Lecture 8: The Berkeley Parser

Jelle Zuidema

Institute for Logic, Language and Computation University of Amsterdam, The Netherlands

Unsupervised Language Learning 2014 University of Amsterdam

Three ways forward

Maximum Likelihood PCFG (with traditional linguistic categories) does not work well... So:

- Change the generative model
 - CCM, DMV, UDOP
- Change the supervision mode
 - Learn from bracketed sentences discover constituent labels (categorization) (Lari & Young, 1990; Borensztajn & Zuidema, 2007);
 - Learn from annotated treebank trees discover finer constituent labels (Klein & Manning, 2003; Prescher, 2005; Matzuzaki et al., 2005; Petrov et al., 2006)

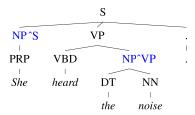
Three ways forward (ctd)

Change the objective function

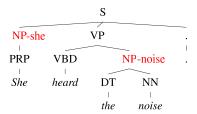
$$\arg\max_{g}P(g|d)=\arg\max_{g}P(g)P(d|g)$$

BMM, Bayesian Tree Substitution Grammar (O'Donnell et al. 2009, Cohn & Blunsom 2009, Knight 2009)

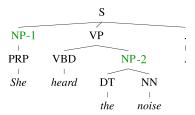
For next class, read Knight (2009; p.1-13) instead of Zuidema (2007)!


Learning Accurate, Compact, and Interpretable Tree Annotation

Slav Petrov, Leon Barrett, Romain Thibaux, Dan Klein


The Game of Designing a Grammar

- Annotation refines base treebank symbols to improve statistical fit of the grammar
 - Parent annotation [Johnson '98]


The Game of Designing a Grammar

- Annotation refines base treebank symbols to improve statistical fit of the grammar
 - Parent annotation [Johnson '98]
 - Head lexicalization [Collins '99, Charniak '00]

The Game of Designing a Grammar

- Annotation refines base treebank symbols to improve statistical fit of the grammar
 - Parent annotation [Johnson '98]
 - Head lexicalization [Collins '99, Charniak '00]
 - Automatic clustering?

Previous Work: Manual Annotation [Klein & Manning '03]

Manually split categories

- NP: subject vs object
- DT: determiners vs demonstratives
- IN: sentential vs prepositional

	S	
NP	V	Έ.
1		_
PRP	VBD	ADJP .
1	1	\sim
He	was	right

Advantages:

- Fairly compact grammar
- Linguistic motivations

Disadvantages:

- Performance leveled out
- Manually annotated

Model	F1
Naïve Treebank Grammar	72.6
Klein & Manning '03	86.3

Previous Work: [Matsuzaki et. al '05, Prescher '05] Automatic Annotation Induction

Advantages:

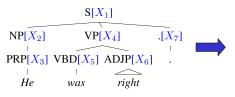
Automatically learned:
 Label all nodes with latent variables.
 Same number k of subcategories for all categories.

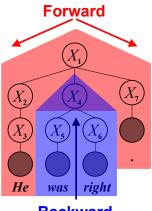
■ Disadvantages:

- Grammar gets too large
- Most categories are oversplit while others are undersplit.

Model	F1
Klein & Manning '03	86.3
Matsuzaki et al. '05	86.7

Previous work is complementary

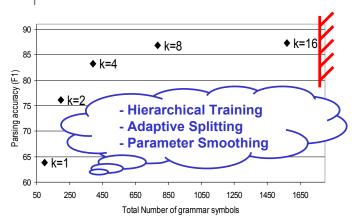

This Work		
Allocates splits where needed		
	Automatically learned	
Compact Grammar		
	Captures many features	


Learning Latent Annotations

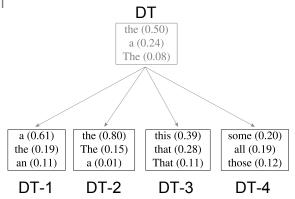
EM algorithm:

- Brackets are known
- Base categories are known
- Only induce subcategories

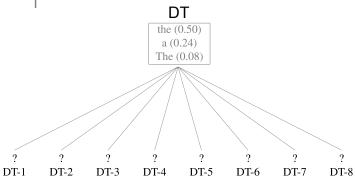
Just like Forward-Backward for HMMs.



