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The density points of a set

Let � denote Lebesgue measure on R.

Definition
Let A ✓ R be measurable and let x 2 R. Define the density of x in A as

Dx(A) = lim
"!0

�(A \ U"(x))

�(U")

and the set of points of density 1 in A or density points of A as

�(A) = {x 2 R | Dx(A) = 1},

This definition makes sense for any metric space equipped with a
Radon measure µ, such as Rn with Lebesgue measure.
. . . In particular, for !! and !2, each with the usual metric and the
usual product measure.
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Lebesgue’s Density Theorem

For simplicity, let (X, µ) be one of
Rn with the standard metric and Lebesgue measure,
Cantor space !2 with the usual metric and product measure (the
coin-tossing measure).

Theorem
For any µ-measurable sets A ✓ X,

�(A) =µ A.

Note the theorem holds in many more Polish metric measure spaces—
cf. two recent works by Andretta-Camerlo and
Andretta-Camerlo-Constantini.
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� as a selector on MALG

Let X be a standard Borel space equipped a Borel probability measure
µ.

Let MEAS(X, µ) denote the measurable, NULL(X, µ) the null, and
BOREL(X) the Borel subsets of X.

Recall that the measure algebra is defined as

MALG = MEAS(X, µ)/ NULL(X, µ) = BOREL(X)/ NULL(X, µ)

In fact MALG is always the same, regardless of X and µ.

Lebesgue’s Density Theorem for (X, µ) implies that � gives rise to a
selector

�̂ : MALG ! MEAS(X, µ),

i.e., �̂([A]µ) 2 [A]µ.
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Some properties of �

The map � is ‘natural’ in that it’s definition is not too complicated:
For any measurable set A, �(A) is ⇧0

3.
The following map is the restriction of a ⌃1

1 relation to a ⇧1
1 set

� � BOREL(X) : BOREL(X) ! ⇧0
3

when viewed as a map sending codes to codes.

The map � also has nice algebraic properties, for example:
A =µ B ) �(A) = �(B) (well-defined on [A]µ)
A ✓µ B ) �(A) ✓ �(B) (monotonic)
�(A \B) = �(A) \ �(B) (preserves \)
�(A) \ �(A{) = ; (disjointness property, follows from previous)
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A Lebesgue Density Theorem for ideals?

From forcing, we know many more ideals, each with their own notion of
measurability. . .

Question
For which of those ideals is there an analogue of Lebesgue’s Density
Theorem?

The short answer:
We can define a notion of density point with nice properties which
works for a large class of ccc forcings,
As a counterexample, we show no even remotely ‘nice’ notion of
density point works for Sacks forcing.
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Ideals from forcing

Let X denote !! or !2, and suppose P is a set of perfect trees on ! or
2, respectively. As usual [T ] denotes the set of branches through T .

(Of course hP,◆i is a forcing, but we will not force in this talk.)

Definition
For X ✓ X,

X 2 NP () 8T 2 P 9T 0 2 P s.t. T 0 ✓ T and [T 0] \X = ;.
Let IP denote the �-ideal generated by IP.
X 2 I⇤P () 8T 2 P 9T 0 2 P s.t. T 0 ✓ T and [T 0] \X 2 IP.
X 2 MEASP(X) () 8T 2 P 9T 0 2 P s.t. T 0 ✓ T and
([T 0] ✓I⇤P

X or [T 0] ✓I⇤P
X{).

In all cases currently of interest one can show IP = I⇤P.

Schrittesser (KGRC) Lebesgue’s Density Theorem for Ideals Generalized Baire Spaces ’18 7 / 13



Some assumptions on P

We make the following assumptions from now on:
If T 2 P and s 2 T , Ts = { t 2 T | t ✓ s _ s ✓ t} 2 P.
I⇤P = IP.
BOREL(X) ✓ MEASP(X).

These assumptions hold for a very large class of forcings—e.g., the
strongly arboreal forcings that satisfy the ccc or fusion.
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The Main Definition

Recall P is a set of perfect trees on ! or 2. For T 2 P, recall that the
stem of T is defined as follows:

stemT = max{t 2 T | (8s 2 T ) (s ✓ t _ t ✓ s)}.

Definition
Given t in <!! or <!2 let

Lt = {T 2 P | stemT = t }

and for A 2 MEASP(X) let

�P(A) = {x 2 X | (81n)(8T 2 Lx�n) [T ] \A /2 IP}

In the relevant case, each set Lt will consist of pairwise compatible
conditions. . .
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Example: Random forcing

Let X = !2 with the usual product measure µ (the coin-tossing
measure).

We can regard Random forcing as the set of conditions

P = {T | T is a perfect tree on 2 and
µ([T ])

2lh(stemT )
>

1

2
}

(ordered by ◆).

