Open Colorings, Perfect Sets and Games on Generalized Baire Spaces

Dorottya Sziráki

MTA Alfréd Rényi Institute of Mathematics

Amsterdam August 24, 2018

Open Colorings on Generalized Baire Spaces

Open coloring axioms for subsets of the κ -Baire space

Let κ be an infinite cardinal such that $\kappa^{<\kappa} = \kappa$. Let $X \subseteq {}^{\kappa}\kappa$.

$$OCA_{\kappa}(X)$$
:

Suppose
$$[X]^2=R_0\cup R_1$$
 is an open partition (i.e. $\{(x,y):\{x,y\}\in R_0\}$ is an open subset of $X\times X$).

Then either X is a union of κ -many R_1 -homogeneous sets, or there exists an R_0 -homogeneous set of size κ^+ .

Open coloring axioms for subsets of the κ -Baire space

Let κ be an infinite cardinal such that $\kappa^{<\kappa} = \kappa$. Let $X \subseteq {}^{\kappa}\kappa$.

$OCA_{\kappa}(X)$:

Suppose
$$[X]^2=R_0\cup R_1$$
 is an open partition (i.e. $\{(x,y):\{x,y\}\in R_0\}$ is an open subset of $X\times X$).

Then either X is a union of κ -many R_1 -homogeneous sets, or there exists an R_0 -homogeneous set of size κ^+ .

$\operatorname{OCA}_{\kappa}^*(X)$:

If $[X]^2=R_0\cup R_1$ is an open partition, then either X is a union of κ -many R_1 -homogeneous sets, or X has a κ -perfect R_0 -homogeneous subset,

Open coloring axioms for subsets of the κ -Baire space

Let κ be an infinite cardinal such that $\kappa^{<\kappa} = \kappa$. Let $X \subseteq {}^{\kappa}\kappa$.

$OCA_{\kappa}(X)$:

Suppose
$$[X]^2=R_0\cup R_1$$
 is an open partition (i.e. $\{(x,y):\{x,y\}\in R_0\}$ is an open subset of $X\times X$).

Then either X is a union of κ -many R_1 -homogeneous sets, or there exists an R_0 -homogeneous set of size κ^+ .

$\operatorname{OCA}_{\kappa}^*(X)$:

If $[X]^2=R_0\cup R_1$ is an open partition, then either X is a union of κ -many R_1 -homogeneous sets, or X has a κ -perfect R_0 -homogeneous subset,

i.e., there is a continuous embedding $f: {}^{\kappa}2 \to X$ whose image is R_0 -homogeneous.

Theorem (Feng, 1993)

- 1. $OCA^*_{\omega}(X)$ holds for all Σ^1_1 subsets of ${}^{\omega}\omega$.
- 2. In Solovay's model, $\mathrm{OCA}^*_{\omega}(X)$ holds for all $X \subseteq {}^{\omega}\omega$.

Theorem (Feng, 1993)

- 1. $OCA^*_{\omega}(X)$ holds for all Σ^1_1 subsets of ${}^{\omega}\omega$.
- 2. In Solovay's model, $OCA^*_{\omega}(X)$ holds for all $X \subseteq {}^{\omega}\omega$.

Theorem (Sz., 2017)

In $\operatorname{Col}(\kappa,<\lambda)$ -generic extensions, where $\lambda>\kappa$ is inaccessible, $\operatorname{OCA}^*_\kappa(X)$ holds for all Σ^1_1 subsets $X\subseteq {}^\kappa\kappa$.

Theorem (Feng, 1993)

- 1. $OCA^*_{\omega}(X)$ holds for all Σ^1 subsets of ${}^{\omega}\omega$.
- 2. In Solovay's model, $\mathrm{OCA}^*_{\omega}(X)$ holds for all $X \subseteq {}^{\omega}\omega$.

Theorem (Sz., 2017)

In $\operatorname{Col}(\kappa,<\lambda)$ -generic extensions, where $\lambda>\kappa$ is inaccessible, $\operatorname{OCA}^*_\kappa(X)$ holds for all Σ^1_1 subsets $X\subseteq {}^\kappa\kappa$.

