
HYPERREAL EXPECTED UTILITIES AND PASCAL'S WAGER

Abstract. This paper re-examines two major concerns about the validity of
Pascal's Wager: (1) The classical von Neumann-Morgenstern Theorem seems
to contradict the rationality of maximising expected utility when the utility
function's range contains in�nite numbers (McClennen 1994). (2) Apparently,
the utility of salvation cannot be re�exive under addition by real numbers
(which Pascal's Pensée 233 demands) and strictly irre�exe under multiplication
by scalars < 1 at the same time (Hájek 2003).

Robinsonian nonstandard analysis is used to establish a hyperreal version of
the von Neumann-Morgenstern Theorem: an a�ne utility representation the-
orem for internal, complete, transitive, independent and in�nitesimally contin-
uous preference orderings on lotteries with hyperreal probabilities. (Herein, a
preference relation¹ on lotteries is called in�nitesimally continuous if and only
if for all x ≺ y ≺ z, there exist hyperreal, possibly in�nitesimal, numbers p, q
such that the �perturbed preference ordering� px+(1−p)z ≺ y ≺ qx+(1−q)z
holds. In�nitesimal Continuity is hence a much weaker condition than conti-
nuity.) This Hyperreal von Neumann-Morgenstern Theorem yields a hyperreal
version of the Expected Utility Theorem � a�rming a conjecture by Sobel
(1996). This responds to objection (1).

To address objection (2), a convex linearly ordered superset S of the reals
whose maximum is both re�exive under addition by �nite numbers and strictly
irre�exive under multiplication by scalars < 1 is constructed.

If the Wagerer is indi�erent among the pure outcomes except salvation
(a common soteriological position) and some technical conditions hold, then
the Hyperreal Expected Utility Theorem allows to represent the Wagerer's
preference ordering through an S-valued (not just hyperreal-valued) utility
function, answering objections (1) and (2) simultaneously.

Behold, I set before you the
way of life and the way of
death.

But your happiness? Let us weigh the gain
and the loss in wagering that God is. Let us
estimate these two chances. If you gain, you
gain all; if you lose, you lose nothing. Wager,
then, without hesitation that He is.

Jeremiah 21,8 Blaise Pascal, Pensées, �233
(King James Version) (Trotter translation)

1. Introduction
1.1. The context of Pascal's Wager. Pascal's Wager [16, Pensée 233] is a Chris-
tian apologetic argument.1 It is meant to address individuals who already hold cer-
tain beliefs about the supernatural (cf. Rescher [17]), which explains the strength
of some of the argument's premises (see Subsection 1.2):

First, the subjective probability for the existence of the Christian God is as-
sumed to be positive and non-in�nitesimal. (Zero probabilities would make the

Key words and phrases. Pascal's wager; decision theory with in�nite values; nonstandard anal-
ysis; von Neumann-Morgenstern utility.

1The context of Pensée 233, in particular Pensée 181, implies that the Wager is argument is
Christian apologetics, not speci�c Jansenist or Catholic apologetics. (Jansenism was the Roman
Catholic sect Pascal belonged to.) It is not addressing non-Roman-Catholic or non-Jansenist
Christian believers, but rather individuals who lack interest in a personal faith (hence Section III
of the Pensées is entitled �Of the necessity of the Wager�) or lean towards atheism.
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argument invalid, in�nitesimal probabilities would require a su�ciently high utility
of salvation, cf. Oppy 1990 [15] and Hájek 2003 [5].)

Secondly, the audience is assumed to consider the Christian faith the only vi-
able alternative to atheism for themselves. (Otherwise they might as well become
attracted to any religion that promises paradise to its followers. Several variants
of this so-called many-gods objection have been studied systematically by Bartha
[1].)

From a theological perspective, it is important to note that Pascal did not ex-
pect that anyone who is convinced of the conclusion of the argument could earn
their salvation themselves � let alone by merely accepting the rationality of some
gambling strategy.2 To the contrary, Pascal's (Jansenist) theology places a great
emphasis on grace and predestination.

The purpose of this apologetic argument is, therefore, simply to �incite to the
search after God� [Pensée 181].
1.2. The structure of the Wager. Mixed strategies. Pascal's argument �
directed at someone who is choosing between either Christianity or atheism and,
in addition, assigns positive, non-in�nitesimal probability to the existence of the
Christian God � can be formalised as follows:

(1) Premise: One has to wager for or against God, and the payo� of the wager
is as follows:

Christian God exists Christian God
(with some probability pÀ 0) does not exist

Wager for God I f2
Wager against God f3 f4

Herein, I denotes an in�nitely large number3, f2, f3, f4 are �nite4, and
pÀ 0 means that p is non-in�nitesimal5.

(2) Premise: Reason demands to maximise expected utility.

(3) Conclusion: Reason demands to wager for God.
Formalisations of the Wager have to identify I mathematically in some superset

S of the �eld of the reals.
Now, in order to clarify Premise 2, one needs to de�ne what kind of choices the

Wagerer is allowed to make. In this paper, we allow the Wagerer to base his/her
decision to wager for or against God on a random event of some probability q. (For
instance, by tossing a coin to determine what to wager for.) Such a strategy is
called a mixed strategy.

If one were to exclude the possibility of mixed strategies, the decision of the Pas-
calian Wagerer amounts to the choice of one of two continuum-size sets of lotteries.
For, there are then two possible lotteries (wagering for or against God) for each
value for the probability p of God's existence.

As we do allow for mixed strategies, the Wagerer has to choose one continuum-
size set of lotteries among a continuum of continuum-size set of lotteries. For, there
is a continuum of possible lotteries � one for each value for the chance that he
wagers for God � for each value for the probability p of God's existence.

Thus, Premise 2 can now be phrased as follows: Let 〈p̄, q̄〉 denote the lottery
where the probability that the Christian God exists is p̄ and the probability that
the Wagerer actually wagers for Him is q̄. Then, for every p̄ ∈ (0, 1] (excluding

2Cf. Pascal in Pensée 240.
3I.e., I > n holds for every n ∈ N.
4I.e. |f2| , |f3| , |f4| ≤ n for some n ∈ N.
5I.e., there exists some n ∈ N such that p > 1

n
.
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in�nitesimal probabilities p̄, see Premise 1), a rational Wagerer must strictly prefer
〈p̄, 1〉 over 〈p̄, q̄〉 for any q̄ < 1.

This statement is exactly what the Pascalian must prove (in some formal setting)
in order to justify Premise 2.

1.3. Two concerns about Pascal's Wager. Pascal's Wager faces at least two
major challenges: (1) McClennen's decision-theoretic objection, and (2) Hájek's
dilemma.

(1) McClennen (1994) [13] points out that Premise 2, the rationality of max-
imising expected utility, lacks a decision-theoretic justi�cation (such as the
von Neumann-Morgenstern Theorem) since the Wagerer's utility function is
allowed to take in�nite values: For, the classical von Neumann-Morgenstern
Theorem only says that a preference ordering on lotteries can be represented
by a real-valued expected utility function if and only if the preference or-
dering has certain properties, among them continuity. Now, on the one
hand, continuous preference-orderings are inconsistent with in�nite utili-
ties (which Pascal's Wager entails), and on the other hand, the Pascalian
wants to allow for in�nite (not just real-valued) expected utility functions.
Hence, the Pascalian cannot justify Premise 2 through classical utility the-
ory. Instead, a new expected utility theorem is needed in order to defend
Premise 2.

(2) Hájek (2003) [5] contends that there is a dilemma for any conceivable math-
ematical (re)formulation of the Wager: On the one hand, a historically
faithful reading of Pascal's Pensée 233 demands that the utility of salva-
tion be re�exive under addition by real numbers.6 On the other hand, the
utility of salvation must be irre�exive under multiplication (by probabili-
ties > 0), in order to ensure that one can distinguish between the expected
utility of outright wagering for God and mixed strategies (where the Wa-
gerer only ends up wagering for God with some probability p > 0, cf. Du�
1986 [3]). Hence, one must �nd a convex linearly ordered set which con-
tains the reals and has a maximum that is both re�exive under addition by
reals and strictly irre�exive under multiplication by positive scalars < 1.
However, Hájek thought that this is impossible: �[There are] no prospects
for characterizing a notion of the utility of salvation that is re�exive un-
der addition without being re�exive under multiplication by positive, �nite
probabilities� (Hájek 2003 [5, p. 49]).

1.4. Outline of the argument. In a recent paper, Bartha (2007) [1] proposed
a new formalisation of Pascal's Wager, based on generalised utility ratios, which
addresses both McClennen's objection and Hájek's dilemma. The aim of this article
is to demonstrate how McClennen's objection and Hájek's dilemma can also be
addressed by means of one-place hyperreal7-valued utility functions; if one drops
the requirement of re�exivity under addition, this approach can be simpli�ed even
further.

