Any $<\kappa$ -closed forcing adding a dominating κ -real adds a κ -Cohen real.

Yurii Khomskii

with Marlene Koelbing, Giorgio Laguzzi and Wolfgang Wohofsky

KNAW Academy Colloquium Generalised Baire Spaces

Amsterdam, 23 August 2018

Main result

Theorem (K-Koelbing-Laguzzi-Wohofsky)

Any $<\kappa$ -closed forcing adding a dominating κ -real adds a κ -Cohen real.

Some background

In the classical setting $\kappa=\omega$, Cohen forcing adds Cohen reals but no dominating reals, and Laver forcing adds dominating but no Cohen reals.

- $x \leq^* y$ (y dominates x) iff $\forall^{\infty} n (x(n) < y(n))$
- \circ d is a dominating real over M if d dominates every real in M.

\mathfrak{b} and $\operatorname{cov}(\mathcal{M})$

In the language of cardinal invariants:

- iterated Cohen forcing gives consistency of $\mathfrak{b} < \operatorname{cov}(\mathcal{M})$.
- iterated Laver forcing gives consistency of $cov(\mathcal{M}) < \mathfrak{b}$.

- b is the least size of an $F \subseteq \omega^{\omega}$ which **cannot** be dominated by a single $x \in \omega^{\omega}$.
- $cov(\mathcal{M})$ is the least size of a family $\{X_{\alpha} \mid \alpha < \gamma\}$ such that $\bigcup_{\alpha < \gamma} X_{\alpha} = \omega^{\omega}$.

\mathfrak{b} and $\operatorname{cov}(\mathcal{M})$

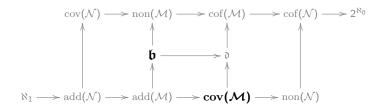
In the language of cardinal invariants:

- iterated Cohen forcing gives consistency of $\mathfrak{b} < \operatorname{cov}(\mathcal{M})$.
- iterated Laver forcing gives consistency of $cov(\mathcal{M}) < \mathfrak{b}$.

- b is the least size of an $F \subseteq \omega^{\omega}$ which **cannot** be dominated by a single $x \in \omega^{\omega}$.
- $cov(\mathcal{M})$ is the least size of a family $\{X_{\alpha} \mid \alpha < \gamma\}$ such that $\bigcup_{\alpha < \gamma} X_{\alpha} = \omega^{\omega}$.

to increase	use a forcing which
ь	adds dominating reals
$cov(\mathcal{M})$	adds Cohen reals

Cichoń's diagram



Generalized Baire spaces

Generalizing the Cichoń diagram to the context of uncountable κ is one of the ongoing open projects in the study of generalized Baire spaces.

Dominating reals, Cohen reals, \mathfrak{b} and $\operatorname{cov}(\mathcal{M})$ all have straightforward generalizations.

- For $x, y \in \kappa^{\kappa}$, $x \leq^* y$ iff $\exists \alpha_0 < \kappa \ \forall \alpha > \alpha_0 \ (x(\alpha) < y(\alpha))$.
- lacktriangledown \mathcal{M}_{κ} is the ideal of κ -meager sets, i.e., κ -unions of nowhere dense sets.
- κ -Cohen forcing \mathbb{C}_{κ} is the forcing with basic open conditions $\{[\sigma] \mid \sigma \in \kappa^{<\kappa}\}$ ordered by inclusion.
- \mathfrak{b}_{κ} and $\operatorname{cov}(\mathcal{M}_{\kappa})$ as usual.

\mathfrak{b}_{κ} and $\operatorname{cov}(\mathcal{M}_{\kappa})$

 κ -Cohen forcing does not add dominating κ -reals. Therefore $\operatorname{Con}(\mathfrak{b}_{\kappa} < \operatorname{cov}(\mathcal{M}_{\kappa}))$.

\mathfrak{b}_{κ} and $\operatorname{cov}(\mathcal{M}_{\kappa})$

 κ -Cohen forcing does not add dominating κ -reals. Therefore $\mathrm{Con}(\mathfrak{b}_{\kappa} < \mathrm{cov}(\mathcal{M}_{\kappa}))$.