Theorem (Schlicht-Sz., 2018)

In $\operatorname{Col}(\kappa, <\lambda)$ -generic extensions, where $\lambda > \kappa$ is inaccessible, $\operatorname{OCA}^*_{\kappa}(X)$ holds for all subsets $X \subseteq {}^{\kappa}\kappa$ definable from an element of ${}^{\kappa}\operatorname{Ord}$.

Theorem (Feng, 1993)

- 1. $OCA^*_{\omega}(X)$ holds for all Σ^1_1 subsets of ${}^{\omega}\omega$.
- 2. In Solovay's model, $OCA^*_{\omega}(X)$ holds for all $X \subseteq {}^{\omega}\omega$.

Theorem (Sz., 2017)

In $\operatorname{Col}(\kappa,<\lambda)$ -generic extensions, where $\lambda>\kappa$ is inaccessible, $\operatorname{OCA}^*_\kappa(X)$ holds for all Σ^1_1 subsets $X\subseteq {}^\kappa\kappa$.

Theorem (Schlicht-Sz., 2018)

In $\operatorname{Col}(\kappa,<\lambda)$ -generic extensions, where $\lambda>\kappa$ is inaccessible, $\operatorname{OCA}^*_\kappa(X)$ holds for all subsets $X\subseteq {}^\kappa\kappa$ definable from an element of ${}^\kappa\operatorname{Ord}$.

These results give the exact consistency strength of these statements.

A game for open colorings

Definition

Let $X \subseteq {}^{\kappa}\kappa$ and let $R_0 \subseteq [X]^2$. $G_{\kappa}^*(X, R_0)$ is the following game.

II plays $u_{\alpha}^0, u_{\alpha}^1 \in {}^{<\kappa}\kappa$. Then I chooses, by playing $i_{\alpha} < 2$. Rules: for all $\beta < \alpha$ and i < 2 we have $u_{\alpha}^i \supset u_{\beta}^{i_{\beta}}$ and $N_{u_{\alpha}^i} \cap X \neq \emptyset$ and

Rules: for all eta<lpha and $\imath< 2$ we have $u_lpha\supset u_eta$ and $N_{u_lpha^i}\cap X
eq\emptyset$ and

$$N_{u^0_\alpha} \times N_{u^1_\alpha} \subseteq R_0$$

Player II wins the round iff $\bigcup_{\alpha < \kappa} u_{\alpha}^{i_{\alpha}} \in X$.

A game for open colorings

Definition

Let $X \subseteq {}^{\kappa}\kappa$ and let $R_0 \subseteq [X]^2$. $G_{\kappa}^*(X, R_0)$ is the following game.

II plays $u_{\alpha}^{0}, u_{\alpha}^{1} \in {}^{<\kappa}\kappa$. Then I chooses, by playing $i_{\alpha} < 2$. Rules: for all $\beta < \alpha$ and i < 2 we have $u_{\alpha}^{i} \supset u_{\beta}^{i\beta}$ and $N_{u_{\alpha}^{i}} \cap X \neq \emptyset$ and

$$N_{u_{\alpha}^0} \times N_{u_{\alpha}^1} \subseteq R_0$$

Player II wins the round iff $\bigcup_{\alpha < \kappa} u_{\alpha}^{i_{\alpha}} \in X$.

Remark: For the trivial coloring $R_0 = [X]^2$,

$$\mathcal{G}_{\kappa}^*\big(X,[X]^2\big)=\mathcal{G}_{\kappa}^*(X)$$
 is the perfect set game.

A game for open colorings

Definition

Let $X \subseteq {}^{\kappa}\kappa$ and let $R_0 \subseteq [X]^2$. $G_{\kappa}^*(X, R_0)$ is the following game.

II plays $u_{\alpha}^{0}, u_{\alpha}^{1} \in {}^{<\kappa}\kappa$. Then I chooses, by playing $i_{\alpha} < 2$.

Rules: for all $\beta<\alpha$ and i<2 we have $u^i_\alpha\supset u^{i_\beta}_\beta$ and $N_{u^i_\alpha}\cap X\neq\emptyset$ and

$$N_{u^0_\alpha} \times N_{u^1_\alpha} \subseteq R_0$$

Player II wins the round iff $\bigcup_{\alpha<\kappa}u_{\alpha}^{i_{\alpha}}\in X$.

Remark: For the trivial coloring $R_0 = [X]^2$,

$$\mathcal{G}_{\kappa}^*\big(X,[X]^2\big)=\mathcal{G}_{\kappa}^*(X)$$
 is the perfect set game.