Then for all A 2 MEAS(X, µ),

�P(A) =µ �(A)

(but the two notions of density points don’t coincide).
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The Main Definition, Second Take

Equivalently, define

L = L; = {T 2 P | stemT = ;}.

Definition
For A ✓ X, say A is L-positive, or A 2 L+, iff

(8T 2 L) [T ] \A /2 IP.

Given t in <!! or <!2, define the shift map �t : X ! X by

�t(x) = t _ x

Then
�P(A) = {x 2 X | (81n) (�x�n)

�1[A] 2 L+}
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Properties of �P

Theorem
Suppose P is strongly linked (cf. the following talk by Sandra Müller),
and P and as well as ?P are ⌃1

1.
Then �P � BOREL(X) is absolutely �1

2 as a map from Borel codes to
Borel codes, and for A,B 2 BOREL(X)

�P(A) 2 [A]IP ,
A =IP B ) �P(A) = �P(B),
�P(A) 2 ⌃0

2,
A ✓IP B ) �P(A) ✓IP �P(B) (almost preserves ✓),
�P(A \B) =IP �P(A) \ �P(B) (almost preserves \).

Sandra Müller will also present a theorem that rules out any such map
for Sacks forcing satisfying even the first two requirements.
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Thank you for your attention!

Foto source: en.wikipedia.org/
w/index.php?curid=40177109.

“Does anyone believe that the
difference between the
Lebesgue and Riemann

integrals can have physical
significance, and that whether

say, an airplane would or would
not fly could depend on this

difference? If such were
claimed, I should not care to fly

in that plane.”

Richard W. Hamming, in: N. Rose, Mathematical
Maxims and Minims, Raleigh NC: Rome Press Inc.,
1988.

Next up: Part II by Sandra Müller
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Density property
Let I be an ideal and � : BOREL ! BOREL be a function such that for
all Borel sets A and B, A =I B ) �(A) = �(B).

Definition
1 Say that � is I-compatible iff

A ✓I B ) �(A) ✓I �(B)

and A \B 2 I ) �(A) \ �(B) 2 I

for all Borel sets A and B.
2 Say that � is I-positive iff �(A) \A /2 I for all Borel sets A /2 I.

Proposition
The following statements are equivalent.

1 � is I-compatible and I-positive.
2 � has the I-density property, i.e. �(A) =I A for all Borel sets A.

Define the properties we need and state the equivalence. Check that
this is really an equivalence, maybe sketch the proof here.
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Density property

Proposition
The following statements are equivalent.

1 � is I-compatible and I-positive.
2 � has the I-density property, i.e. �(A) =I A for all Borel sets A.

Proof.

It is clear that the I-density property implies that � is I-positive and
I-compatible. For the converse, take any Borel set A. We aim to show
that �(A) =I A.

We first show that B0 = A \ �(A) 2 I. Towards a contradiction,
assume that B0 /2 I. Then �(B0) \ �(A) /2 I, since it contains
�(B0) \B0 as a subset, and the latter is not in I since � is I-positive.
On the other hand, we have �(B0) \ �(A) 2 I since B0 ✓I A and � is
I-compatible.
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Density property

Proposition
The following statements are equivalent.

1 � is I-compatible and I-positive.
2 � has the I-density property, i.e. �(A) =I A for all Borel sets A.

Proof.
It remains to show that B1 = �(A) \A 2 I.

Assume that B1 /2 I, so in
particular �(A) /2 I. The set C = �(B1) \B1 /2 I, since � is
I-positive. We have �(B1) \ �(A) 2 I since B1 \A = ; and � is
I-compatible. Hence C ✓ �(B1) implies C \ �(A) 2 I. However, this
contradicts the fact that C ✓I B1 ✓I �(A).

Müller (KGRC) Lebesgue’s Density Theorem for Ideals Generalized Baire Spaces ’18 3 / 11



Density property

Proposition
The following statements are equivalent.

1 � is I-compatible and I-positive.
2 � has the I-density property, i.e. �(A) =I A for all Borel sets A.

Proof.
It remains to show that B1 = �(A) \A 2 I. Assume that B1 /2 I, so in
particular �(A) /2 I. The set C = �(B1) \B1 /2 I, since � is
I-positive.

We have �(B1) \ �(A) 2 I since B1 \A = ; and � is
I-compatible. Hence C ✓ �(B1) implies C \ �(A) 2 I. However, this
contradicts the fact that C ✓I B1 ✓I �(A).

Müller (KGRC) Lebesgue’s Density Theorem for Ideals Generalized Baire Spaces ’18 3 / 11



Density property

Proposition
The following statements are equivalent.

