraconsistent Logic: Consistency, Contradiction and Negation. Springer, v. 40. Logic, Epistemology, and the Unity of Science, Switzerland, 2016.
- [2] Walter Carnielli, Marcelo E. Coniglio, and João Marcos. Logics of Formal Inconsistency. In D. Gabbay and F. Guenthner, editors, *Handbook of Philosophical Logic (2nd. edition)*, volume 14, pages 1–93, Dordrecht, 2007. Springer.
- [3] Walter Carnielli and João Marcos. A taxonomy of **C**-systems. In W. A. Carnielli, M. E. Coniglio, and I. M. L. D'Ottaviano, editors, *Paraconsistency the Logical Way to the Inconsistent*, volume 228 of *Lecture Notes in Pure and Applied Mathematics*, pages 1–94, New York, 2002. Marcel Dekker.