Proposition (Sz., 2017)

 $\operatorname{OCA}_{\kappa}^*(X)$ holds iff $G_{\kappa}^*(X, R_0)$ is determined for all open $R_0 \subseteq [X]^2$.

Questions

▶ Is it consistent that all Σ_1^1 subsets have the κ -perfect set property but there is a closed $X \subseteq {}^{\kappa}\kappa$ such that $\mathrm{OCA}_{\kappa}^*(X)$ does not hold?

Questions

- ▶ Is it consistent that all Σ_1^1 subsets have the κ -perfect set property but there is a closed $X \subseteq {}^{\kappa}\kappa$ such that $\mathrm{OCA}_{\kappa}^*(X)$ does not hold?
- Let OCA_{κ} say: " $OCA_{\kappa}(X)$ holds for all $X \subseteq {}^{\kappa}\kappa$ ". Is OCA_{κ} consistent?

Questions

- ▶ Is it consistent that all Σ_1^1 subsets have the κ -perfect set property but there is a closed $X \subseteq {}^{\kappa}\kappa$ such that $\mathrm{OCA}_{\kappa}^*(X)$ does not hold?
- Let OCA_{κ} say: " $OCA_{\kappa}(X)$ holds for all $X \subseteq {}^{\kappa}\kappa$ ". Is OCA_{κ} consistent? If so, how does it influence the structure of the κ -Baire space?

Perfect Sets and Games

Väänänen's perfect set game

Definition (Väänänen, 1991)

Let $X \subseteq {}^{\kappa}\kappa$, let $x_0 \in X$ and let $\omega \le \gamma \le \kappa$. Then $\mathcal{V}_{\gamma}(X, x_0)$ is the following game.

$$\mathbf{I}$$
 δ_1 ... δ_{α} ... \mathbf{II} x_0 x_1 ... x_{α} ...

- I plays $\delta_{\alpha} < \kappa$ such that $\delta_{\alpha} > \delta_{\beta}$ for all $\beta < \alpha$, and $\delta_{\alpha} = \sup_{\beta < \alpha} \delta_{\beta}$ at limits α .
- II responds with $x_{\alpha} \in X$ such that $x_{\alpha} \upharpoonright \delta_{\beta+1} = \delta_{\beta} \upharpoonright \delta_{\beta+1}$ but $x_{\alpha} \neq x_{\beta}$ for all $\beta < \alpha$.

Player II wins, if she can make all her γ moves.

Väänänen's perfect set game

Definition (Väänänen, 1991)

Let $X\subseteq {}^{\kappa}\kappa$, let $x_0\in X$ and let $\omega\leq \gamma\leq \kappa$. Then $\mathcal{V}_{\gamma}(X,x_0)$ is the following game.

$$\mathbf{I}$$
 δ_1 ... δ_{α} ... \mathbf{II} x_0 x_1 ... x_{α} ...

I plays $\delta_{\alpha} < \kappa$ such that $\delta_{\alpha} > \delta_{\beta}$ for all $\beta < \alpha$, and $\delta_{\alpha} = \sup_{\beta < \alpha} \delta_{\beta}$ at limits α .

II responds with $x_{\alpha} \in X$ such that $x_{\alpha} \upharpoonright \delta_{\beta+1} = \delta_{\beta} \upharpoonright \delta_{\beta+1}$ but $x_{\alpha} \neq x_{\beta}$ for all $\beta < \alpha$.

Player II wins, if she can make all her γ moves.

Definition (Väänänen, 1991)

X is a γ -perfect set if \mathbf{II} wins $\mathcal{V}_{\gamma}(X, x_0)$ for all $x_0 \in X$.

Väänänen's perfect set game

Definition (Väänänen, 1991)

Let $X\subseteq {}^{\kappa}\kappa$, let $x_0\in X$ and let $\omega\leq \gamma\leq \kappa$. Then $\mathcal{V}_{\gamma}(X,x_0)$ is the following game.

I plays $\delta_{\alpha} < \kappa$ such that $\delta_{\alpha} > \delta_{\beta}$ for all $\beta < \alpha$, and $\delta_{\alpha} = \sup_{\beta < \alpha} \delta_{\beta}$ at limits α .

