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Open Colorings on Generalized Baire Spaces



Open coloring axioms for subsets of the x-Baire space
Let x be an infinite cardinal such that k<% = k. Let X C *k.

OCA,(X):
Suppose [X]2 = Ro U R is an open partition
(i.e. {(z,y):{z,y} € Ry} is an open subset of X x X).

Then either X is a union of k-many R;-homogeneous sets, or
there exists an Ryp-homogeneous set of size k.
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Open coloring axioms for subsets of the x-Baire space

Let x be an infinite cardinal such that k<% = k. Let X C *k.

OCA,(X):
Suppose [X]2 = Ro U R is an open partition
(i.e. {(z,y):{z,y} € Ry} is an open subset of X x X).

Then either X is a union of k-many R;-homogeneous sets, or
there exists an Ryp-homogeneous set of size k.

OCAZ(X):

If [X]? = RoU Ry is an open partition,

then either X is a union of k-many Rj;-homogeneous sets, or X
has a k-perfect Ry-homogeneous subset,

i.e., there is a continuous embedding f : "2 — X
whose image is Rg-homogeneous.
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OCA’(X) for definable subsets X of "k

Theorem (Feng, 1993)
1. OCA}(X) holds for all £} subsets of “w.
2. In Solovay's model, OCA},(X) holds for all X C “w.

Theorem (Sz., 2017)

In Col(k, <\)-generic extensions, where A > k is inaccessible,
OCAZX(X) holds for all 1 subsets X C "k.

Theorem (Schlicht-Sz., 2018)

In Col(k, <\)-generic extensions, where \ > k is inaccessible,
OCA}(X) holds for all subsets X C "k definable from an element
of *Ord.

These results give the exact consistency strength of these statements.



A game for open colorings

Definition

Let X C “k and let Ry C [X]2. G%(X, Ry) is the following game.
I io i i
I wd,up ud, ui coouud

I1 plays 2, ul € <*k. Then I chooses, by playing io < 2.
Rules: for all 3 < aand i < 2 we have uf, D ug and Ny: N X # () and

Nug X Nu}x c RO

Player IT wins the round iff |J,_, u’ € X.
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A game for open colorings

Definition

Let X C “k and let Ry C [X]2. G%(X, Ry) is the following game.
I io i i
I wd,up ud, ui coouud

I1 plays 2, ul € <*k. Then I chooses, by playing io < 2.

Rules: for all 3 < aand i < 2 we have uf, D ug and Ny: N X # () and

Nug X Nu}x c RO

Player IT wins the round iff | __,_ ule € X.
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Remark: For the trivial colorlng R =[X }

Gr (X, [X]?)

Proposition (Sz., 2017)
OCA(X) holds iff G%(X, Ry) is determined for all open Ry C [X]?.

is the perfect set game.
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Questions

» Is it consistent that all 31 subsets have the x-perfect set
property but there is a closed X C “x such that OCAJ;(X)
does not hold?

» Let OCA, say: "OCA,(X) holds for all X C *x".

Is OCA, consistent? If so, how does it influence the structure
of the x-Baire space?
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Vadananen's perfect set game

Definition (Vaananen, 1991)
Let X C "k, let 29 € X and let w <y < k. Then V,(X, o) is the
following game.
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I plays 0, < & such that 6, > d5 for all 3 < a, and d, = supg.,, dp
at limits a.

IT responds with z,, € X such that z,[0s11 = dg[dgy1 but z4 # x4
for all 5 < a.

Player IT wins, if she can make all her 7y moves.
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Definition (Vaananen, 1991)
Let X C "k, let 29 € X and let w <y < k. Then V,(X, o) is the
following game.

I 01 . Oar
II o T . To

I plays 0, < & such that 6, > d5 for all 3 < a, and d, = supg.,, dp
at limits a.

IT responds with z,, € X such that z,[0s11 = dg[dgy1 but z4 # x4
for all 5 < a.

Player IT wins, if she can make all her 7y moves.