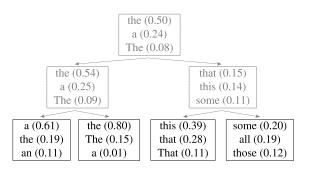
Backward


Overview

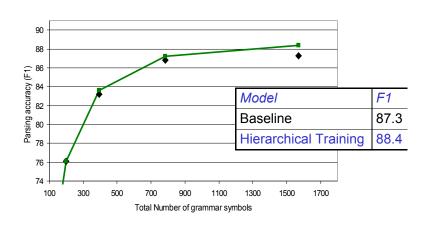
Limit of computational resources



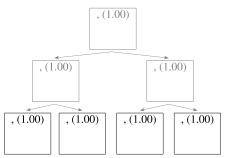
Refinement of the DT tag

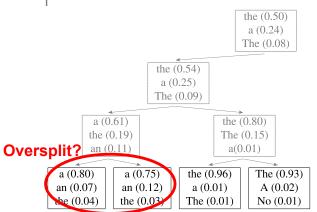


Refinement of the DT tag

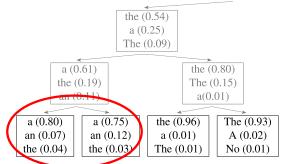


Hierarchical refinement of the DT tag

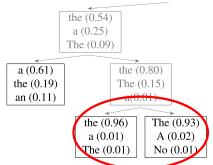

Hierarchical Estimation Results


Refinement of the, tag

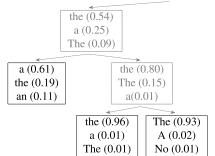
Splitting all categories the same amount is wasteful:



The DT tag revisited



- Want to split complex categories more
- Idea: split everything, roll back splits which were least useful

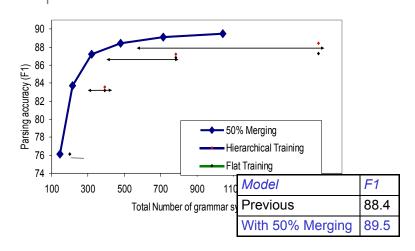


- Want to split complex categories more
- Idea: split everything, roll back splits which were least useful

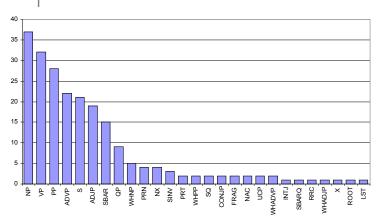
- Want to split complex categories more
- Idea: split everything, roll back splits which were least useful

Evaluate loss in likelihood from removing each split =

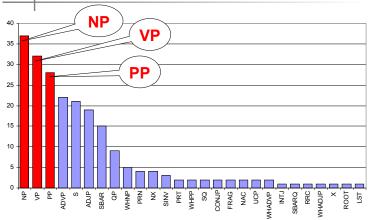
Data likelihood with split reversed


Data likelihood with split

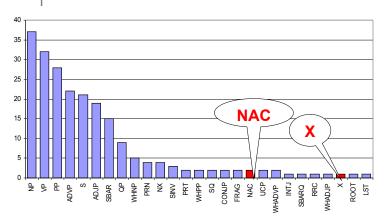
 No loss in accuracy when 50% of the splits are reversed.



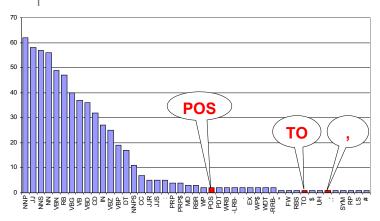
Adaptive Splitting Results



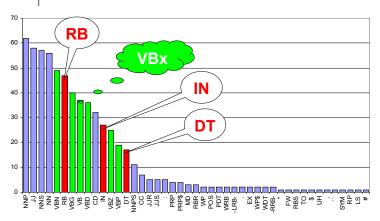
Number of Phrasal Subcategories



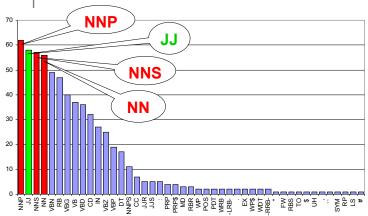
Number of Phrasal Subcategories



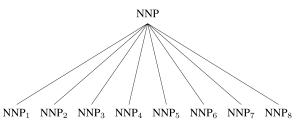
Number of Phrasal Subcategories



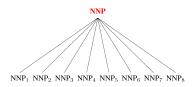
Number of Lexical Subcategories



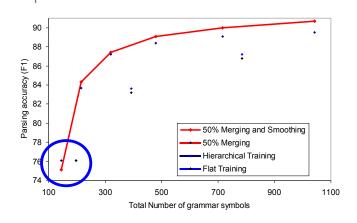
Number of Lexical Subcategories


Number of Lexical Subcategories

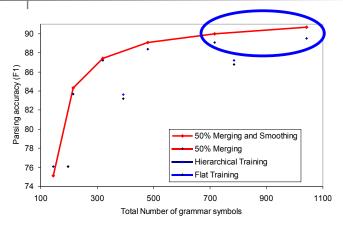
Smoothing


- Heavy splitting can lead to overfitting
- Idea: Smoothing allows us to pool statistics