II responds with $x_{\alpha} \in X$ such that $x_{\alpha} \upharpoonright \delta_{\beta+1} = \delta_{\beta} \upharpoonright \delta_{\beta+1}$ but $x_{\alpha} \neq x_{\beta}$ for all $\beta < \alpha$.

Player II wins, if she can make all her γ moves.

Definition (Väänänen, 1991)

X is a γ -perfect set if II wins $\mathcal{V}_{\gamma}(X,x_0)$ for all $x_0 \in X$.

X is a γ -scattered set if \mathbf{I} wins $\mathcal{V}_{\gamma}(X,x_0)$ for all $x_0 \in X$.

(1) Väänänen's generalized Cantor-Bendixson theorem:

every closed subset of ${}^{\kappa}\kappa$ is the (disjoint) union of a κ -perfect set and a κ -scattered set, which is of size $\leq \kappa$.

Proposition (Sz.)

The following statements are equivalent:

- (1) Väänänen's generalized Cantor-Bendixson theorem: every closed subset of κ is the (disjoint) union of a κ -perfect set and a κ -scattered set, which is of size $\leq \kappa$.
- (2) The κ -perfect set property for closed subsets of κ (every closed subset of κ of size $> \kappa$ has a κ -perfect subset).

Proposition (Sz.)

The following statements are equivalent:

- Väänänen's generalized Cantor-Bendixson theorem:
 every closed subset of ^κκ is the (disjoint) union of
 a κ-perfect set and a κ-scattered set, which is of size ≤ κ.
- (2) The κ -perfect set property for closed subsets of κ (every closed subset of κ of size $> \kappa$ has a κ -perfect subset).
 - ▶ Väänänen (1991) showed that (1) is consistent relative to the existence of a measurable $\lambda > \kappa$.

Proposition (Sz.)

The following statements are equivalent:

- Väänänen's generalized Cantor-Bendixson theorem:
 every closed subset of ^κκ is the (disjoint) union of
 a κ-perfect set and a κ-scattered set, which is of size ≤ κ.
- (2) The κ -perfect set property for closed subsets of κ (every closed subset of κ of size $> \kappa$ has a κ -perfect subset).
 - ▶ Väänänen (1991) showed that (1) is consistent relative to the existence of a measurable $\lambda > \kappa$.
 - ▶ Galgon (2016) showed that (1) holds after Lévy-collapsing an inaccessible $\lambda > \kappa$ to κ^+ .

A different definition of κ -perfectness

Definition

A subtree T of ${}^{<\kappa}\kappa$ is a strongly κ -perfect tree if T is $<\kappa$ -closed and every node of T extends to a splitting node.

A set $X \subseteq {}^{\kappa}\kappa$ is a strongly κ -perfect set if X = [T] for a strongly κ -perfect tree T.

A different definition of κ -perfectness

Definition

A subtree T of ${}^{<\kappa}\kappa$ is a strongly κ -perfect tree if T is $<\kappa$ -closed and every node of T extends to a splitting node.

A set $X \subseteq {}^{\kappa}\kappa$ is a strongly κ -perfect set if X = [T] for a strongly κ -perfect tree T.

Proposition

Let X be a closed set of κ .

$$X$$
 is κ -perfect \iff $X = \bigcup_{i \in I} X_i$ for strongly κ -perfect sets X_i .

 γ -perfect trees and γ -scattered trees can be defined using a strong cut-and-choose game $\mathcal{G}_{\gamma}(T,t_0)$ played on subtrees T of ${}^{<\kappa}\kappa$ (Galgon, 2016).

 γ -perfect trees and γ -scattered trees can be defined using a strong cut-and-choose game $\mathcal{G}_{\gamma}(T,t_0)$ played on subtrees T of ${}^{<\kappa}\kappa$ (Galgon, 2016).

Remark: $\mathcal{G}_{\gamma}(T,t_0)$ is easier for player \mathbf{I} and harder for player \mathbf{II} to win than the perfect set game $\mathcal{G}_{\gamma}^*([T] \cap N_{t_0})$.

 γ -perfect trees and γ -scattered trees can be defined using a strong cut-and-choose game $\mathcal{G}_{\gamma}(T,t_0)$ played on subtrees T of ${}^{<\kappa}\kappa$ (Galgon, 2016).

