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Open Colorings on Generalized Baire Spaces



Open coloring axioms for subsets of the κ-Baire space

Let κ be an infinite cardinal such that κ<κ = κ. Let X ⊆ κκ.

OCAκ(X):
Suppose [X]2 = R0 ∪R1 is an open partition

(i.e. {(x, y) : {x, y} ∈ R0} is an open subset of X ×X).

Then either X is a union of κ-many R1-homogeneous sets, or
there exists an R0-homogeneous set of size κ+.

OCA∗κ(X):
If [X]2 = R0 ∪R1 is an open partition,
then either X is a union of κ-many R1-homogeneous sets, or X
has a κ-perfect R0-homogeneous subset,

i.e., there is a continuous embedding f : κ2→ X

whose image is R0-homogeneous.
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OCA∗κ(X) for definable subsets X of κκ
Theorem (Feng, 1993)
1. OCA∗ω(X) holds for all Σ1

1 subsets of ωω.
2. In Solovay’s model, OCA∗ω(X) holds for all X ⊆ ωω.

Theorem (Sz., 2017)
In Col(κ,<λ)-generic extensions, where λ > κ is inaccessible,
OCA∗κ(X) holds for all Σ1

1 subsets X ⊆ κκ.

Theorem (Schlicht-Sz., 2018)
In Col(κ,<λ)-generic extensions, where λ > κ is inaccessible,
OCA∗κ(X) holds for all subsets X ⊆ κκ definable from an element
of κOrd.

These results give the exact consistency strength of these statements.
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A game for open colorings
Definition
Let X ⊆ κκ and let R0 ⊆ [X]2. G∗

κ(X,R0) is the following game.

I i0 i1 . . . iα . . .
II u00, u

1
0 u01, u

1
1 . . . u0α, u

1
α . . .

II plays u0α, u1α ∈ <κκ. Then I chooses, by playing iα < 2.
Rules: for all β < α and i < 2 we have uiα ⊃ u

iβ
β and Nuiα ∩X 6= ∅ and

Nu0
α
×Nu1

α
⊆ R0

Player II wins the round iff
⋃
α<κ u

iα
α ∈ X.

Remark: For the trivial coloring R0 = [X]2,
G∗κ
(
X, [X]2

)
= G∗κ(X) is the perfect set game.

Proposition (Sz., 2017)
OCA∗

κ(X) holds iff G∗
κ(X,R0) is determined for all open R0 ⊆ [X]2.
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Questions

I Is it consistent that all Σ1
1 subsets have the κ-perfect set

property but there is a closed X ⊆ κκ such that OCA∗κ(X)
does not hold?

I Let OCAκ say: “OCAκ(X) holds for all X ⊆ κκ”.

Is OCAκ consistent? If so, how does it influence the structure
of the κ-Baire space?
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Perfect Sets and Games



Väänänen’s perfect set game
Definition (Väänänen, 1991)
Let X ⊆ κκ, let x0 ∈ X and let ω ≤ γ ≤ κ. Then Vγ(X,x0) is the
following game.

I δ1 . . . δα . . .

II x0 x1 . . . xα . . .

I plays δα < κ such that δα > δβ for all β < α, and δα = supβ<α δβ
at limits α.

II responds with xα ∈ X such that xα�δβ+1 = δβ�δβ+1 but xα 6= xβ
for all β < α.

Player II wins, if she can make all her γ moves.

Definition (Väänänen, 1991)
X is a γ-perfect set if II wins Vγ(X,x0) for all x0 ∈ X.

X is a γ-scattered set if I wins Vγ(X,x0) for all x0 ∈ X.
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Väänänen’s generalized Cantor-Bendixson theorem

Proposition (Sz.)
The following statements are equivalent:

(1) Väänänen’s generalized Cantor-Bendixson theorem:

every closed subset of κκ is the (disjoint) union of
a κ-perfect set and a κ-scattered set, which is of size ≤ κ.