In particular, we shall prove:
(1) There is an expected-utility representation theorem for hyperreal util-

ity functions: Every standard-de�nable, complete, transitive, independent
and in�nitesimally continuous preference relation can be represented by a

6In an appendix, we shall reexamine this claim and see that, in fact, irre�exivity under addition
may be more in accordance with Pascal's theology.

7The �eld of hyperreals � in the sense of Robinson's (1966) nonstandard analysis [18] � is
an ordered �eld, containing all real numbers, as well as in�nitesimals and in�nite numbers. It is
a nonstandard model of the reals.
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hyperreal-valued a�ne utility function. (See Section 2, in particular the
Hyperreal Expected Utility Theorem 3.)

(2) There are two candidates for a mathematical model of the Wagerer's utility
function where the maximal utility is both re�exive under addition and ir-
re�exive under multiplication by positive probabilities. In particular, there
exists a convex subset of a two-dimensional vector space which allows for
a linear ordering which is consistent with addition and multiplication and
whose maximum is re�exive under addition without being re�exive under
multiplication by positive probabilities. (See Subsection 4.3 and Appendix
B.)

Hence, each of the challenges by McClennen and Hájek can be addressed sepa-
rately. The combination of Hájek's dilemma and McClennen's critique is potentially
troublesome for the Pascalian. However, we shall prove that under additional hy-
potheses on the Wagerer's metaphysical stance, the range of this utility function can
even be chosen as a linearly-ordered convex set whose maximum is both re�exive
under addition and strictly irre�exive under multiplication, thus answering at the
same time McClennen's objection and Hájek's dilemma. Besides, in an appendix
to this paper, we shall argue that despite its philosophical merits and faithfulness
to Pascal's statement in Pensée 233, the re�exivity under addition of the utility of
salvation is in tension with other aspects of Pascalian theology.

Now, it has been argued that there is some �arbitrariness� in modelling subjective
utility of salvation of a given human individual by some particular in�nite hyperreal
(cf. Hájek 2003 [5] and Bartha 2007 [1]). The Hyperreal Expected Utility Theorem
clari�es that this degree of freedom simply re�ects an ubiquitious phenomenon
in decision theory with cardinal preferences: Von Neumann-Morgenstern utility
functions are only unique up to a positive factor and a shift by an additive scalar.

Finally, in order to apply the Hyperreal Expected Utility Theorem to Pascal's
Wager, we must assume that the Pascalian Wagerer has a completely de�ned pref-
erence relation over lotteries with arbitrary hyperreal chances. This does, of course,
by no means entail that the Wagerer is assumed to assign in�nitesimal probabil-
ity to the existence of God�which would be inconsistent with Premise 1. It only
means that the Wagerer is able to compare those lotteries where the probability
for the event that he wagers for God while God does not exist is hyperreal (e.g.
in�nitesimal) with other lotteries.

2. The Hyperreal Expected Utility Theorem
In order to justify Premise 2, i.e. the rationality of maximising expected utility

whilst permitting in�nite values in the utility function's range, a decision-theoretic
argument is required. Typically, the rationality of maximising expected utility is
justi�ed in decision theory via the classical Expected Utility Theorem of von Neu-
mann and Morgenstern, but this rules out in�nite values of the utility function.

However, as explained by Bartha (2007) [1, p. 10], re�exivity under multiplica-
tion (i.e. the axiom that x · I = I for all x > 0) is responsible for the inconsistency
of in�nite utilities with the hypotheses of the von Neumann-Morgenstern Theorem.
Thus, since in�nite hyperreals and surreals are (strictly) irre�exive under multipli-
cation, there may be some hope to counter the �rst objection if I is a hyperreal or
a surreal number.

To the present author, it is unclear how to develop a von Neumann-Morgenstern
Theorem for surreal utilities and thus to respond to McClennen's objection through
a surreal formalisation of the Wager.
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By means of Robinson's (1966) [18] nonstandard analysis, we shall prove a
von Neumann-Morgenstern Theorem for hyperreal-valued utility functions (Hyper-
real von Neumann-Morgenstern Theorem, Theorem 1) and derive from there a rig-
orous decision-theoretic justi�cation for the rationality of maximising hyperreal
expected utility (Hyperreal Expected Utility Theorem, Theorem 3).

Hence, if the utility of salvation in Pascal's Wager is modeled by positive in-
�nite hyperreals, then nonstandard analysis provides a response to McClennen's
objection.

The Hyperreal von Neumann-Morgenstern Theorem (Theorem 1) follows easily
from the classical Expected Utility Theorem of von Neumann and Morgenstern.
Indeed, if ∗ denotes a nonstandard embedding8 from the standard universe into the
nonstandard universe, then one can prove the following equivalence theorem, which
is an easy consequence of applying the Transfer Principle9 to the standard Expected
Utility Theorem of von Neumann and Morgenstern in Jensen's (1967) formulation
[8].

In the statement of this theorem, we employ the notion of internality in the
sense of nonstandard analysis. Internal means to be an element of the ∗-image of
a standard set�and this is also equivalent to being de�nable by a formula of set
theory which treats the reals as atoms and has internal, e.g. standard, parameters.

A ∗-linear space is an internal linear space over the �eld ∗R. Furthermore, an
internal subset X of a ∗-linear space is ∗-convex if and only if px + (1 − p)y ∈ X
for all x, y ∈ X and p ∈ ∗[0, 1]. Finally, an internal function U : X → ∗R,
de�ned on some ∗-convex set X is called ∗-a�ne if and only if U (px+ (1− p)y) =
pU(x) + (1 − p)U(y) for all x, y ∈ X and p ∈ ∗[0, 1]. Note that these de�nitions
are consistent with the terminology regarding ∗-images of formulae in Footnote 8,
when applied to the formal de�nitions of being a linear space or a convex set or an
a�ne function; this consistency is crucial for the proof of the Theorem which relies
on the use of the Transfer Principle.

Also, ∗(0, 1] and ∗(0, 1) denote the sets of hyperreals x satisfying 0 < x ≤ 1
and 0 < x < 1, respectively. This de�nition, again, is consistent with the Transfer
Principle outlined in Footnote 8.

Theorem 1 (Hyperreal von Neumann-Morgenstern Theorem). Let X be an inter-
nal10 ∗-convex subset of a ∗-linear space, and let ¹ be a binary relation ⊆ X ×X.

8This is an embedding of the superstructure over the reals into the superstructure of a
non-Archimedean model of the ordered �eld of the reals�usually obtained via an ultra�lter
construction�which satis�es the Transfer Principle, the Countable Saturation Principle and the
Internal De�nition Principle. (The superstructure V (M) over some set M is de�ned via V0 = M ,
Vn+1(M) = Vn(M) for all n ∈ N0 and V (M) =

S∞
n=0 Vn(M).) The Transfer Principle states the

following: Any �rst-order proposition φ[a1, . . . , an] of set theory that treats the reals as atoms and
has only bounded quanti�ers (and parameters a1, . . . , an from the superstructure over the reals),
holds if and only if the proposition φ [∗a1, . . . , ∗an], sometimes also referred to as ∗φ[a1, . . . , an]
(the ∗-image of the formula φ[a1, . . . , an]), holds in the nonstandard universe. The Countable Sat-
uration Principle states that any decreasing countable chain of nonempty internal sets, i.e. sets
that are elements of ∗-images of (standard) sets, must have a nonempty intersection. The Internal
De�nition Principle says that any subset of an internal set that is de�ned via a set-theoretic for-
mula with internal parameters is itself internal. There are even de�nable (over Zermelo-Fraenkel
set theory with the Axiom of Choice) nonstandard extensions of the superstructure over the reals,
cf. Herzberg [7].

9See Footnote 8.
10Since all models in applications of nonstandard analyis are (standard parts) of internal

objects (otherwise, it is impossible to obtain any information on these objects via the Transfer
Principle), the requirement of internality is even in general not a relevant restriction. (Cf. also
Herzberg [6].) But, as we shall see later on, we can even circumvent the notion of internality for
the purposes of this article.
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There exists a ∗-a�ne function U : X → ∗R such that
U(x) ≤ U(y) ⇐⇒ x ¹ y

holds for all x, y ∈ X if and only if ¹ possesses all of the following properties:
(1) Completeness. For all x, y ∈ X, either x ¹ y or y ¹ x.
(2) Transitivity. For all x, y, z ∈ X with x ¹ y and y ¹ z, one has x ¹ z.
(3) In�nitesimal Continuity. For all x, y, z ∈ X with x ≺ y ≺ z 11, there exist

hyperreals p, q ∈ ∗(0, 1) such that
px+ (1− p)z ≺ y ≺ qx+ (1− q)z.

