More ZFC inequalities between cardinal invariants

Vera Fischer

University of Vienna

August 2018

Outline

- **1** Eventual difference and $\mathfrak{a}_e(\kappa)$, $\mathfrak{a}_p(\kappa)$, $\mathfrak{a}_g(\kappa)$;
- Generalized Unsplitting and Domination;
- On some (consistency) results regarding generalized (un-)boundedness and splitting;

Eventual Difference

Almost disjointness

 $\mathfrak{a}(\kappa)$ is the min size of a max almost disjoint $\mathscr{A}\subseteq [\kappa]^{\kappa}$ of size $\geq \kappa$

Relatives

- $\mathfrak{a}_e(\kappa)$ is the min size of max, eventually different family $\mathscr{F} \subseteq {}^{\kappa}\kappa$,
- $\mathfrak{a}_p(\kappa)$ is the min size of a max, eventually different family $\mathscr{F} \subseteq S(\kappa) := \{ f \in {}^{\kappa}\kappa : f \text{ is bijective} \},$
- $\mathfrak{a}_q(\kappa)$ is the min size of a max, almost disjoint subgroup of $S(\kappa)$.

Roitman Problem

Is it consistent that $\mathfrak{d} < \mathfrak{a}$?

- Yes, if $x_1 < \mathfrak{d}$ (Shelah's template construction).
- Open, if $\aleph_1 = \mathfrak{d}$.

Is it consistent that $\mathfrak{d} = \aleph_1 < \mathfrak{a}_q$?

Roitman for Cofinitary Groups

Hrusak, Steprans, Zhang

Given a cofinitary group $\mathscr G$ of cardinality $\leq \omega_1$, there is an ${}^\omega\omega$ -bounding proper poset which adjoins a generic permutation g such that $\langle \mathscr G \cup \{g\} \rangle$ is cofinitary. Additionally the poset has weak diagonalization. Thus consistently $\mathfrak d = \aleph_1 < \mathfrak a_g = \aleph_2$.

One of the major differences between $\mathfrak a$ and its relatives, is their relation to $\mathfrak{non}(\mathscr{M})$.

- While \mathfrak{a} and $\mathfrak{non}(\mathcal{M})$ are independent, we have
- $non(\mathcal{M}) \leq a_e, a_p, a_q$ (Brendle, Spinas, Zhang),

Theorem

Let κ be regular uncountable. Then

- (Blass, Hyttinen, Zhang) $\mathfrak{b}(\kappa) \leq \mathfrak{a}(\kappa), \mathfrak{a}_e(\kappa), \mathfrak{a}_p(\kappa), \mathfrak{a}_q(\kappa);$
- (Hyttinen) Let $\mathfrak{nm}(\kappa)$ be the least size of a family $\mathscr{F} \subseteq {}^{\kappa}\kappa$ such that $\forall g \in {}^{\kappa}\kappa \exists f \in \mathscr{F}$ with $|\{\alpha \in \kappa : f(\alpha) = g(\alpha)\}| = \kappa$. Whenever κ is a successor, we have $\mathfrak{mn}(\kappa) = \mathfrak{b}(\kappa)$.

What we still do not know...

Even though $Con(\mathfrak{a} < \mathfrak{a}_g)$, both

- the consistency of $a_q < a$, as well as
- the inequality $a \leq a_a$ (in ZFC)

are open.

Roitman in the Uncountable

Theorem (Blass, Hyttinen and Zhang)

Let $\kappa \geq \aleph_1$ be regular uncountable. Then

$$\mathfrak{d}(\kappa) = \kappa^+ \Rightarrow \mathfrak{a}(\kappa) = \kappa^+.$$

The cofinitary groups analogue

Clearly, the result does not have a cofinitary group analogue for $\kappa=\aleph_0$, since $\mathfrak{d}=\aleph_1<\mathfrak{a}_g=\mathfrak{a}_g(\aleph_0)=\aleph_2$ is consistent. Nevertheless the question remains of interest for uncountable κ : Is it consistent that

$$\mathfrak{d}(\kappa) = \kappa^+ \Rightarrow \mathfrak{a}_{\sigma}(\kappa) = \kappa^+$$
?