Remark: $\mathcal{G}_{\gamma}(T,t_0)$ is easier for player \mathbf{I} and harder for player \mathbf{II} to win than the perfect set game $\mathcal{G}_{\gamma}^*([T] \cap N_{t_0})$.

In the $\gamma=\kappa$ case, $\mathcal{G}_{\kappa}(T,t_0)$ is equivalent to the $\mathcal{G}_{\kappa}^*([T]\cap N_{t_0})$.

 γ -perfect trees and γ -scattered trees can be defined using a strong cut-and-choose game $\mathcal{G}_{\gamma}(T,t_0)$ played on subtrees T of ${}^{<\kappa}\kappa$ (Galgon, 2016).

Remark: $\mathcal{G}_{\gamma}(T,t_0)$ is easier for player \mathbf{I} and harder for player \mathbf{II} to win than the perfect set game $\mathcal{G}_{\gamma}^*([T] \cap N_{t_0})$.

In the $\gamma=\kappa$ case, $\mathcal{G}_{\kappa}(T,t_0)$ is equivalent to the $\mathcal{G}_{\kappa}^*([T]\cap N_{t_0})$.

Proposition

Let T be a subtree of $<\kappa$.

T is a κ -perfect tree \iff [T] is a κ -perfect set.

 γ -perfect trees and γ -scattered trees can be defined using a strong cut-and-choose game $\mathcal{G}_{\gamma}(T,t_0)$ played on subtrees T of ${}^{<\kappa}\kappa$ (Galgon, 2016).

Remark: $\mathcal{G}_{\gamma}(T,t_0)$ is easier for player \mathbf{I} and harder for player \mathbf{II} to win than the perfect set game $\mathcal{G}_{\gamma}^*([T] \cap N_{t_0})$.

In the $\gamma = \kappa$ case, $\mathcal{G}_{\kappa}(T, t_0)$ is equivalent to the $\mathcal{G}_{\kappa}^*([T] \cap N_{t_0})$.

Proposition

Let T be a subtree of $<\kappa$.

T is a κ -perfect tree \iff [T] is a κ -perfect set.

If the κ -perfect set property holds, then

T is a κ -scattered tree \iff [T] is a κ -scattered set.

Theorem (Sz.)

Let T be a subtree of ${}^{<\kappa}\kappa$ and let $\omega \le \gamma < \kappa$.

1. If [T] is a γ -perfect set, then T is a γ -perfect tree.

Theorem (Sz.)

Let T be a subtree of ${}^{<\kappa}\kappa$ and let $\omega \le \gamma < \kappa$.

- 1. If [T] is a γ -perfect set, then T is a γ -perfect tree.
- 2. If T is a γ -scattered tree, then [T] is a γ -scattered set.

Theorem (Sz.)

Let T be a subtree of ${}^{<\kappa}\kappa$ and let $\omega \le \gamma < \kappa$.

- 1. If [T] is a γ -perfect set, then T is a γ -perfect tree.
- 2. If T is a γ -scattered tree, then [T] is a γ -scattered set.
- 3. If κ is weakly compact and $T \subseteq {}^{<\kappa}2$, then T is a γ -perfect tree \iff [T] is a γ -perfect set.

Theorem (Sz.)

Let T be a subtree of ${}^{<\kappa}\kappa$ and let $\omega \le \gamma < \kappa$.

- 1. If [T] is a γ -perfect set, then T is a γ -perfect tree.
- 2. If T is a γ -scattered tree, then [T] is a γ -scattered set.
- 3. If κ is weakly compact and $T \subseteq {}^{<\kappa}2$, then T is a γ -perfect tree \iff [T] is a γ -perfect set.

More generally: holds if κ has the tree property and T is a κ -tree.

Theorem (Sz.)

Let T be a subtree of ${}^{<\kappa}\kappa$ and let $\omega \le \gamma < \kappa$.

- 1. If [T] is a γ -perfect set, then T is a γ -perfect tree.
- 2. If T is a γ -scattered tree, then [T] is a γ -scattered set.
- 3. If κ is weakly compact and $T \subseteq {}^{<\kappa}2$, then

 T is a γ -perfect tree \iff [T] is a γ -perfect set.

More generally: holds if κ has the tree property and T is a κ -tree.