Question

Is it consistent that $cov(\mathcal{M}_{\kappa}) < \mathfrak{b}_{\kappa}$?

 Jörg Brendle, Andrew Brooke-Taylor, Sy-David Friedman, Diana Montoya, Cichoń's diagram for uncountable cardinals, Israel J. Math 225:2 (2018), Question 84.

\mathfrak{b}_{κ} and $\operatorname{cov}(\mathcal{M}_{\kappa})$

 κ -Cohen forcing does not add dominating κ -reals. Therefore $\operatorname{Con}(\mathfrak{b}_{\kappa} < \operatorname{cov}(\mathcal{M}_{\kappa}))$.

Question

Is it consistent that $cov(\mathcal{M}_{\kappa}) < \mathfrak{b}_{\kappa}$?

 Jörg Brendle, Andrew Brooke-Taylor, Sy-David Friedman, Diana Montoya, Cichoń's diagram for uncountable cardinals, Israel J. Math 225:2 (2018), Question 84.

Specifically, this would hold if we had a forcing adding dominating κ -reals but no Cohen κ -reals.

Rumour

Rumour

 $\operatorname{Con}(\operatorname{cov}(\mathcal{M}_{\kappa}) < \mathfrak{b}_{\kappa})$ was proved by Shelah et al., but with a different method: starting from a model of $\kappa^+ < \mathfrak{b}_{\kappa} = 2^{\kappa}$ and adding a witness for $\operatorname{cov}(\mathcal{M}_{\kappa})$ of size κ^+ .

Main result

Theorem (K-Koelbing-Laguzzi-Wohofsky)

Any $<\kappa$ -closed forcing adding a dominating κ -real adds a κ -Cohen real.

Main result

Theorem (K-Koelbing-Laguzzi-Wohofsky)

Any $<\kappa$ -closed forcing adding a dominating κ -real adds a κ -Cohen real.

The most natural forcing to do this would be a generalization of **Laver forcing**.

First we prove a preliminary result: any suitable generalization of Laver forcing necessarily adds a κ -Cohen real. Then we use this to prove the main theorem.

Laver forcing

Definition

A **Laver tree** is a $T \subseteq \omega^{<\omega}$ such that for all $\sigma \in T$ extending stem(T), the set $\operatorname{succ}_T(\sigma)$ is infinite. $\mathbb L$ is the forcing consisting of Laver trees ordered by inclusion.

In the classical case, $\mathbb L$ adds a dominating real but satisfies the so-called "Laver property", which is preserved by iterations and implies that no Cohen reals are added. Hence, if $V \models \mathsf{CH}$ then $V^{\mathbb L_{\omega_2}} \models \mathrm{cov}(\mathcal M) < \mathfrak b$.

Generalizing Laver forcing

How do you generalize Laver forcing to the κ^{κ} -setting?

Definition

A κ -Laver tree is a tree $T \subseteq \kappa^{<\kappa}$ which is

- ① **limit-closed** (if $\{\sigma_{\alpha} : \alpha < \kappa\} \subseteq T$ is an increasing sequence of nodes, then $\bigcup_{\alpha < \kappa} \sigma_{\alpha} \in T$), and
- ② for all $\sigma \in T$ extending stem(T), $|\operatorname{succ}_{T}(\sigma)| = \kappa$.

Let \mathbb{L}_{κ} denote the set of such trees ordered by inclusion.

Laver trees and Cohen reals

 \mathbb{L}_{κ} itself is a bit useless (e.g., we can show that it adds new subsets of ω), but one could consider other forcings whose conditions are Laver trees, e.g., by requiring that $\operatorname{succ}_{\mathcal{T}}(\sigma)$ has additional properties (contains a club, is contained in a measure U on κ , etc.)

Laver trees and Cohen reals

 \mathbb{L}_{κ} itself is a bit useless (e.g., we can show that it adds new subsets of ω), but one could consider other forcings whose conditions are Laver trees, e.g., by requiring that $\mathrm{succ}_{\mathcal{T}}(\sigma)$ has additional properties (contains a club, is contained in a measure U on κ , etc.)

However, any such partial order is going to add a κ -Cohen real.