Club unboundedness

Theorem (Raghavan, Shelah)

Let κ be regular uncountable. Then $\mathfrak{b}(\kappa) = \kappa^+ \Rightarrow \mathfrak{a}(\kappa) = \kappa^+$.

Club unboundedness

- Let κ be regular uncountable. For $f, g \in {}^{\kappa}\kappa$ we say that $f \leq_{cl} g$ iff $\{\alpha < \kappa : g(\alpha) < f(\alpha)\}$ is non-stationary.
- ② $\mathscr{F} \subseteq {}^{\kappa}\kappa$ is \leq_{cl} -unbounded if $\neg \exists g \in {}^{\kappa}\kappa \forall f \in \mathscr{F}(f \leq_{cl} g)$.

Theorem (Cummings, Shelah)

If κ is regular uncountable then $\mathfrak{b}(\kappa) = \mathfrak{b}_{\mathbf{Cl}}(\kappa)$.

Higher eventually different analogues

Theorem(F., D. Soukup, 2018)

Suppose $\kappa = \lambda^+$ for some infinite λ and $\mathfrak{b}(\kappa) = \kappa^+$. Then $\mathfrak{a}_{g}(\kappa) = \mathfrak{a}_{p}(\kappa) = \kappa^+$. If in addition $2^{<\lambda} = \lambda$, then $\mathfrak{a}_{g}(\kappa) = \kappa^+$.

Remark

The case of $a_e(\kappa)$ has been considered earlier. The above is a strengthening of each of the following:

- $\mathfrak{d}(\kappa) = \kappa^+ \Rightarrow \mathfrak{a}_e(\kappa) = \kappa^+$ for κ successor (Blass, Hyttinen, Zhang)
- $\mathfrak{b}(\kappa) = \kappa^+ \Rightarrow \mathfrak{a}_e(\kappa) = \kappa^+$ proved by Hyttinen under additional assumptions.

Outline: $\mathfrak{b}(\kappa) = \kappa^+ \Rightarrow \mathfrak{a}_e(\kappa) = \kappa^+$

- Let $\{f_{\delta} : \delta < \kappa^+\}$ witness $\mathfrak{b}_{\mathbf{Cl}}(\kappa) = \kappa^+$.
- Fix bijections $e_{\delta}: \kappa \to \delta$ for $\kappa \le \delta < \kappa^+$ and $d_{\alpha}: \alpha \to \lambda$ for $\lambda < \alpha < \kappa$.
- Define $h_{\delta,\zeta} \in {}^{\kappa}\kappa$ for $\delta < \kappa^+$, $\zeta < \lambda$ by induction on $\delta < \kappa^+$:
- For $\mu < \kappa$, let $\mathbb{H}_{\delta}(\mu) = \{h_{\delta',\zeta'} : \delta' \in \operatorname{ran}(e_{\delta} \upharpoonright \mu), \zeta' \in \lambda\}$. Then $\mathbb{H}_{\delta}(\mu)$ and so $H_{\delta}(\mu) = \{h(\mu) : h \in \mathbb{H}_{\delta}(\mu)\}$ are of size $< \kappa$ and

$$f_{\delta}^{*}(\mu) = \max\{f_{\delta}(\mu), \min\{\alpha : |\alpha \setminus H_{\delta}(\mu)| = \lambda\}\}$$

is well-defined. Now, for each $\zeta < \lambda$, define $h_{\delta,\zeta}(\mu) := \beta$ where β is such that

$$d_{f^*_{\delta}(\mu)}[\beta \cap (f^*_{\delta}(\mu) \backslash H_{\delta}(\mu))]$$

is of order type ζ .

Claim: $\{h_{\delta,\zeta}\}_{\delta<\kappa^+,\zeta<\lambda}$ is κ -med.