Question

Is it consistent that 3 holds for "scattered" instead of "perfect"?

Theorem (Sz.)

Let T be a subtree of ${}^{<\kappa}\kappa$ and let $\omega \le \gamma < \kappa$.

- 1. If [T] is a γ -perfect set, then T is a γ -perfect tree.
- 2. If T is a γ -scattered tree, then [T] is a γ -scattered set.
- 3. If κ is weakly compact and $T \subseteq {}^{<\kappa}2$, then

T is a γ -perfect tree \iff [T] is a γ -perfect set.

More generally: holds if κ has the tree property and T is a κ -tree.

Question

Is it consistent that 3 holds for "scattered" instead of "perfect"?

Analogues of 1–3 hold for "generalized Cantor-Bendixson ranks" for subsets of κ and for subtrees of κ (see next 2 slides).

Generalizing Cantor-Bendixson ranks

Definition (Väänänen, 1991)

Let $X \subseteq {}^{\kappa}\kappa$, let $x_0 \in X$, and let U be a tree without κ -branches. $\mathcal{V}_U(X,x_0)$ is the following game.

- I plays $t_{\alpha} \in U$ such that $t_{\alpha} >_{U} t_{\beta}$ and $\delta_{\alpha} < \kappa$ such that $\delta_{\alpha} > \delta_{\beta}$ for all $\beta < \alpha$, and $\delta_{\alpha} = \sup_{\beta < \alpha} \delta_{\beta}$ at limits α .
- II responds with $x_{\alpha} \in X$ such that $x_{\alpha} \upharpoonright \delta_{\beta+1} = x_{\beta} \upharpoonright \delta_{\beta+1}$ but $x_{\alpha} \neq x_{\beta}$ for all $\beta < \alpha$.

The first player who can not move loses, and the other player wins.

For subtrees T of ${}^{<\kappa}\kappa$, the approximations ${}^1\mathcal{G}_U(T,t)$ of the game $\mathcal{G}_\kappa(U,t)$ can be defined similarly.

¹In the sense of T. Hyttinen. Games and infinitary languages. *Ann. Acad. Sci. Fenn. Ser. A I Math. Dissertationes*, (64):1–32, 1987

Suppose U is a tree without κ -branches and $X \subseteq {}^{\kappa}\kappa$.

$$K_U(X) = \{x \in X : \mathbf{II} \text{ wins } \mathcal{V}_U(X, x)\};$$

 $S_U(X) = \{x \in X : \mathbf{I} \text{ wins } \mathcal{V}_U(X, x)\}.$

Suppose U is a tree without κ -branches and $X \subseteq {}^{\kappa}\kappa$.

$$K_U(X) = \{x \in X : \mathbf{II} \text{ wins } \mathcal{V}_U(X, x)\};$$

 $S_U(X) = \{x \in X : \mathbf{I} \text{ wins } \mathcal{V}_U(X, x)\}.$

 $K_U(T) = \{t \in T : \mathbf{II} \text{ wins } \mathcal{G}_U(T,t)\};$ $S_U(T) = \{t \in T : \mathbf{I} \text{ wins } \mathcal{G}_U(T,t)\}.$

Let
$$T$$
 be a subtree of ${}^{<\kappa}\kappa$.

Suppose U is a tree without κ -branches and $X \subseteq {}^{\kappa}\kappa$.

$$K_U(X) = \{x \in X : \mathbf{II} \text{ wins } \mathcal{V}_U(X, x)\};$$

 $S_U(X) = \{x \in X : \mathbf{I} \text{ wins } \mathcal{V}_U(X, x)\}.$

Let T be a subtree of $<\kappa$.

$$K_U(T) = \{t \in T : \mathbf{II} \text{ wins } \mathcal{G}_U(T, t)\};$$

 $S_U(T) = \{t \in T : \mathbf{I} \text{ wins } \mathcal{G}_U(T, t)\}.$

Theorem (Sz.)

Let T be a subtree of ${}^{<\kappa}\kappa$ and let U be a tree without κ -branches.

- 1. $K_U([T]) \subseteq [K_U(T)]$.
- 2. $[T] S_U([T]) \subseteq [T S_U(T)].$
- 3. If κ has the tree property and T is a κ -tree, then

$$K_U([T]) = [K_U(T)].$$

Thank you!