Theorem (K-Koelbing-Laguzzi-Wohofsky)

Let $\mathbb{P} \subseteq \mathbb{L}_{\kappa}$ be any partial order closed under the following condition:

$$T\in\mathbb{P},\;\sigma\in T\;\;\Rightarrow\;\;T\!\uparrow\!\sigma:=\{\tau\in T:\sigma\subseteq\tau\vee\tau\subseteq\sigma\}\in\mathbb{P}.$$

Then \mathbb{P} adds a κ -Cohen real.

Supremum game

Definition

Let S be a stationary subset of $Cof_{\omega}(\kappa) = \{\alpha > \kappa : cf(\alpha) = \omega\}$. The **supremum game** $G^{sup}(S)$ is:

$$\frac{I \mid A_0 \qquad A_1 \qquad \dots}{II \mid \beta_0 \qquad \beta_1 \qquad \dots}$$

- $A_n \subseteq \kappa$ with $|A_n| = \kappa$,
- $\beta_n \in A_n$.
- Player II wins iff $\sup\{\beta_n : n < \omega\} \in S$.

Supremum game

Lemma

Let $S \subseteq \operatorname{Cof}_{\omega}(\kappa)$ be any stationary set. Then Player I does **not** have a winning strategy in $G^{\sup}(S)$.

Supremum game

Proof.

Let σ be a strategy for Player I. Let $M \prec H_{\theta}$ be elementary for sufficiently large θ , such that $|M| < \kappa$, $\sigma \in M$ and $\delta := \sup(M \cap \kappa) \in S$.

We can do this because $\{\sup(M\cap\kappa)\ :\ M\prec H_\theta\wedge |M|<\kappa\wedge\sigma\in M\}$ contains a club.

Note that $cf(\delta) = \omega$. Choose $\{\gamma_n : n < \omega\}$ cofinal in δ with $\gamma_n \in M$ for all n.

At each step n, inductively assume all A_k and β_k for k < n are in M and let $A_n := \sigma(A_0, \beta_0, \dots, \beta_{n-1})$. Since $\sigma \in M$, $A_n \in M$. Notice that H_θ satisfies the following statement:

$$\exists \beta > \gamma_n \ (\beta \in A_n).$$

By elementarity, it is also true in M, so let $\beta_n \in M$ be such.

by elementality, it is also true in M, so let $\beta_n \subset M$ be such.

On the other hand, since $\gamma_n \leq \delta_n$ for all n, we have

 $\sup_n \{\beta_n : n < \omega\} \ge \sup_n \{\gamma_n : n < \omega\} = \delta$. So $\sup_n \{\beta_n : n < \omega\} = \delta \in S$, and so σ was not winning for Player I.

This gives a sequence $\langle \beta_n : n < \omega \rangle$ with $\beta_n \in M \cap \kappa$ for all n, so $\sup_n \{ \beta_n : n < \omega \} < \delta$.

Short Laver trees

Definition

A **short** κ -Laver tree is a tree $T \subseteq \kappa^{<\omega}$ such that

$$\forall \sigma \in T (|\operatorname{succ}_{T}(\sigma)| = \kappa).$$

Corollary

Let $S \subseteq \operatorname{Cof}_{\omega}(\kappa)$ be stationary. If T is a short κ -Laver tree, then $\exists x \in [T]$ such that $\sup\{x(n) : n < \omega\} \in S$.

Proof.

The tree T defines a strategy for Player I in the game $G^{sup}(S)$, which cannot be winning by the previous Lemma.

Laver trees add Cohen reals

Let $S_0 \cup S_1$ be a stationary/co-stationary partition of $Cof_{\omega}(\kappa)$. Define the mapping $\varphi : \kappa^{\kappa} \to 2^{\kappa}$ by

$$\varphi(x)(\alpha) := \begin{cases} 1 & \text{if } \sup\{x(\omega \cdot \alpha + n) : n < \omega\} \in S_0 \\ 0 & \text{if } \sup\{x(\omega \cdot \alpha + n) : n < \omega\} \notin S_1 \end{cases}$$

in other words:

"cut x up into κ -many ω -chunks, and map each chunk $x \upharpoonright [\lambda, \lambda + \omega)$ to 1 or 0 depending on whether the supremum is in S_0 or S_1 ."