(4) Independence. For all x, y, z ∈ X and every p ∈ ∗(0, 1], the relation x ¹ y
is equivalent to px+ (1− p)z ¹ py + (1− p)z.

Herein, the interpretation of x ¹ y should be read as `x is not preferred over y'
or `either y is preferred over x or they are equivalent'.

The �rst two properties are just the weak order axioms12.
When we compare In�nitesimal Continuity with ordinary continuity13 of binary

relations on convex spaces, we �nd that (0, 1) has been replaced by ∗(0, 1). In
particular, the hyperreals p and q in the de�nition of In�nitesimal Continuity may
be in�nitely close to 1, which corresponds to an in�nitesimal perturbation x′ =
px + (1 − p)z of x and an in�nitesimal perturbation z′ = qx + (1 − q)z of z. In
other words, In�nitesimal Continuity asserts the existence of a hyperreal (possibly
in�nitesimal) perturbation, while ordinary continuity asserts the existence of a real,
non-in�nitesimal perturbation. Hence, In�nitesimal Continuity is a much weaker
condition than the ordinary continuity axiom in the sense of Jensen (1967) [8].

Our Independence axiom says that a preference relation x ¹ y is preserved if
x and y are both mixed with another lottery and the same, possibly hyperreal,
probability p. Whilst this is a stronger axiom than ordinary independence in the
sense of Jensen [8] (for, it replaces (0, 1] by the larger set ∗(0, 1] in the de�nition
of independence for binary relations on convex spaces), it is clearly the natural
extension of the ordinary independence axiom to lotteries with hyperreal chances.
Proof of the Hyperreal von Neumann-Morgenstern Theorem. The (standard) Ex-
pected Utility Theorem of von Neumann and Morgenstern about preference re-
lations on convex sets says the following: A binary relation on any convex subset
X of a linear space satis�es the axioms of completeness, transitivity, continuity and
independence if and only if there exists some a�ne function U : X → R such that
the estimate U(x) ≤ U(y) is equivalent to x ¹ y (for all x, y ∈ X).

We shall apply the Transfer Principle to this Expected Utility Theorem. Note,
for this purpose, that the Transfer Principle also yields that the ∗-image of the
set of binary relations on convex subsets of linear spaces is just the set of internal
binary relations on ∗-convex subsets of ∗-linear spaces.

Hence, applying the Transfer Principle to the standard Expected Utility Theorem
leads to the following result: Any internal binary relation on a ∗-convex subset of
a ∗-linear space is ∗-complete, ∗-transitive, ∗-continuous and ∗-independent if and
only if there exists a ∗-a�ne function U : X → ∗R satisfying

∀x, y ∈ X U(x) ≤ U(y) ⇔ x ¹ y.

But, ∗-transitivity is the same as transitivity, and ∗-completeness is the same
as completeness. Furthermore, if we apply the Tranfer Principle to the de�nitions
of continuity and independence (for standard binary relations on convex sets), we

11For any x, y ∈ X, we de�ne x ≺ y to be the negation of y ¹ x.
12In the terminology of Jensen [8], the �rst two axioms characterise complete preorderings.
13The Continuity axiom is also known as the Archimedean property (cf. e.g. Jensen 1967 [8]).
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obtain that ∗-continuity is the same as In�nitesimal Continuity, and ∗-independence
is the same as Independence. This completes the proof of the Theorem.

¤
Theorem 2 (Internal Expected Utility Theorem). Let W be an internal �nite-
dimensional linear space over the �eld ∗R of the hyperreals, let x1, . . . , xm ∈ W ,
and consider Y = {∑m

i=1 pixi : p1, . . . , pm ∈ ∗[0, 1],
∑m

i=1 pi = 1}. Let ¹ be an
internal binary relation ⊆ Y × Y . The relation ¹ satis�es all the axioms of (1)
Completeness, (2) Transitivity, (3) In�nitesimal Continuity and (4) Independence
if and only if there exist hyperreals u1, . . . , um such that

m∑

i=1

pixi ¹
m∑

i=1

qixi ⇐⇒
m∑

i=1

piui ≤
m∑

i=1

qiui

whenever p1, q1, . . . , pm, qm ∈ ∗[0, 1] with
∑m

i=1 pi = 1 and
∑m

i=1 qi = 1.
The hypothesis of internality of the relation ¹ may be replaced by a stronger,

but conceptually more accessible assumption: standard-de�nability under a basis
choice. ¹, a relation on some subset Y of an n-dimensional linear space W over ∗R
(n ∈ N) is said to be standard-de�nable under a basis choice if there exist

• an isomorphism ψ : W ' ∗Rn (a bijective map that commutes both with
addition and with multiplication by hyperreals) and

• a �rst-order formula ϕ (x1, . . . , xn, y1, . . . , yn) in which the canonical ex-
tensions (∗-images) of maps from RM to RN (for any M,N ∈ N), as well
as equality `=' and the order relation `<' may occur, with free variables
x1, . . . , xn, y1, . . . , yn and constants from ∗R

such that
∀v, w ∈ Y (x ¹ y ⇐⇒ ϕ [ψ(v), ψ(w)])

(in other words: ¹=
{〈v, w〉 ∈ Y 2 : ϕ [ψ(v), ψ(w)]

}
).

In particular, ϕ (x1, . . . , xn, y1, . . . , yn) may be any formula from the language of
ordered rings14. Since, however, the theory of real-ordered �elds admits quanti�er
elimination (which can, for instance, be proven via the so-called Tarski-Seidenberg
Principle, cf. e.g. Bochnak, Coste, Roy [2, Proposition 5.5.2] or Marker [12, The-
orem 3.3.15]), this would simply mean that there are polynomials fi,j (i ≤ M ,
j ≤ N) in the variables X1, . . . , Xn, Y1, . . . , Yn with coe�cients from ∗R such that

¹=
M⋃

i=1

N⋂

j=1

{〈v, w〉 ∈ Y 2 : fi,j (ψ(v), ψ(w)) ≥ 0
}
.

Note that whenever χ : ∗Rn ' ∗Rn is an automorphism of the linear space ∗Rn

over ∗R and f : ∗R2n → ∗R is de�ned via canonical extensions of maps from RM

to RN as well as constants from ∗R, then f ◦ χ can also be de�ned that way. (The
reason is that χ itself is de�nable, since it is a linear map from a �nite-dimensional
linear space onto itself.) Hence, the choice of ψ is irrelevant: It can be replaced by
χ ◦ψ and thus by an arbitrary other isomosorphism between W and ∗Rn (as linear
spaces over ∗R).

With this new concept of standard-de�nability under a basis choice in mind,
let us state the following Theorem as an immediate corollary to Theorem 2. This
theorem a�rms a conjecture by Sobel (1996) [20].
Theorem 3 (Hyperreal Expected Utility Theorem). Let W be a �nite-dimensional
linear space over the �eld ∗R of the hyperreals, let x1, . . . , xm ∈ W and sup-
pose Y = {∑m

i=1 pixi : p1, . . . , pm ∈ ∗[0, 1],
∑m

i=1 pi = 1} (the convex hull of

14The operations in the language of ordered rings are addition, subtraction and multiplication;
the relations in this language are equality `=' and the order relation `<'. Cf. e.g. Marker [12].
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x1, . . . , xm over ∗R). Let ¹ be a binary relation ⊆ Y × Y and assume ¹ to be
standard-de�nable under a basis choice. The relation ¹ on Y satis�es all the ax-
ioms of (1) Completeness, (2) Transitivity, (3) In�nitesimal Continuity and (4)
Independence if and only if there exist hyperreals u1, . . . , um such that

m∑

i=1

pixi ¹
m∑

i=1

qixi ⇐⇒
m∑

i=1

piui ≤
m∑

i=1

qiui

whenever p1, q1, . . . , pm, qm ∈ ∗[0, 1] with
∑m

i=1 pi =
∑m

i=1 qi = 1.
Note that the statement of the Hyperreal Expected Utility Theorem (Theorem

3) does not involve the notion of an internal set any longer�in contrast to, e.g. the
Hyperreal von Neumann-Morgenstern Theorem (Theorem 1).