• (κ -ed) Fix δ . If $\zeta < \zeta'$ then by definition for all $\mu < \kappa$, $h_{\delta,\zeta}(\mu) \neq h_{\delta,\zeta'}(\mu)$. Suppose $\delta' < \delta$ and $\zeta,\zeta' < \lambda$. If

$$\delta' \in \operatorname{ran}(e_{\delta} \upharpoonright \mu),$$

then $h_{\delta',\zeta'} \in \mathbb{H}_{\delta}(\mu)$ and so $h_{\delta',\zeta'}(\mu) \neq h_{\delta,\zeta}(\mu)$. Because e_{δ} is a bijection, there is μ' such that $\delta' \in \operatorname{ran}(e_{\delta} \upharpoonright \mu')$.

② (Maximality) Let $h \in {}^{\kappa}\kappa$ and $\delta < \kappa^+$ s.t. $S = \{\mu : h(\mu) < f_{\delta}(\mu)\}$ is stationary. There is stationary $S_0 \subseteq S$ such that

$$\Big(h(\mu)\in H_\delta(\mu) \text{ for all } \mu\in\mathcal{S}_0\Big) \text{ or } \Big(h(\mu)\notin H_\delta(\mu) \text{ for all } \mu\in\mathcal{S}_0\Big).$$

In either case, there are δ, ζ such that $h_{\delta,\zeta}(\mu) = h(\mu)$ for stationarily many $\mu \in S_0$.

Questions

- Is it true that $\mathfrak{b}(\kappa) = \kappa^+$ implies that $\mathfrak{a}_e(\kappa) = \mathfrak{a}_p(\kappa) = \kappa^+$ if κ is not a successor?
- Can we drop the requirement $2^{<\lambda} = \lambda$ from the proof of $\mathfrak{b}(\kappa) = \kappa^+ \Rightarrow \mathfrak{a}_{\sigma}(\kappa) = \kappa^+$?

Definition

Let κ be regular uncountable.

• A family $F \subseteq [\kappa]^{\kappa}$ is splitting if for every $B \in [\kappa]^{\kappa}$ there is $A \in F$ such that $|B \cap A| = |B \cap (\kappa \setminus A)| = \kappa$, i.e. A splits B. Then

$$\mathfrak{s}(\kappa) := \min\{|F| : F \text{ is splitting}\}.$$

• A family $F \subseteq [\kappa]^{\kappa}$ is unsplit if there is no $B \in [\kappa]^{\kappa}$ which splits every element of F. Then

$$\mathfrak{r}(\kappa) := \min\{|F| : F \text{ is unsplit }\}.$$

Theorem (Raghavan, Shelah)

Let κ be regular uncountable. Then $\mathfrak{s}(\kappa) \leq \mathfrak{b}(\kappa)$.

Thus splitting and unboundedness at κ behave very differently than splitting and unboundedness at ω , as it is well known that $\mathfrak s$ and $\mathfrak b$ are independent. However, of interest becomes the following question: Does the above inequality dualize? Is it true that for every regular uncountable κ , $\mathfrak d(\kappa) \leq \mathfrak v(\kappa)$?

Theorem (Raghavan, Shelah)

Let $\kappa \geq \beth_{\omega}$ be regular. Then $\mathfrak{d}(\kappa) \leq \mathfrak{r}(\kappa)$.

Club domination

Almost always the same

Theorem (Cummings, Shelah)

$$\mathfrak{d}(\kappa) = \mathfrak{d}_{\mathbf{Cl}}(\kappa)$$
 whenever $\kappa \geq \beth_{\omega}$ regular.

Outline: $\mathfrak{d}(\kappa) \leq \mathfrak{r}(\kappa)$ for $\kappa \geq \beth_{\omega}$ regular

- For κ be regular uncountable and $A \in [\kappa]^{\kappa}$, let $e_A : \kappa \to A$ be the order isomorphism from $\langle \kappa, \in \rangle$ to $\langle A, \in \rangle$, and $s_A : \kappa \to A$ be defined as follows: $s_A(\alpha) = \min(A \setminus (\alpha + 1))$
- Take unsplit $F \subseteq [\kappa]^{\kappa}$ of size $\mathfrak{r}(\kappa)$.
- If \exists club E_1 such that \forall club $E_2 \subseteq E_1$ there is $A \in F$ with $A \subseteq^* \bigcup_{\xi \in E_2} [\xi, s_{E_1}(\xi))$ then $\{s_A \circ s_{E_1} : A \in F\}$ is \leq^* -dominating.
- Otherwise, F has the RS-property: For every club E_1 , there is a club $E_2 \subseteq E_1$ such that for all $A \in F$, $A \not\subseteq^* \bigcup_{\xi \in E_2} [\xi, s_{E_1}(\xi))$.
- We will show that $\{s_A : A \in F\}$ is \leq_{cl} -dominating.