Definition (Vaananen, 1991)

X is a v-perfect set if IT wins V, (X, x¢) for all zp € X.
X is a v-scattered set if I wins V, (X, x0) for all zg € X.
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Vaiananen's generalized Cantor-Bendixson theorem

Proposition (Sz.)
The following statements are equivalent:
(1) Véananen's generalized Cantor-Bendixson theorem:
every closed subset of "k is the (disjoint) union of
a k-perfect set and a k-scattered set, which is of size < k.

(2) The k-perfect set property for closed subsets of "

(every closed subset of "k of size > k has a k-perfect subset).

» Vididndnen (1991) showed that (1) is consistent relative to the
existence of a measurable A > k.

» Galgon (2016) showed that (1) holds after Lévy-collapsing an
inaccessible A > x to k™.
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A subtree T of <"k is a strongly x-perfect tree if T is <k-closed
and every node of T extends to a splitting node.

A set X C "k is a strongly r-perfect set if X = [T] for a strongly
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A different definition of x-perfectness

Definition
A subtree T of <"k is a strongly x-perfect tree if T is <k-closed
and every node of T extends to a splitting node.

A set X C "k is a strongly r-perfect set if X = [T] for a strongly
r-perfect tree T,

Proposition
Let X be a closed set of k.

X is k-perfect — X = U X; for strongly k-perfect sets X;.
i€l
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~v-perfect trees when w <~ < k

~-perfect trees and ~y-scattered trees can be defined using a strong
cut-and-choose game G, (T ty) played on subtrees T of <*x
(Galgon, 2016).

Remark: G, (T, to) is easier for player I and harder for player II to
win than the perfect set game GZ([T] N Ny,).

In the v = & case, G (T, to) is equivalent to the G ([T] N Ny,).
Proposition

Let T be a subtree of <Fk.

T is a k-perfect tree <= [T is a k-perfect set.

If the k-perfect set property holds, then
T is a k-scattered tree <= [T] is a k-scattered set.
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~-perfect sets and trees when v < &

Theorem (Sz.)
Let T be a subtree of <"k and let w < v < K.
1. If[T] is a y-perfect set, then T is a y-perfect tree.
2. If T is a y-scattered tree, then [T] is a y-scattered set.
3. If k is weakly compact and T C <"2, then
T is a y-perfect tree <= [T] is a y-perfect set.

More generally: holds if k has the tree property and T is a k-tree.

Question
Is it consistent that 3 holds for “scattered” instead of “perfect’?

Analogues of 1-3 hold for “generalized Cantor-Bendixson ranks” for
subsets of “x and for subtrees of <"k (see next 2 slides).



Generalizing Cantor-Bendixson ranks

Definition (Vaananen, 1991)
Let X C *k, let 2o € X, and let U be a tree without x-branches.
Vu (X, ) is the following game.
1 flyal f(u(soz
II Xo X1 . Lo
I plays t., € U such that ¢, >t and d4 < & such that 6, > g
for all 3 < a, and §, = supg.,, dp at limits a.
IT responds with x,, € X such that z,[ds11 = zg[ds41 but zo # x4
for all 8 < a.
The first player who can not move loses, and the other player wins.

For subtrees T' of <"k, the approximations® G (T, t) of the game G,.(U, t)
can be defined similarly.

LIn the sense of T. Hyttinen. Games and infinitary languages. Ann. Acad. Sci.
Fenn. Ser. A | Math. Dissertationes, (64):1-32, 1987
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Ky(X)={x e X : 1T wins Vy(X,z)};
Su(X)={z e X : T wins Vy(X,z)}.
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Suppose U is a tree without x-branches and X C k.
Ky(X)={x € X : II wins Vy (X, z)};
Su(X)={z e X : T wins Vy(X,z)}.
Let T be a subtree of <*x.
Ky(T)={t €T : 1L wins Gy (T,t)};
Su(T)={teT:1wins Gy(T,t)}.
Theorem (Sz.)
Let T be a subtree of <"k and let U be a tree without k-branches.
1. Ku([T)) € [Ku(T)].
2. [T] = Sy([T]) € [T = Su(T)].
3. If k has the tree property and T is a k-tree, then
Ky([T)) = [Ky(T)].



Thank youl