Proof of the Internal Expected Utility Theorem. First, suppose Y =
{∑m

i=1 pixi : p1, . . . , pm ∈ ∗[0, 1],
∑m

i=1 pi = 1} and ¹ is an internal binary
relation ⊆ Y ×Y . We have to show that the Hyperreal von Neumann-Morgenstern
Theorem (Theorem 1) may be applied in the setting of the Hyperreal Expected
Utility Theorem (Theorem 3).

For this sake, note that if n = dim∗RW is the dimension of W as a linear space
over the �eld ∗R, then W is isomorphic (over ∗R) to ∗Rn. Let us denote this
isomorphism by ψ : W ' ∗Rn.

If y1, . . . , ym are elements of an arbitrary ∗-linear space Z, then the set

C (y1, . . . , ym) :=

{
z ∈ Z : ∃p1, . . . , pm ∈ ∗[0, 1]

(
m∑

i=1

pi = 1, z =
m∑

i=1

piyi

)}

is internally de�ned and therefore�according to the Internal De�nition Princi-
ple15�itself an internal set. Moreover, it is closed under convex combinations with
weights from ∗R. Hence it is a ∗-convex set (the ∗-convex hull of y1, . . . , ym).

Since ψ is an isomorphism, we �nd that
(1)

ψ (Y ) =

{
z ∈ ∗Rn : ∃p1, . . . , pm ∈ ∗[0, 1]

(
m∑

i=1

pi = 1, z =
m∑

i=1

piψ (xi)

)}
.

Therefore, the observation of the previous paragraph may be applied to
C (ψ (x1) , . . . , ψ (xm)) = ψ(Y ). Hence X := ψ (Y ) is a ∗-convex subset of the
∗-linear space ∗Rn.

Now, the internality of ¹ on Y ensures that the relation ¹X , de�ned by
ξ1 ¹X ξ2 :⇔ ψ−1 (ξ1) ¹ ψ−1 (ξ2) ,

is also internal (and if ¹ is standard-de�nable under a basis choice, ¹X will have
that property, too: ¹X=

{〈x, y〉 ∈ X2 : ϕ (x, y)
}
). Since the formula ϕ only

involves the canonical extensions (∗-images) of standard maps as well as equality
and the order relation, ¹X is internally de�ned and thus, according to the Internal
De�nition Principle, internal.

Thus, we may apply the Hyperreal von Neumann-Morgenstern Theorem (Theo-
rem 1) to the set X = ψ (Y ) and the relation ¹X on X. Observe that ¹X satis�es
the axioms of Completeness, Transitivity, In�nitesimal Continuity and Indepen-
dence if and only if the relation ¹ on Y satis�es them (because ψ is an isomor-
phism and thus commutes with ∗-convex combinations, i.e. convex combinations
with weights from ∗R). Furthermore, the equivalence assertion

∀ξ1, ξ1 ∈ X ξ1 ¹X ξ2 ⇔ U (ξ1) ≤ U (ξ2)

15See Footnote 8
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is true if and only if
∀y1, y2 ∈ Y y1 ¹ y2 ⇔ U (ψ (y1)) ≤ U (ψ (y2)) .

Hence, after we have applied the Hyperreal von Neumann-Morgenstern Theorem
to X and ¹X , we actually obtain the following statement: The relation ¹ on
Y satis�es the axioms of Completeness, Transitivity, In�nitesimal Continuity and
Independence if and only if there is some ∗-a�ne function U : ψ (Y ) → ∗R with

∀y1, y2 ∈ Y y1 ¹ y2 ⇔ U (ψ (y1)) ≤ U (ψ (y2)) .

Finally, we shall demonstrate that the existence of a ∗-a�ne function U : ψ (Y ) →
∗R with y1 ¹ y2 ⇔ U (ψ (y1)) ≤ U (ψ (y2)) for all y1, y2 ∈ Y is equivalent to the
existence of the hyperreals u1, . . . , um as in the statement of the Hyperreal Expected
Utility Theorem. This is straightforward: Given u1, . . . , um, de�ne

∀i ∈ {1, . . . ,m} U (ψ (xi)) := ui.

This function allows for a unique ∗-a�ne extension U : ψ(Y ) → R, given by

U

(
m∑

i=1

piψ (xi)

)
=

m∑

i=1

piU (ψ (xi)) =
m∑

i=1

piui

for all p1, . . . , pm ∈ ∗[0, 1] with
∑m

i=1 pi = 1.
Conversely, given U : ψ(Y ) → ∗R, simply set

∀i ∈ {1, . . . ,m} ui := U (ψ (xi)) .

Since U is ∗-a�ne, this already entails that

U

(
m∑

i=1

piψ (xi)

)
=

m∑

i=1

piui

for all p1, . . . , pm ∈ ∗[0, 1] with
∑m

i=1 pi = 1.
¤

The Hyperreal Expected Utility Theorem shows that expected hyperreal-valued
utility functions represent preference orderings among lotteries based on a �nite
set of pure outcomes and nonstandard probabilities�provided that we impose cer-
tain natural conditions which are, apart from de�nability or internality, the direct
analogues (the ∗-images) of the original von Neumann-Morgenstern conditions.

Hyperreal-valued utility functions have also been studied by Skala (1974) [19],
Kannai (1992) [9] and Lehmann (2001) [10], in chronological order. Lehmann's
(2001) [10] article is also concerned with nonstandard von Neumann-Morgenstern
utility functions, but only allows for standard probabilities, which leads to a di�er-
ent representation theorem. Kannai (1992) [9] shows that every convex preference
ordering admits a concave utility function, provided one chooses an appropriate
nonstandard extension of the reals as the range of the utility function. Skala's
(1974) [19] results are, to the author's knowledge, the most relevant in the litera-
ture to the subject of this article. Skala, in refuting Fishburn's (1971) [4] impression
that game theory with non-Archimedean utilities is �rather barren�, constructs util-
ity functions that represent mean groupoids. A mean groupoid is a generalisations
of a convex set on which a complete transitive order is de�ned. This more general
approach leads, however, when applied to our setting, to a signi�cantly weaker re-
sult than our Hyperreal von Neumann-Morgenstern Theorem. In particular, Skala's
(1974) representation theorem [19, Theorem 9] only works in one direction. More
importantly, general weighted sums of pure outcomes as considered in the Hyperreal
Expected Utility Theorem, are even unde�ned in the mean groupoid setting.
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3. Application to Pascal's Wager
If x1, . . . , xm ∈ ∗Rn, then the convex hull of x1, . . . , xm over ∗R is the set{

m∑

i=1

pixi : p1, . . . , pm ∈ ∗[0, 1],
m∑

i=1

pi = 1

}
,

and the convex hull of {x1, . . . , xm} over R is de�ned as{
m∑

i=1

pixi :
m∑

i=1

pi = 1, p1, . . . , pm ∈ [0, 1]

}
.

Corollary 1. Let x1, . . . , xm ∈ ∗Rn, let V and Y be the convex hulls of x1, . . . , xm

over R and ∗R, respectively, and let ¹ be an internal binary relation ⊆ Y × Y
that satis�es the axioms of Completeness, Transitivity, In�nitesimal Continuity
and Independence (cf. Theorem 1). Then, the restriction of ¹ to V is transitive,
complete and independent. Furthermore, there are f1, . . . , fm ∈ ∗R such that

m∑

i=1

pixi ¹
m∑

i=1

qixi ⇐⇒
m∑

i=1

pifi ≤
m∑

i=1

qifi(2)

whenever p1, q1, . . . , pm, qm ∈ ∗[0, 1] with
∑m

i=1 pi = 1 and
∑m

i=1 qi = 1.
If, moreover, x1 Â x2 ∼ · · · ∼ xm

16, then f2 = · · · = fm can be any hyperreal
and f1 can be any hyperreal > f2 (e.g. f1 positive in�nite, f2 = · · · = fm = 1).
Proof of Corollary 1. By Theorem 3 there are f1 = u1, . . . , fm = um ∈ ∗R such
that the equivalence statement (2) holds. If x1 Â x2 ∼ · · · ∼ xm, then f1 > f2 =
· · · = fm. Since the numbers 〈u1, . . . , um〉 in Theorem 3 is only unique up to a�ne
transformations, f2 = · · · = fm can indeed be any given hyperreal and f1 can be
any hyperreal > f2. ¤

Let us now apply the Corollary 1 to Pascal's Wager. n = 2 and m = 4. Let
x1 = 〈1, 1〉 represent the pure outcome where the Christian God exists and the
Wagerer opts for wagering for God, let x2 = 〈0, 1〉 represent the pure outcome
where the Wagerer chooses to wager for the Christian God, although He does not
exist, let x3 = 〈1, 0〉 represent the pure outcome where the Wagerer wagers against
the Christian God, whilst He does exist, and let x4 = 〈0, 0〉 be the pure outcome
where the Christian God does not exist and the Wagerer also wagers against His
existence.