Outline: $\mathfrak{d}(\kappa) \leq \mathfrak{r}(\kappa)$ for $\kappa \geq \beth_{\omega}$ regular

- Take $f \in {}^{\kappa}\kappa$ and let E_1 be an f-closed club. Pick E_2 -given by RS.
- If for all $A \in F$, $|A \cap \bigcup_{\xi \in E_2} [\xi, s_{E_1}(\xi))| = \kappa$, then $\bigcup_{\xi \in E_2} [\xi, s_{E_1}(\xi))$ splits F, contradicting F is unsplit.
- Thus there are $A \in F$, $\delta < \kappa$ with $A \setminus \delta \subseteq \kappa \setminus \bigcup_{\xi \in E_2} [\xi, s_{E_1}(\xi))$.
- Take any $\xi \in E_2 \setminus \delta$. Then, since $s_A(\xi) \in A$ and $A \cap [\xi, s_{E_1}(\xi)) = \emptyset$, we get $f(\xi) < s_{E_1}(\xi) \le s_A(\xi)$.
- Therefore $\{s_A : A \in F\}$ is \leq_{cl} -dominating, and so $\mathfrak{d}_{cl}(\kappa) \leq |F| = \mathfrak{r}(\kappa)$.
- Since $\kappa \geq \beth_{\omega}$, $\mathfrak{d}(\kappa) = \mathfrak{d}_{\mathbf{Cl}}(\kappa)$ and so $\mathfrak{d}(\kappa) \leq \mathfrak{r}(\kappa)$.

Strong Unsplitting: $\mathfrak{r}_{\sigma}(\kappa)$

Definition

Recall that $\mathfrak{r}_{\sigma}(\kappa)$ is the least size of a $F \subseteq [\kappa]^{\kappa}$ such that there is no countable $\{B_n : b \in \omega\}$ such that every $A \in F$ is split by some B_n .

Remark

If $\mathfrak{r}_{\sigma}(\kappa)$ exists, then $\mathfrak{r}(\kappa) \leq \mathfrak{r}_{\sigma}(\kappa)$.

Strong Unsplitting: $\mathfrak{r}_{\sigma}(\kappa)$

Theorem (Zapletal)

If $\aleph_0 < \kappa \le 2^{\aleph_0}$ then there is a countable $\mathscr B$ splitting all $A \in [\kappa]^{\kappa}$.

Proof:

```
Let f: \kappa \to 2^\omega be an injection and for each s \in 2^{<\omega} let B_s:=\{\alpha<\kappa: s\subseteq f(\alpha)\}. Then \{B_s: s\in 2^{<\omega}\} splits all A\in [\kappa]^\kappa. Indeed. Suppose A\in [\kappa]^\kappa is not split by any B_s. Then S=\{s\in {}^{<\omega}2: |A\cap B_s|=\kappa\} does not contain incompatible elements. However, then there is at most one \alpha such that if s\in S then s\subseteq f(\alpha), and so A\subseteq \{\alpha\}\cup\bigcup_{s\in 2^{<\omega}\setminus S}A\cap B_s. Therefore |A|<\kappa, which is a contradiction.
```

$$\mathfrak{d}(\kappa) \leq \mathfrak{r}_{\sigma}(\kappa)$$

Remark

Thus $\mathfrak{r}_{\sigma}(\kappa)$ does not exist for $\aleph_0 < \kappa \le 2^{\aleph_0}$. However:

Theorem(F., D. Soukup, 2018)

If $\kappa > 2^{\aleph_0}$ is regular, then $\mathfrak{r}_{\sigma}(\kappa)$ -exists and $\mathfrak{d}(\kappa) \leq \mathfrak{r}_{\sigma}(\kappa)$.

