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Three ways forward

Maximum Likelihood PCFG (with traditional linguistic
categories) does not work well... So:
e Change the generative model
e CCM, DMV, UDOP
e Change the supervision mode
o Learn from bracketed sentences - discover constituent
labels (categorization) (Lari & Young, 1990; Borensztajn &
Zuidema, 2007);
e Learn from annotated treebank trees - discover finer
constituent labels (Klein & Manning, 2003; Prescher, 2005;
Matzuzaki et al., 2005; Petrov et al., 2006)



Three ways forward (ctd)

e Change the objective function
argmax P(g|d) = argmax P(g)P(d|g)
BMM, Bayesian Tree Substitution Grammar (O’Donnell et

al. 2009, Cohn & Blunsom 2009, Knight 2009)

For next class, read Knight (2009; p.1-13) instead of Zuidema
(2007)!
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= Annotation refines base treebank symbols to
improve statistical fit of the grammar
= Parent annotation [Johnson "98]
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= Annotation refines base treebank symbols to
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= Parent annotation [Johnson "98]
* Head lexicalization [Collins '99, Charniak '00]
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= Annotation refines base treebank symbols to
improve statistical fit of the grammar
= Parent annotation [Johnson "98]
* Head lexicalization [Collins '99, Charniak '00]
* Automatic clustering?
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* Manually split categories G v
= NP: subject vs object | o~
PRP VBD ADJP .

* DT: determiners vs demonstratives R ~
* IN: sentential vs prepositional He was  right
* Advantages:
= Fairly compact grammar
= Linguistic motivations
* Disadvantages:

= Performance leveled out | Mode/ F1

= Manually annotated Naive Treebank Grammar | 72.6

Klein & Manning ‘03 86.3




[Matsuzaki et. al ‘05,
Prescher '05]

S
* Advantages: —~—
. NP VP
= Automatically learned: L~
Label all nodes with latent variables. PIIQP VI?D AD:JP '

Same number k of subcategories He was right
for all categories.

* Disadvantages:
= Grammar gets too large
= Most categories are

oversplit while others Model F1

are undersplit. Klein & Manning '03 |86.3

Matsuzaki et al. ’'05 |86.7




This Work

Allocates splits where needed

Automatically learned

Compact Grammar

Captures many features
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EM algorithm:
= Brackets are known

Learning Latent Annotations

Forward
= Base categories are known
* Only induce subcategories
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Just like Forward-Backward
for HMMs.

Backward
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_—_. Refinement of the DT tag
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Hierarchical refinement of the DT tag
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Hierarchical Estimation Results
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Refinement of the , tag

|
= Splitting all categories the same amount is

wasteful:
L (1.00)
~1.00)

1000 ][00y ][00 ] [(1.00)
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J The DT tag revisited
|
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Adaptive Splitting

= Want to split complex categories more

= |dea: split everything, roll back splits which
were least useful
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‘ Adaptive Splitting

= Want to split complex categories more

= |dea: split everything, roll back splits which
were least useful
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Adaptive Splitting

= Want to split complex categories more

= |dea: split everything, roll back splits which
were least useful
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Adaptive Splitting

* Evaluate loss in likelihood from removing each
split =
Data likelihood with split reversed
Data likelihood with split
* No loss in accuracy when 50% of the splits are

reversed.
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Number of Lexical Subcategories
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* Heavy splitting can lead to overfitting

* |dea: Smoothing allows us to pool

statistics
NNP

NNP; NNP; NNP3; NNP; NNP; NNPg NNP; NNPg



Linear Smoothing

NNP

p. = P(A, — BC)
pr =1 —a)ps +ap

1
where p = - sz
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Result Overview

Parsing accuracy (F1)
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Result Overview
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F1 F1
Parser <40 words | all words
Klein & Manning ‘03 86.3 85.7
Matsuzaki et al. ‘05 86.7 86.1
This Work 90.2 89.7




F1 F1
Parser <40 words | all words
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Matsuzaki et al. ‘05 86.7 86.1
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Linguistic Candy

* Proper Nouns (NNP):

NNP-14 | Oct. Nov. Sept.
NNP-12 | John Robert James
NNP-2 J. E. L.
NNP-1 Bush Noriega Peters
NNP-15 | New San Wall
NNP-3 York Francisco Street
* Personal pronouns (PRP):
PRP-0 It He I
PRP-1 it he they
PRP-2 it them him
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* Relative adverbs (RBR):

RBR-0 further lower higher
RBR-1 more less More
RBR-2 earlier Earlier later

* Cardinal Numbers (CD):
CD-7 one two Three
CD-4 1989 1990 1988
CD-11 million billion trillion
CD-0 1 50 100
CD-3 1 30 31
CD-9 78 58 34




* New ldeas:

* Hierarchical Training
= Adaptive Splitting
* Parameter Smoothing
» State of the Art Parsing Performance:
* Improves from X-Bar initializer 63.4 to 90.2

* Linguistically interesting grammars to sift
through.



Multi-Word Expressions

Idiomatic expressions

by and large

lo and behold
beat a dead horse
make amends
cast aspersions

a flash in the pan



Multi-Word Expressions

Formulaic expressions

declined to comment (WSJ)

Stocks went up to $ 15.4 from $ 15.3 (WSJ)

| want to travel from Baltimore to Oakland (ATIS)

Ik wil vandaag van Amsterdam naar Leuven (OVIS)
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PTSGs: Old Generative Story



Probabilistic Tree Substitution Grammars

An PTSG is a 5-tuple (Vj,, V4, S, T, w)

w: T —[0,1], such thatvr > w(t)=1
tr(t)=r

The probability of a derivation: [hidden]
n
P(d = oty =]](w
i=1
The probability of a parse: [observable]

P(p)= > (P(d))



PTSGs: New Generative Story
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