Let us now rephrase Corollary 1 in non-technical terms: Whenever the Wagerer's
preference relation is

• transitive
• complete (on the space of lotteries with hyperreal chances),
• una�ected by in�nitesimal perturbations (In�nitesimal Continuity),
• una�ected by mixing with other lotteries (Independence), and
• internal, e.g. de�nable through standard functions with hyperreal parame-

ters,
there are cardinal utilities {f1, . . . , f4} associated with the four pure outcomes
x1, . . . , x4, and for any two lotteries

∑4
i=1 pixi and

∑4
i=1 qixi, the �rst lottery is

not preferred over the �rst if and only if the expected utility from the �rst lottery
(
∑4

i=1 pifi) is less than or equal to the expected utility from the second lottery
(
∑4

i=1 qifi). If we interpret the assumptions on the Wagerer's preference relation
as rationality axioms, then we obtain indeed that reason demands the maximisation
of expected utility.

16We write x ∼ y if both x ¹ y and y ¹ x.
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In particular, the vector
〈p̄, q̄〉 = 〈p̄, p̄q̄〉+〈0, q̄−p̄q̄〉 = p̄ (q̄〈1, 1〉+ (1− q̄)〈1, 0〉)+(1−p̄) (q̄〈0, 1〉+ (1− q̄)〈0, 0〉)
is the lottery described in Subsection 1.2, where p̄ is the subjective probability for
the existence of the Christian God and q̄ is the probability that the Wagerer chooses
to wager for Him. Hence, if

• p̄ > 0 is non-in�nitesimal,
• 1− q̄ > 0 is non-in�nitesimal,
• f1 is a positive in�nite hyperreal, and
• f2, f3, f4 are �nite,

then for all q̄ ∈ ∗[0, 1),
(3) p̄ (q̄f1 + (1− q̄)f3) + (1− p̄) (q̄f2 + (1− q̄)f4)︸ ︷︷ ︸

=p̄q̄f1+p̄(1−q̄)f3+(1−p̄)(q̄f2+(1−q̄)f4)

< p̄f1 + (1− p̄)f2,

which is equivalent to 〈p̄, q̄〉 ≺ 〈p̄, 1〉 by equivalence statement (2) of Corollary 1,
and hence wagering for God with probability 1 is strictly preferable compared to
wagering for God with probability q̄ < 1.

Before we consider the special case where f2 = f3 = f4, let us note the following
points about the use of hyperreals in formalising Pascal's Wager:

• The axiom of Completeness requires the preference relation to be de�ned
between lotteries with hyperreal (including in�nitesimal) chances for each
of the pure outcomes (e.g. the event that the Wagerer wagers for God and
the existence of God). This has no consequences whatsoever for the Wa-
gerer's subjective probability for the existence of God; it does by no means
imply that the Wagerer assigns a non-real or even in�nitesimal probabil-
ity to the existence of the Christian God (which would contradict Premise
1). In applying the Hyperreal Expected Utility Theorem to the Pascalian
Wagerer, we merely require him to have a preference realation that is de-
�ned over lotteries with hyperreal � including in�nitesimal � subjective
probabilities for the existence of God and for the event that the Wagerer
actually wagers for Him.

• Corollary 1 is a consequence of the Hyperreal von Neumann-Morgenstern
Theorem and hence ultimately of the classical Expected Utility Theorem
of von Neumann and Morgenstern. Therefore, the �arbitrariness� of mod-
elling f1 = I, the subjective utility of salvation of a given human individual,
by some particular in�nite hyperreal (an objection of Hájek 2003 [5] and
Bartha 2007 [1] against the use of hyperreals as values for I) is due to the
fact that von Neumann-Morgenstern utility functions are only unique up
to a positive factor (and a shift by an additive scalar). Hence, this �arbi-
trariness� merely re�ects a typical property of decision-theoretic cardinal
utility functions.

If, as in the second part of the Corollary, f2 = f3 = f4 = 1 and f1 is a positive
in�nite hyperreal I, then the right-hand side of inequality (3), which is the utility
of 〈p̄, q̄〉, can be simpli�ed to
p̄ (q̄I + 1− q̄)+(1−p̄) (q̄ + 1− q̄) = p̄q̄I+p̄(1−q̄)+1−p̄ = p̄q̄I+1−p̄q̄ = p̄q̄(I−1)+1.

Hence, for all p̄, p̄′, q̄, q̄′ ∈ [0, 1], one has
〈p̄, q̄〉 ¹ 〈p̄′, q̄′〉 ⇔ p̄q̄ ≤ p̄′q̄′.

Interestingly, this equivalence is even true if the convex combinations of utilities
are computed not in ∗R, but in SRA-IM := R ∪ {rI : r ∈ (0, 1]} (see Equation (6)
below and the discussion surrounding it). For, in SRA-IM, the the right-hand side



12 HYPERREAL EXPECTED UTILITIES AND PASCAL'S WAGER

of inequality (3) (i.e. the utility of 〈p̄, q̄〉) can be simpli�ed, for all p̄, p̄′, q̄, q̄′ ∈ [0, 1]
to

p̄ (q̄I + 1− q̄) + (1− p̄) (q̄ + 1− q̄) = p̄q̄I + 1− p̄ = p̄q̄I.

Therefore, if f2 = f3 = f4 = 1 and f1 is a positive in�nite hyperreal I and the
Wagerer's preference ordering ¹ satis�es the hypotheses of Corollary 1, then ¹ can
be represented through an SRA-IM-valued utility function.

Note, however, that the maximum of SRA-IM is both re�exive under addition and
strictly irre�exive under multiplication. Hence, if f2 = f3 = f4, one can respond,
based on the Corollary, to both McClennen's objection and Hájek's dilemma by
using a single-valued utility function, viz. a utility function with values in SRA-IM.

The philosophical interpretation of the equality f2 = f3 = f4 is, of course, that
the Wagerer is indi�erent among all pure outcomes except salvation. It can be
decomposed into the following two theological propositions:

(1) Separation from God as judgement for non-believers: f3 = f4 holds if the
Wagerer believes that the Christian God would not punish those who choose
not to have fellowship with Him, but simply �leaves them alone�, i.e. as
well-o� (viz. f3) as they were if there was no God (f4).

(2) Utility-neutral sancti�cation: f2 = f4 holds if the Wagerer assumes that he
does not have to make any sacri�ces for his faith on earth that would reduce
his overall utility. Any sacri�ces that he makes will, at least in the long
run, result in an o�setting increase in utility, even without special divine
intervention. If God does not exist and he wagers for Him nevertheless, he
is just as well-o� (viz. f2) as he would be if he decides otherwise (f4).

4. Resolving Hájek's dilemma
4.1. Re�exivity under Addition and Pascal's soteriology. In Subsection 1.3,
we mentioned that Hájek (2003) [5] reads Pascal as assuming that the reward of
salvation, I, is re�exive under addition, i.e. it does not change when a positive
utility is added onto it:

∀x ∈ R x+ I = I

(which may also be read as a de�nition of addition of reals onto I).
As an example, consider the most simple contemporary formalisation of Pascal's

Wager � where the Wagerer's utility function takes values in the set of the extended
real numbers R ∪ {±∞} with their natural ordering. The utility of salvation is
I = +∞. Recalling the convention that x + ∞ = +∞ for every x ∈ R, the
condition of Re�exivity under Addition is clearly satis�ed.

It should be noted at this point that there are good theological reasons not to
interpret Pascal's Pensée 233 as stating that I should be re�exive under addition.17
This would then particularly favour a model of the wager where I is a hyperreal or
surreal number.

17For, re�exivity under addition directly contradicts a major and widely-held thesis in Biblical
soteriology (in particular in Roman Catholicism, but by far not limited to it), viz. the belief that
there is some hierarchy in Heaven: Not all of those who are saved will a priori receive the same
reward at Judgement Day. In particular, it might be possible that Pascal himself shared that
opinion: In Appendix A.2 we shall argue that Pascal seems to accept the soteriological claims of
the New Testament in their literal meaning. These speak plainly about a hierarchy in Heaven, and
hence of a non-trivial ordering of the utility associated with salvation. (Moreover, a distinctive
of Jansenist doctrine of justi�cation is salvation by grace alone and, at the same time, a hidden
judgment.) Prior to these deliberations, in Appendix A.1, we shall reconsider Hájek's argument
that Pascal viewed the utility of the saved as re�exive under addition and discuss some of the
questions that it raises.
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That said, Hájek's interpretation of Pensée 233 is su�ciently convincing, and it
seems best to simply accept the tension between that passage and other aspects of
Pascalian theology.