Characterizing $\mathfrak{d}(\kappa)$

Among others, the above result leads to a new characterization of $\mathfrak{d}(\kappa)$ for regular uncountable κ .

Finitely Reaping Number

Definition

Let \mathfrak{fr} denote the minimal size of a family \mathscr{I} of partitions of ω into finite sets, so that there is no single $A \in [\omega]^{\omega}$ with the property that for each partition $\{I_n\}_{n \in \omega} \in \mathscr{I}$ both

$$\{n \in \omega : I_n \subseteq A\}$$
 and $\{n \in \omega : I_n \cap A = \emptyset\}$

are infinite.

Theorem (Brendle)

$$\mathfrak{fr} = \min\{\mathfrak{d},\mathfrak{r}\}.$$

Generalizations: $fr(\kappa)$

Definition

For κ regular uncountable, let $\mathfrak{fr}(\kappa)$ denote the minimal size of a family $\mathscr E$ of clubs, so that there is no $A\subseteq \kappa$ such that for all $E\in \mathscr E$ both

$$\{\xi \in E : [\xi, s_E(\xi)) \subseteq A\}$$
 and $\{\xi \in E : [\xi, s_E(\xi)) \cap A = \emptyset\}$

have size κ . We say that A interval-splits E.

Characterization of $\mathfrak{d}(\kappa)$

Theorem (F., D. Soukup, 2018)

Let κ be a regular uncountable. Then $\mathfrak{d}(\kappa)$ is the minimal size of a family $\mathscr E$ of clubs so that there is no countable $\mathscr A\subseteq [\kappa]^\kappa$ with the property that for each $E\in\mathscr E$ there is $A\in\mathscr A$ with the property that both

$$\{\xi \in E : [\xi, s_E(\xi)) \subseteq A\}$$
 and $\{\xi \in E : [\xi, s_E(\xi)) \cap A = \emptyset\}$

have size κ .

Remark

With other words, $\mathfrak{d}(\kappa) = \mathfrak{fr}_{\sigma}(\kappa)$ for κ regular uncountable.

Outline: $\mathfrak{fr}_{\sigma}(\kappa) \leq \mathfrak{d}(\kappa)$

- Let $\mathscr{F} \subseteq {}^{\kappa}\kappa$ be dominating, $|\mathscr{F}| = \mathfrak{d}(\kappa)$.
- For each $f \in \mathscr{F}$ fix an f-closed club E_f and let $\mathscr{E} := \{E_f : f \in \mathscr{F}\}.$
- Let $\mathscr{A} \subseteq [\kappa]^{\kappa}$ be countable and let $g = \sup\{s_{A} : A \in \mathscr{A}\}$. Find $f \in \mathscr{F}$ with $g \leq^{*} f$.
- Then for each $A \in \mathscr{A}$, the set $\{\xi \in \kappa : [\xi, s_{E_f}(\xi)) \cap A = \emptyset\}$ is bounded.
- Thus, there is no countable \mathscr{A} such that each E_f is split by some $A \in \mathscr{A}$. Thus $\mathfrak{fr}_{\sigma}(\kappa) \leq |\mathscr{E}| = \mathfrak{d}(\kappa)$.

Outline: $\mathfrak{d}(\kappa) \leq \mathfrak{fr}_{\sigma}(\kappa)$

- Let $|\mathcal{E}| < \mathfrak{d}(\kappa)$ be a family of clubs.
- Take $f \in {}^{\kappa}\kappa$ such that for all $E \in \mathscr{E}$ the set $\{\alpha < \kappa : s_E \circ s_E(\alpha) < f(\alpha)\}$ is unbounded in κ .
- Let D be an f-closed club. Then for each $E \in \mathscr{E}$ the set $X_E := \{ \zeta \in D : (\exists \xi \in E) ([\xi, s_E(\xi)) \subseteq [\zeta, s_D(\zeta))) \}$ is unbounded.
- Since $|\mathscr{E}| < \mathfrak{d}(\kappa) \le \mathfrak{r}_{\sigma}(\kappa)$, there is a countable $\{B_n\}_{n \in \omega} \subseteq [\kappa]^{\kappa}$ so that each X_E is split by some B_n .
- For each $n \in \omega$, let $A_n := \bigcup \{ [\zeta, s_D(\zeta)) : \zeta \in D \cap B_n \}.$
- Then each $E \in \mathcal{E}$ is interval-split by some A_n .