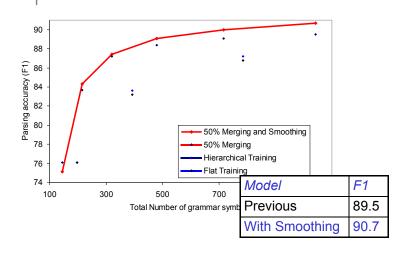
Linear Smoothing


$$p_x = P(A_x \to BC)$$

$$p'_x = (1 - \alpha)p_x + \alpha \bar{p}$$
where $\bar{p} = \frac{1}{n} \sum_{x} p_x$



Result Overview



Result Overview

Result Overview

Final Results

Parser	F1 ≤ 40 words	F1 all words
Klein & Manning '03	86.3	85.7
Matsuzaki et al. '05	86.7	86.1
This Work	90.2	89.7

Final Results

Parser	F1 ≤ 40 words	F1 all words
Klein & Manning '03	86.3	85.7
Matsuzaki et al. '05	86.7	86.1
Collins '99	88.6	88.2
Charniak & Johnson '05	90.1	89.6
This Work	90.2	89.7

Linguistic Candy

■ Proper Nouns (NNP):

NNP-14	Oct.	Nov.	Sept.
NNP-12	John	Robert	James
NNP-2	J.	E.	L.
NNP-1	Bush	Noriega	Peters
NNP-15	New	San	Wall
NNP-3	York	Francisco	Street

Personal pronouns (PRP):

PRP-0	It	He	
PRP-1	it	he	they
PRP-2	it	them	him

Linguistic Candy

Relative adverbs (RBR):

RBR-0	further	lower	higher
RBR-1	more	less	More
RBR-2	earlier	Earlier	later

Cardinal Numbers (CD):

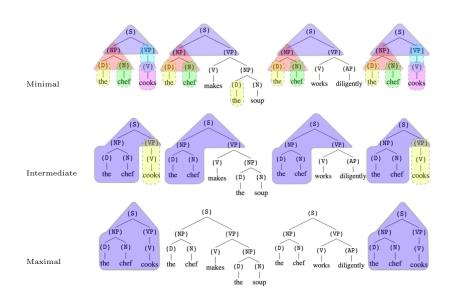
CD-7	one	two	Three
CD-4	1989	1990	1988
CD-11	million	billion	trillion
CD-0	1	50	100
CD-3	1	30	31
CD-9	78	58	34

Conclusions

- New Ideas:
 - Hierarchical Training
 - Adaptive Splitting
 - Parameter Smoothing
- State of the Art Parsing Performance:
 - Improves from X-Bar initializer 63.4 to 90.2
- Linguistically interesting grammars to sift through.

Multi-Word Expressions

Idiomatic expressions


- by and large
- lo and behold
- beat a dead horse
- make amends
- · cast aspersions
- a flash in the pan

Multi-Word Expressions

Formulaic expressions

•

- declined to comment (WSJ)
- Stocks went up to \$ 15.4 from \$ 15.3 (WSJ)
- I want to travel from Baltimore to Oakland (ATIS)
- Ik wil vandaag van Amsterdam naar Leuven (OVIS)

PTSGs: Old Generative Story

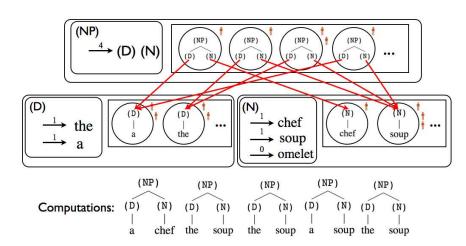
Probabilistic Tree Substitution Grammars

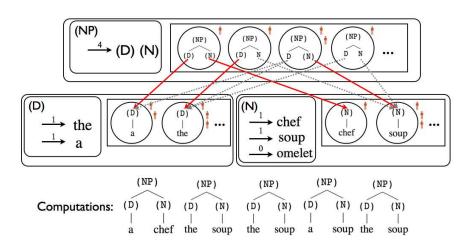
An PTSG is a 5-tuple $\langle V_n, V_t, S, T, w \rangle$

$$w: T \rightarrow [0,1]$$
, such that $\forall r \sum_{t: r(t)=r} w(t) = 1$

The probability of a derivation:

[hidden]


$$P(d = t_1 \circ \ldots \circ t_n) = \prod_{i=1}^n (w(t_i))$$


The probability of a parse:

[observable]

$$P(p) = \sum_{d: \hat{d} = p} (P(d))$$

PTSGs: New Generative Story

4 □ ト 4 個 ト 4 필 ト 4 필 ト 필 · 외 역