4.2. Irre�exivity under Multiplication. In our presentation of Pascal's Wager
(see Subsection 1.2), the Wagerer is allowed to adopt mixed strategies: The Wagerer
may base his decision to wager for or against God on some random event of non-
in�nitesimal probability q > 0 (e.g. through dicing, tossing coins etc.). Such a
strategy will be called mixed strategy of chance q.

In order to apply Premise 2 in that setting, the Pascalian must prove that the
expected utility of any mixed strategy of chance q < 1 is less than the the expected
utility of outright wagering for God (the �mixed strategy� of chance 1). As we will
see, this is only possible if one has

∀q ∈ (0, 1) qI < I,

an axiom called (Strict) Irre�exivity under Multiplication.
For, suppose there existed some q < 1 such that qI = I, and consider a mixed

strategy of chance q. Then the conditional expected utility, conditioned with respect
to God's existence, of the mixed strategy would be qI + (1− q)f3 = I + (1− q)f3.
If f3 is non-negative, this would be at least as much as I, the conditional expected
utility associated with outright wagering for God. Hence, if there was some q < 1
such that qI = I, then the expected utility of the mixed strategy of chance q would
always be at least as much as expected utility of outright wagering for God. (This
may be termed a co-optimal mixed strategy. If such a strategy exists, �ipping some
biased coin about whether to wager for or against God maximises utility equally
well as faith proper.)

This reasoning in favour of (Strict) Irre�exivity under Multiplication is due to
Du� (1986) [3] and has been reiterated by Hájek [5] as well as Bartha (2007) [1]; it
must be taken into account by every formalisation of the Wager which allows the
Wagerer to adopt a mixed strategy.

As Hájek (2003) [5] and Bartha (2007) [1] noted, any formalisation of the Wager
where I is a hyperreal or surreal number automatically satis�es Strict Irre�exivity
under Multiplication (and hence is not susceptible to the reasoning above). We
shall not replicate Hájek's argument here, since it appears to tacitly assume that
f2 > f4. Instead, we give a new proof. Recall, for this sake, that whenever J is a
surreal or hyperreal number the implication
(4) J in�nite⇒ ∀r À 0 rJ in�nite
(wherein, as before, a¿ b means that b− a is positive and non-in�nitesimal) holds
for all J . From here, we can readily deduce that regardless of the exact values
for f2, f3, f4 (provided they are �nite) mixed strategies always carry an in�nitely
lesser reward than outright wagering for God. Indeed, observe that choosing to
wager for God yields expected utility pI + (1 − p)f2, whilst choosing to Wager
for God with some probability q yields expected utility p (qI + (1− q)f3) + (1 −
p) (qf2 + (1− q)f4). The di�erence between the former and the latter value is
(5) p(1− q) (I − f3) + (1− p)(1− q) (f2 − f4) .

Now, whenever f2, f3, f4 are �nite and p À 0 as well as q ¿ 1, the �rst addend is
always positive in�nite (due to implication (4) applied to J = I−f3 and r = p(1−q))
whilst the second addend is �nite. Hence the di�erence in expected utility between
outright wagering for God and a mixed strategy is always positive, even in�nite.
Therefore, mixed strategies where the probability of wagering against God is non-
in�nitesimal always carry a lesser reward if I is some positive in�nite hyperreal or
surreal utility. Hence, Strict Irre�exivity under Multiplication holds whenever I is
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an in�nite hyperreal or surreal number. (Hájek's original argument tacitly assumed
that f2 > f4 and proved that the di�erence in expected utility between outright
wagering for God and a mixed strategy of chance q is strictly decreasing in q and
zero for q = 1, which proves that mixed strategies are suboptimal.)

However, neither hyperreals nor surreals are re�exive under addition in ∗R or
FIELD (the �eld of surreal numbers, i.e. the Dedekind completion of the �eld
generated by the ordinals), respectively. Thus, we have yet to show that there
exists a set S of utilities of the Wagerer in which the utility of salvation satis�es
both Re�exivity under Addition and Strict Irre�exivity under Multiplication.

This will be accomplished in Subsection 4.3: We will construct a convex linearly
ordered set S := SRA-IM containing the reals which does satisfy both Re�exiv-
ity under Addition and Strict Irre�exivity under Multiplication.18 Moreover, even
Premise 2 can be defended for SRA-IM-valued utility functions (as we saw in the
discussion of Corollary 1) under additional hypotheses on the Wagerer's soteriolog-
ical presuppositions. Hence, formalising Pascal's Wager through an SRA-IM-valued
utility function allows to respond to McClennen's (1994) [13] decision-theoretic
objection and Hájek's dilemma at the same time.

4.3. A model for S with Strict Irre�exivity under Multiplication and
Re�exivity under Addition for all in�nite utilities. We shall construct a
linearly-ordered set S ) R such that the maximum I ∈ S, the utility of salvation,
has the property of Irre�exivity under Multiplication and Re�exivity under Addi-
tion. Furthermore, taking convex combinations of elements of S will be de�ned in
a way that is consistent with the linear order on S. Taking convex combinations
with 0 will implicitly de�ne an operation of multiplication by elements of [0, 1],
furthermore it will de�ne an operation of addition for some pairs of elements of S.
These operations are, as we will see, associative as well as commutative and satisfy
the law of distributivity. Hence the set S de�ned in this Subsection is a rather
well-behaved model for the set of possible utilities of a Pascalian Wagerer.

Irre�exivity under Multiplication and Re�exivity under Addition for I imply, via
the law of distributivity (in the form q(x+ y) = qx+ qy for q ∈ (0, 1] and x, y ∈ S),
Re�exivity under Addition for qI. Indeed,

∀x ∈ R ∀q ∈ (0, 1] qx+ qI = q(x+ I) = qI,

hence (inserting x = y/q): y+qI = qI for all y ∈ R. Thus, qI ∈ S must be re�exive
under addition for all q ∈ (0, 1].

Hence a natural candidate for S is
(6) S := SRA-IM := R ∪ {qI : q ∈ (0, 1]} .
So, in addition to the maximal utility I := 1I, there is a continuum of other in�nite
utilities, each denoted by qI for some q ∈ (0, 1). (In all of this, R and its subintervals
may be replaced by ∗R. This would allow to consider nonstandard probabilities as
well.)

In order to develop decision theory under risk with this set of utilities, we need
to be able to form convex combinations of elements of S. For x, y ∈ R ⊂ S, convex
combinations shall be de�ned in the ordinary way. For x ∈ R, q ∈ (0, 1] and
r ∈ [0, 1], we de�ne

(1− r)x+ r(qI) = (rq)I

18In Appendix B, we construct another linearly ordered superset of the reals which satis�es
Re�exivity under Addition and Strict Irre�exivity under Multiplication, but the ordering is incon-
sistent with mixing the utilities of mixed strategies. Also, it is not clear how to defend Premise 2
when S is the set constructed in Appendix B.
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(with the convention�typical for probability theory�that 0I = 0), in line with
associativity of multiplication and Re�exivity under Addition for (rq)I. Finally,
for q, q′ ∈ (0, 1] and r ∈ [0, 1] we set

(1− r)qI + r(q′I) = ((1− r)q + rq′) I.

This implicitly de�nes addition for some pairs of elements in S (viz. for those
〈x, y〉 ∈ S2 where x ∈ R or y ∈ R or 〈x, y〉 = 〈qI, q′I〉 wherein q + q′ ∈ [0, 1] with
q+ q′ = 1) is not closed under addition, e.g. I + I is unde�ned), and it also de�nes
multiplication by elements of [0, 1] (simply take y = 0 as the second element of a
convex combination). It is an easy exercise to check that the law of distributivity
holds, and that both multiplication by elements of [0, 1] and addition are associative
as well as commutative.

Moreover, one can extend the linear order < on the reals to S by setting
∀q ∈ (0, 1] ∀x ∈ R qI > x

(thus making each qI in�nite and hence S non-Archimedean) and
qI < rI ⇔ q < r

for all q, r ∈ (0, 1].
The strict ordering < is preserved by multiplication by elements of (0, 1], i.e.

∀x, y ∈ S ∀r ∈ (0, 1] x < y ⇒ rx < ry

and the weak ordering ≤ is preserved by addition:
∀x, y, z ∈ S x < y ⇒ x+ z ≤ y + z.

(Note that if x < y are reals, then x + qI = qI = y + qI, hence addition by qI,
for any q ∈ (0, 1] does not preserve the strict ordering.) The strict ordering < is
preserved, however, by adding a real.