On cofinalities

Remark

It is a long-standing open problem if $\mathfrak r$ can be of countable cofinality. However, if $cf(\mathfrak r)=\omega$ then $\mathfrak d\leq \mathfrak r$.

Theorem (F., Soukup, 2018)

If κ is regular, uncountable and $cf(\mathfrak{r}(\kappa)) \leq \kappa$ then $\mathfrak{d}(\kappa) \leq \mathfrak{r}(\kappa)$.

Questions

- (Cummings-Shelah) Does $\mathfrak{d}(\kappa) = \mathfrak{d}_{Cl}(\kappa)$ for all regular uncountable κ ?
- (Raghavan-Shelah) Does $\mathfrak{d}(\kappa) \leq \mathfrak{r}(\kappa)$ for all regular uncountable κ ?

Generalization of S. Hechler's result

Lemma (Cummings, Shelah)

Let κ be a regular uncountable. Then

$$\kappa^+ \leq \mathrm{cf}(\mathfrak{b}(\kappa)) = \mathfrak{b}(\kappa) \leq \mathrm{cf}(\mathfrak{d}(\kappa)) \leq 2^{\kappa}.$$

Triple Realizations

Theorem (Cummings, Shelah)

Assume $\kappa^{<\kappa}=\kappa$, GCH above κ and (β,δ,μ) such that

$$\kappa^+ \leq \beta = \operatorname{cf}(\beta) \leq \operatorname{cf}(\delta) \leq \mu \text{ and } \kappa < \operatorname{cf}(\mu).$$

Then there is a cardinal preserving generic extension in which $\mathfrak{b}(\kappa) = \beta$, $\mathfrak{d}(\kappa) = \delta$ and $2^{\kappa} = \mu$.

An iteration along a non-linear, well-founded index set of the generalized Hechler poset for adjoining a dominating real.

Theorem (Raghavan, Shelah)

Let κ be regular uncountable. Then $\mathfrak{s}(\kappa) \leq \mathfrak{b}(\kappa)$.

Let κ be regular uncountable. Then

- (Zapletal) $\mathfrak{s}(\kappa) \geq \kappa$ iff κ is inaccessible, and
- (Suzuki) $\mathfrak{s}(\kappa) > \kappa$ iff κ is weakly compact.

Theorem (Ben-Neria, Gitik)

 $\mathfrak{s}(\kappa) > \kappa^+$ is equiconsistent with the existence of a measurable cardinal μ with Mitchell order at least μ^{++} .

Quadruple Realizations

Observation(F., Bag, 2018)

Let κ be a supercompact. Then consistently

$$\mathfrak{s}(\kappa) = \kappa^+ < \mathfrak{b}(\kappa) = \mu_{\kappa} < \mathfrak{d}(\kappa) = \nu_{\kappa} < 2^{\kappa} = \zeta_{\kappa}$$

for any admissible triple $\mu_{\kappa} < \nu_{\kappa} < \zeta_{\kappa}$.

Laver preparation, followed by adjoining κ^+ many κ -Cohen reals, followed by Cummings-Shelah construction.

Quadruple Realizations

Work in Progress (F., Shelah, 2018)

The above result generalizes to

$$\kappa^+ < \mathfrak{s}(\kappa) = \xi_\kappa < \mathfrak{b}(\kappa) = \mu_\kappa < \mathfrak{d}(\kappa) = \nu_\kappa < 2^\kappa = \zeta_\kappa$$

for any admissible quadruple $\xi_{\kappa} < \mu_{\kappa} < \nu_{\kappa} < \zeta_{\kappa}$.

Questions

- (Ben-Neria, Gitik) Is it consistent that $\mathfrak{s}(\kappa)$ is singular for some uncountable regular κ ?
- Does $\mathfrak{p}(\kappa) = \mathfrak{t}(\kappa)$ for all regular uncountable κ ?