(2) The κ-perfect set property for closed subsets of κκ
(every closed subset of κκ of size > κ has a κ-perfect subset).

I Väänänen (1991) showed that (1) is consistent relative to the
existence of a measurable λ > κ.

I Galgon (2016) showed that (1) holds after Lévy-collapsing an
inaccessible λ > κ to κ+.
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A different definition of κ-perfectness

Definition
A subtree T of <κκ is a strongly κ-perfect tree if T is <κ-closed
and every node of T extends to a splitting node.

A set X ⊆ κκ is a strongly κ-perfect set if X = [T ] for a strongly
κ-perfect tree T .

Proposition
Let X be a closed set of κκ.

X is κ-perfect ⇐⇒ X =
⋃
i∈I

Xi for strongly κ-perfect sets Xi.
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γ-perfect trees when ω ≤ γ ≤ κ

γ-perfect trees and γ-scattered trees can be defined using a strong
cut-and-choose game Gγ(T, t0) played on subtrees T of <κκ
(Galgon, 2016).

Remark: Gγ(T, t0) is easier for player I and harder for player II to
win than the perfect set game G∗γ([T ] ∩Nt0).

In the γ = κ case, Gκ(T, t0) is equivalent to the G∗κ([T ] ∩Nt0).

Proposition
Let T be a subtree of <κκ.

T is a κ-perfect tree ⇐⇒ [T ] is a κ-perfect set.

If the κ-perfect set property holds, then
T is a κ-scattered tree ⇐⇒ [T ] is a κ-scattered set.
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γ-perfect sets and trees when γ < κ

Theorem (Sz.)
Let T be a subtree of <κκ and let ω ≤ γ < κ.
1. If [T ] is a γ-perfect set, then T is a γ-perfect tree.

2. If T is a γ-scattered tree, then [T ] is a γ-scattered set.
3. If κ is weakly compact and T ⊆ <κ2, then

T is a γ-perfect tree ⇐⇒ [T ] is a γ-perfect set.

More generally: holds if κ has the tree property and T is a κ-tree.

Question
Is it consistent that 3 holds for “scattered” instead of “perfect”?

Analogues of 1–3 hold for “generalized Cantor-Bendixson ranks” for
subsets of κκ and for subtrees of <κκ (see next 2 slides).
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Generalizing Cantor-Bendixson ranks

Definition (Väänänen, 1991)
Let X ⊆ κκ, let x0 ∈ X, and let U be a tree without κ-branches.
VU (X,x0) is the following game.

I t1, δ1 . . . tα, δα . . .

II x0 x1 . . . xα . . .

I plays tα ∈ U such that tα >U tβ and δα < κ such that δα > δβ
for all β < α, and δα = supβ<α δβ at limits α.

II responds with xα ∈ X such that xα�δβ+1 = xβ�δβ+1 but xα 6= xβ
for all β < α.

The first player who can not move loses, and the other player wins.

For subtrees T of <κκ, the approximations1 GU (T, t) of the game Gκ(U, t)
can be defined similarly.

1In the sense of T. Hyttinen. Games and infinitary languages. Ann. Acad. Sci.
Fenn. Ser. A I Math. Dissertationes, (64):1–32, 1987



Suppose U is a tree without κ-branches and X ⊆ κκ.

KU (X) = {x ∈ X : II wins VU (X,x)};
SU (X) = {x ∈ X : I wins VU (X,x)}.

Let T be a subtree of <κκ.

KU (T ) = {t ∈ T : II wins GU (T, t)};
SU (T ) = {t ∈ T : I wins GU (T, t)}.

Theorem (Sz.)
Let T be a subtree of <κκ and let U be a tree without κ-branches.
1. KU ([T ]) ⊆ [KU (T )].
2. [T ]− SU ([T ]) ⊆ [T − SU (T )].
3. If κ has the tree property and T is a κ-tree, then

KU ([T ]) = [KU (T )].
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Thank you!