These observations yield that forming convex combinations is consistent with
the strict ordering <:

∀x, y ∈ S ∀r ∈ (0, 1) x < y ⇒ x < rx+ (1− r)y < y.

(One can easily prove this directly as well: The right-hand side obviously holds
whenever x, y ∈ R or both x = qI and y = q′I for some q, q′ ∈ (0, 1]. It also holds
whenever x ∈ R and y = qI for some q, q′ ∈ (0, 1], since then rx+(1−r)y = (1−r)qI
is in�nite, but dominated by y = qI.)

Finally, mixed strategies do not yield optimal utility in this setting: The expected
utility of wagering for God with probability q ∈ (0, 1) equals p (qI + (1− q)f3) +
(1− p) (qf2 + (1− q)f4) whilst the expected utility of outright wagering for God is
pI + (1 − p)f2, and, as we see from expression (5), the di�erence between the two
expected utilities is

(1− q) (p (I − f3) + (1− p) (f2 − f4)) .

Recalling that f2, f3, f4 are �nite and in light of the Re�exivity under Addition for
I and pI, we obtain that the expected utility of wagering for God with probability
q ∈ (0, 1) is (1− q)pI, which is strictly less than I.

5. Conclusion
We have shown that the concept of hyperreal expected utility has a sound

decision-theoretic basis: Under some natural conditions on the preference order-
ings, expected hyperreal-valued utility functions on convex sets represent prefer-
ence orderings among lotteries based on a �nite set of pure outcomes and hyperreal
probabilities.
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This is good news for the Pascalian since Pascal's Wager � and most of its
generalisations, such as the many-gods wagers studied by Bartha (2007) [1] �,
only allow a �nite number of pure outcomes. In the original Wager, there are just
four pure outcomes: the Wagerer believes in God and God exists, or he does not
wager for Him, although He exists, or he does wager for Him, whilst He does not
exist, or he does not wager for Him, nor does He exist.

Therefore, a formalisation of Pascal's argument by means of hyperreals is con-
sistent with a decision theory that incorporates nonstandard probabilities, whilst
every internal (nonstandard) probability measure canonically induces a standard
real-valued probability measure. (In particular, if one composes a nonstandard
probability measure on a �nite set with the standard part map19, one obtains a
standard probability measure on that �nite set20).

The Hyperreal Expected Utility Theorem (Theorem 3) provides a general
decision-theoretic justi�cation of hyperreal-valued expected utility functions. Thus,
one may now consider, in the spririt of Bartha's conclusion (�Beyond Pascal's Wa-
ger� [1, p. 39-41]), the use of hyperreal stochastic utilities in other situations where
either an in�nite good is at stake, or where intolerable outcomes should be avoided,
or where both Kantian and utilitarian deliberations seem to have their point.

In addition, we have constructed a convex linearly ordered superset S of the reals
which has a maximum that is both re�exive under addition by �nite numbers and
strictly irre�exive under multiplication by scalars < 1, thereby proposing a way out
of Hájek's dilemma

Moreover, if one assumes that the Wagerer is indi�erent among all pure outcomes
except salvation (f2 = f3 = f4 in the notation of the Wagerer's payo� matrix),
which e.g. follows from all those theological systems (nota bene, on the Wagerer's
part) where judgment just means separation from God and where sancti�cation is
utility-neutral, a corollary of the Hyperreal Expected Utility Theorem (Theorem 3)
shows that the preference ordering can be represented by a utility function whose
range is contained in the aforementioned convex linearly ordered set S.

Summing up, we have determined under which hypotheses one can simulta-
neously refute two major arguments against Pascal's Wager, viz. McClennen's
decision-theoretic objection and Hájek's dilemma, through a formalisation with a
single-valued utility function whose range is a certain subset S of the hyperreals:
Aside from technicalities, one has to impose the assuption of f2 = f3 = f4 (in the
notation of the Wagerer's payo� matrix above), which can be upheld if the Wa-
gerer views sancti�cation as utility-neutral and believes that the Christian God, if
He exists, will judge non-believers by �mere� separation from Him.

19Let r be a hyperreal number such that r is S-bounded, i.e. there exists some standard
natural number N ∈ N with −N ≤ r ≤ N . Then, due to the Hausdor� property of the order
topology on R, there exists a unique real number s, which minimises |r− s| among all s ∈ R. This
s is then denoted ◦r and referred to as the standard part of r. The function st : r 7→ ◦r is called
the standard part map.

20This is just a special case of a general construction: Any internal probability function can
be extended to a (σ-additive) probability measure with standard values, as was shown by Loeb
[11]. Almost all contributions to probability theory using nonstandard methods rely on this basic
result of Loeb.
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Appendix A. Reflexivity under Addition
vs. Soterical Differentiation

A.1. Pascal on Re�exivity under Addition. As was mentioned in the Intro-
duction, Hájek suggests that Pascal would have required I, the utility associated
with salvation, to be re�exive under addition (and we have already indicated our
disagreement with that statement):

(7) ∀x ∈ R>0 x+ I = I

(and thereby, by adding y = −x to both sides of the equation, even y + I = I for
all y ∈ R<0, hence y + I = I for every real y).

At �rst glance, Hájek's interpretation of Pascal as assuming the Re�exivity under
Addition is convincing. First, Re�exivity under Addition seems to express that
�Nothing could be better for you than your salvation� (Bartha). Moreover, Pascal
writes in the preface to the Wager [Pensée 233]:

Unity joined to in�nity adds nothing to it, no more than one foot
to an in�nite measure. The �nite is annihilated in the presence of
the in�nite, and becomes a pure nothing. [...]

The �rst sentence of this passage seems to support the axiom of Re�exitivity
under Addition (7). The second sentence, however, explicates that a �nite num-
ber is nothing in the presence of�in other words: compared to�an in�nite value
(italicisation of the author).

If we view this second sentence as an explanation of the �rst one, then we are
not forced to adopt the assumption of Re�exitivity under Addition.

Rather, we could postulate that S, the set of possible utilities of the Pascalian
Wagerer, is a convex subset of an ordered �eld21 and satis�es for all I in some
nonempty proper subset Σ ( S the following estimate:

(8) ∀x ∈ R>0 ∀n ∈ N 0 <
x

I
<

1
n
.

In words, this means that for all x ∈ R>0 and I ∈ Σ, x
I is a positive in�nitesimal.

We may assume that the set Σ has been chosen as the maximal subset of S with
the property that all elements I ∈ Σ satisfy estimate (8).

Note that in this formalisation, Hájek's axiom of I being an Overriding Utility
[5], holds�provided we model the utilities of the saved by elements of Σ and the
values f2, f3, f4 (as de�ned in the Wagerer's payo� matrix in Premise (1)) by S \Σ.
For, in order for someone to have an in�nite level of utility in this model, she must
wager for God.

In particular, the axiom (8) is satis�ed if
• S is the ordered �eld of hyperreal numbers and Σ the subset of positive

in�nite hyperreals, or
• S is the ordered �eld of surreal numbers and Σ the subset of positive in�nite

surreal numbers.
In both of these ordered �elds, `�nite' means being bounded by some n ∈ N.

21An ordered �eld Q is a �eld on which a linear order is de�ned, in such a way that addition
of any element of the �eld preserves the order relation between two elements, and so does multi-
plication by positive elements. A subset A ⊆ Q is called convex if and only if for all x, y ∈ A and
every p ∈ Q with 0Q <Q p <Q 1Q, one has p ×Q x +Q

ą
1Q −Q p

ć ×Q y ∈ A. One is inclined to
demand the convexity of the set of possible utilities of the Wagerer in order to allow for mixed
strategies.
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A.2. Pascal and Soterical Di�erentiation. Up to now, we have only argued
that Pascal need not be read as supporting the axiom of Re�exivity under Addition.
But can he be interpreted as subscribing to the principle that the Wagerer's utility
should have multiple levels of in�nite utility in its range (Soterical Di�erentiation)?

It is di�cult to argue directly in favour of this. Given the apologetic nature of
most of his writings, Pascal has written next to nothing on eschatology (not even in
the Prophecies section, Section XI, of the Pensées), and his soteriological comments
are mainly concerned with matters of justi�cation and salvation, in particular the
doctrine of grace and predestination. Also, neither Cornelius Jansen, the founder
of the Roman Catholic sect Pascal belonged to�nor Augustine, the church father
whose soteriology greatly in�uenced Pascal and Jansen, seem to have published
anything that would either favour or contradict Soterical Di�erentiation.

It is important to note at this point that Pascal's and Jansenism's emphasis on a
justi�cation by grace through faith (quite as the protestant sola gratia), as opposed
to works, cannot be seen as an argument against Soterical Di�erentiation. With
the same right that God proves Himself gracious to some and not to others, He
may as well reward some of the saved more and some less.