1 � is I-compatible and I-positive.
2 � has the I-density property, i.e. �(A) =I A for all Borel sets A.

Proof.
It remains to show that B1 = �(A) \A 2 I. Assume that B1 /2 I, so in
particular �(A) /2 I. The set C = �(B1) \B1 /2 I, since � is
I-positive. We have �(B1) \ �(A) 2 I since B1 \A = ; and � is
I-compatible. Hence C ✓ �(B1) implies C \ �(A) 2 I.

However, this
contradicts the fact that C ✓I B1 ✓I �(A).

Müller (KGRC) Lebesgue’s Density Theorem for Ideals Generalized Baire Spaces ’18 3 / 11



Density property

Proposition
The following statements are equivalent.

1 � is I-compatible and I-positive.
2 � has the I-density property, i.e. �(A) =I A for all Borel sets A.

Proof.
It remains to show that B1 = �(A) \A 2 I. Assume that B1 /2 I, so in
particular �(A) /2 I. The set C = �(B1) \B1 /2 I, since � is
I-positive. We have �(B1) \ �(A) 2 I since B1 \A = ; and � is
I-compatible. Hence C ✓ �(B1) implies C \ �(A) 2 I. However, this
contradicts the fact that C ✓I B1 ✓I �(A).

Müller (KGRC) Lebesgue’s Density Theorem for Ideals Generalized Baire Spaces ’18 3 / 11



I-compatibility

For which ideals I is our density function �s I-compatible?

Definition
A tree forcing P has the stem property if for all T 2 P and I-almost all
x 2 [T ], there are infinitely many n 2 ! such that there is some T 0  T
with x 2 [T 0] and stemT 0 = x � n.

Lemma
Let P be a ccc tree forcing with the stem property and I = IP. Then
�s is I-compatible.
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I-positivity for strongly linked forcings

For which ideals I is our density function �s I-positive?

Definition
A tree forcing P is strongly linked if any S, T 2 P with stemS ✓ stemT

and stemT 2 S are compatible in P.

Note that strongly linked implies �-linked and hence ccc.

Lemma
Let P be a strongly linked tree forcing with the stem property and
I = IP. Let T 2 P. Then I-almost all x 2 [T ] are I-density points of
[T ].

This implies that �s is IP-positive.
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Examples: Ideals with the density property

Corollary
Suppose P is a strongly linked tree forcing with the stem property and
let I = IP. Then �s has the density property.

In particular, �s has the density property for
Cohen forcing C,
Hechler forcing H,
eventually different reals forcing E,
Laver forcing with a filter LF , and
Mathias forcing with a translation invariant filter RF .
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Ideals without the density property

How about non-ccc ideals?

Proposition
�s does not have the density property for

Mathias forcing R,
Silver forcing V,
Sacks forcing S,
Laver forcing L, and
Miller forcing M.
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A strong failure of the density property for Sacks
forcing

There is no Baire measurable function � with the density property
yielding a notion of density points for the ideal I of countable sets.

Definition
A selector for an equivalence relation is a function that picks an
element from each equivalence class. Here we will have equivalence
relations E ✓ F on a set Y and a selector for the equivalence relation
induced by F on Y/E.

Let ⇤ denote the set of Borel codes and let Bx denote the set with code
x 2 ⇤. Moreover, consider the following equivalence relations on ⇤:

(x, y) 2 E= () Bx = By

and (x, y) 2 EI () Bx4By 2 I.
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relations E ✓ F on a set Y and a selector for the equivalence relation
induced by F on Y/E.

Let ⇤ denote the set of Borel codes and let Bx denote the set with code
x 2 ⇤. Moreover, consider the following equivalence relations on ⇤:

(x, y) 2 E= () Bx = By

and (x, y) 2 EI () Bx4By 2 I.
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A strong failure of the density property for Sacks
forcing

Definition
A selector for I with Borel values is a selector for EI/E= on ⇤.

Theorem
There is no Baire measurable selector for I with Borel values.

Almost the same proof also shows:

Theorem
1 There is no Baire measurable selector for I with ⌃

1
2 values.

2 Assuming PD, there is no Baire measurable selector for I with
projective values.
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Open questions

Question
Is the existence of a simply definable selector equivalent to the ccc for
all homogeneous �-ideals?

Question
Is there a Baire measurable selector with Borel values for other
non-ccc ideals?
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“This new integral of Lebesgue
is proving itself a wonderful tool.

I might compare it with a
modern Krupp gun, so easily

does it penetrate barriers which
were impregnable.”

Edward Burr Van Vleck, Current Tendencies of
Mathematical Research, Bulletin of the American
Mathematical Society (Oct 1916)

Thank you for your attention!
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