Strictly speaking, we can therefore only speculate what Pascal's views regarding
Soterical Di�erentiation might have been like. However, Pascal had a very high
appreciation of Scripture, even of what he terms �obscure passages�. For instance,
in Pensée 575, he writes the following (which itself consists half of indirect Scripture
quotations)

All things work together for good to the elect [cf. Romans 8,28],
even the obscurities of Scripture; for they honour them because of
what is divinely clear. And all things work together for evil to the
rest of the world, even what is clear; for they revile such, because
of the obscurities which they do not understand [cf. 2nd Peter
3,16].

(Comments of the author in squared parentheses.) Similarly, in Pensées 568, 579 as
well as 889 (�the true guardians of the Divine Word have preserved it unchangeably�)
he defends the divine inspiration of the whole of Scripture; he goes even further
to claim, quoting Augustine that �He who will give the meaning of Scripture, and
does not take it from Scripture, is an enemy of Scripture� [Pensée 900].

However, the New Testament plainly and multiply mentions a hierarchy in
Heaven. For intance, in the �rst paragraphs of the Sermon on the Mount, Jesus
says:

Whosoever therefore shall break one of these least commandments,
and shall teach men so, he shall be called the least in the kingdom
of heaven: but whosoever shall do and teach them, the same shall
be called great in the kingdom of heaven. [Matthew 5,19 (King
James Version)]

In the same Gospel, Jesus teaches as follows:
Verily I say unto you, Among them that are born of women there
hath not risen a greater than John the Baptist: notwithstanding he
that is least in the kingdom of heaven is greater than he. [Matthew
11,11 (King James Version)]

What is translated as �least� in the New International Version or the King James
Version, would be âl�xistoc (the elative or superlative of mikrìc) and mikrìteroc
(comparative of mikrìc), respectively in the original Greek New Testament sources,
clearly suggesting that there is a hierarchy in Heaven. Outside the Gospel of
Matthew, Soterical Di�erentiation can be found in the book of Revelation:
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And I saw thrones, and they sat upon them, and judgment was
given unto them: and I saw the souls of them that were beheaded
for the witness of Jesus, and for the word of God, and which had
not worshipped the beast, neither his image, neither had received
his mark upon their foreheads, or in their hands; and they lived
and reigned with Christ a thousand years. [Revelation 20,4 (King
James Version)]

This means that the Millennium � i.e. Christ's �rst reign on earth � will see a
proper subset of the faithful sharing power with Him. Note that there is agreement
on these verses among all major textual witnesses and early translations (cf. the
critical apparatus of Nestle-Aland's Novum Testamentum Graece, 27th rev. ed.).

Given that central passages of the New Testament mention a hierarchy in Heaven,
it is reasonable to assume that Pascal would have approved of the idea of Soterical
Di�erentiation.

It should be noted that under the Jansenist or Augustinian idea of predestination,
which Pascal subscribed to, �not only are the reasons for the judgment hidden
(which the Calvinists admit), but the judgment itself is also� (cf. Miel [14, p.
105-106]) and therefore, the believers should �work out [their] salvation with fear
and trembling� (Miel [14, p. 105] citing Philippians 2,12). Consequently (and
this is even consistent with Calvinism), humans may not know how much exactly,
compared to other saved ones, they will be rewarded in Heaven�all one can say is,
that, in case of salvation, it has to be an in�nite value compared with any earthly
utility.
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Appendix B. An alternative way of resolving Hájek's dilemma
In this Appendix, we construct a model for S where only the maximum satis-

�es Re�exivity under Addition. However, this model for S is not covered by the
Corollary 1, whence it is susceptible to McClennen's objection.

Let S, the set of possible utilities of a Pascalian Wagerer, be de�ned as
S = {〈1, 0〉} ∪ [0, 1)× R,

i.e. the union of the singleton {〈1, 0〉} with the set of all pairs of real numbers
where the �rst entry is ≥ 0 and < 1. (Here and in the following, R and its various
subintervals could again be replaced by any real-ordered �eld, thus allowing, for
instance, for nonstandard probabilities.)

The �rst coordinate should be seen as representing `heavenly utility' and the
second coordinate `earthly utility� . In the payo� matrix of the Wager, f2, f3, f4 ∈
{0} ×R and I = 〈1, 0〉. The utility I = 〈1, 0〉 might be interpreted as the utility of
someone who heeded Pascal's advice and �wager[ed for God] without hesitation�,
thus not considering mixed strategies.

Let the total order < on S be just the lexicographic ordering:
∀ 〈x1, y1〉 , 〈x2, y2〉 ∈ S 〈x1, y1〉 < 〈x2, y2〉 ⇐⇒ x1 < x2 ∨ (x1 = x2 ∧ y1 < y2) .

Hence, 〈1, 0〉 is the strict maximum of S:
∀ 〈x, y〉 ∈ [0, 1)× R 〈x, y〉 < 〈1, 0〉.

Let the operation of addition in S be de�ned as follows:
∀ 〈x1, y1〉 , 〈x2, y2〉 ∈ [0, 1)× R 〈x1, y1〉+ 〈x2, y2〉 = 〈max {x1, x2} , y1 + y2〉

and
∀ 〈x, y〉 ∈ S 〈x, y〉+ 〈1, 0〉 = 〈1, 0〉+ 〈x, y〉 = 〈1, 0〉.

In particular, I = 〈1, 0〉 is re�exive under addition. Multiplication by elements of
[0, 1] will be de�ned as the ordinary multiplication on R2:

∀ 〈x, y〉 ∈ S p 〈x, y〉 = 〈px, py〉.
Hence, I = 〈1, 0〉 meets the requirement of Irre�exivity under Multiplication

∀p < 1 p〈1, 0〉 = 〈0, p〉 < 〈1, 0〉.
This entails that both S and the proper subset [0, 1) × R of S are closed under
addition as well as under multiplication by elements of [0, 1].

Having constructed S and observed that in this setting, the utility of salvation,
I, is both re�exive under addition and irre�exive under multiplication, we close
with the following remarks:

(1) Albeit exhibiting some resemblances to the set of vector-valued utilities
considered by Hájek [5, Subsection 4.2, pp. 39-41], it is di�erent in that S
contains just one value with maximal `heavenly utility', viz. I, the maxi-
mum of S itself.

(2) Adding up the overall utility of one individual with the utility of another
one, does not make much sense if salvation is at stake. This is re�ected by
the ordering on S being inconsistent with addition: For, if x3 ≥ x2 > x1

but y2 < y1, then both 〈x1, y1〉 < 〈x2, y2〉 and
〈x1, y1〉+ 〈x3, y3〉 > 〈x2, y2〉+ 〈x3, y3〉 .

For, the left hand side in the inequality then equals 〈x3, y1 + y3〉 and the
right hand side equals 〈x3, y2 + y3〉. Also, the ordering is obviously inconsis-
tent with mixing the utilities of mixed strategies, i.e. elements of (0, 1)×R:
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If p ∈ (0, 1) and 〈x1, y1〉 < 〈x2, y2〉 are elements of (0, 1)× R, then we will
have

〈x1, y1〉 > p 〈x1, y1〉+ (1− p) 〈x2, y2〉
whenever (1 − p)x2 < x1. Hence, in order to estimate the utility of a
strategy that uses multiple random experiments, one must �rst compute
the overall probability that the Wagerer will, at the very end, Wager for
God.

(3) This, however, will lead to no further inconsistencies: The ordering is con-
sistent with mixing pure strategies: If p ∈ (0, 1) and 〈x1, y1〉 < 〈x2, y2〉 are
elements of {0}×R∪{〈1, 0〉} (since {0}×R is the set of utilities associated
with wagering against God), then

〈x1, y1〉 < p 〈x1, y1〉+ (1− p) 〈x2, y2〉 .
(4) Mixed strategies no longer yield maximal utility: The utility of wagering

for God with probability q is
p (q〈1, 0〉+ (1− q) 〈0, yf3〉) + (1− p) (q 〈0, yf2〉+ (1− q) 〈0, yf4〉) ,
wherein 〈0, yfi

〉 = fi for i ∈ {2, 3, 4}. This can be reduced to
〈pq, p(1− q)yf3〉+ 〈0, (1− p)qyf2 + (1− p)(1− q)yf4〉

which equals
〈pq, p(1− q) (yf3) + (1− p)qyf2 + (1− p)(1− q)yf4〉 < 〈1, 0〉 = I.

So, I is re�exive under addition, and mixed strategies are suboptimal.
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