Proof of Theorem

Theorem (K-Koelbing-Laguzzi-Wohofsky)

Let $\mathbb{P} \subseteq \mathbb{L}_{\kappa}$ be any forcing closed under the following condition:

$$T \in \mathbb{P}, \ \sigma \in T \ \Rightarrow \ T \uparrow \sigma \in \mathbb{P}.$$

Then \mathbb{P} adds a κ -Cohen real.

Proof of theorem.

Let $x_G \in \kappa^{\kappa}$ be the generic κ -real added by \mathbb{P} (obtained by $\bigcup \{\text{stem}(T) : T \in G\}$). We show that $\varphi(x_G)$ is κ -Cohen.

Let $T\in\mathbb{P}$ be arbitrary and D dense in κ -Cohen. Let $\sigma:=\operatorname{stem}(T)$. Let $s:=\varphi(\sigma)$ and let $t\in D$ extend s. By repeatedly applying the previous Corollary, we can find $\tau\in T$ such that $\sigma\subseteq \tau$ and $\varphi(\tau)=t$. By the closure assumption on \mathbb{P} , it follows that $T\!\uparrow\!\tau\in\mathbb{P}$ and clearly $T\!\uparrow\!\tau\Vdash\varphi(\dot{x}_G)\in[t]\in D$.

Thus $\varphi(x_G)$ is Cohen.

A stronger result

We can actually improve the above result a bit.

Definition

A tree $T\subseteq \kappa^{<\kappa}$ is called a **pseudo-\kappa-Laver tree** if it is limit-closed and has the following property: $\forall \sigma \in T \ \exists \tau \in T \ \text{s.t.}$ $\sigma \subseteq \tau$ and $T \upharpoonright [|\tau|, |\tau| + \omega)$ is a short κ -Laver tree. We use $\mathsf{p} \mathbb{L}_{\kappa}$ to denote the partial order of pseudo- κ -Laver trees ordered by inclusion.

A stronger result

Theorem (K-Koelbing-Laguzzi-Wohofsky)

Let $\mathbb{P} \subseteq p\mathbb{L}_{\kappa}$ be any forcing closed under the following condition:

$$T \in \mathbb{P}, \ \sigma \in T \ \Rightarrow \ T \uparrow \sigma \in \mathbb{P}.$$

Then \mathbb{P} adds a κ -Cohen real.

Proof.

Similar as before, but instead we consider a stationary partition $\{S_t : t \in \kappa^{<\kappa}\}$ of $Cof_{\omega}(\kappa)$. We can do this because $\kappa^{<\kappa} = \kappa$.

Use the mapping $\pi: \kappa^{\kappa} \to 2^{\kappa}$ given by $\pi(x) := t_0 {^\frown} t_1 {^\frown} t_2 {^\frown} \dots$, where for all $\alpha < \kappa$, t_α is such that $\sup \{x(\alpha \cdot \omega + n) : n < \omega\} \in S_{t_\alpha}$.

Then, to force that $\pi(x_G)$ is Cohen, one only needs to extend the stem **once**, so that the supremum is contained in the appropriate S_t .

Back to the main result

Definition

For $f: \kappa^{<\kappa} \to \kappa$ and $x \in \kappa^{\kappa}$, we say that x strongly dominates f if

$$\exists \alpha \ \forall \beta > \alpha \ (x(\beta) > f(x \upharpoonright \beta)).$$

If M is a model of set theory, then x is **strongly dominating over** M if for all $f: \kappa^{<\kappa} \to \kappa$ with $f \in M$, x strongly dominates f.

If x is strongly dominating over M then x is dominating over M, but not vice versa. However:

Dominating vs. strongly dominating

Lemma

Let $M \models \kappa^{<\kappa} = \kappa$. If there is a dominating real over M, then there is a strongly dominating real over M.

Proof.

Let $\{\sigma_i : i < \kappa\}$ enumerate $\kappa^{<\kappa}$ in M, and we write $[\sigma] = i$ iff $\sigma = \sigma_i$.

If d is dominating over M, inductively define $x(\alpha) := d(\lceil x \rceil \alpha \rceil)$. We claim that x is strongly dominating over M.

Let $f: \kappa^{<\kappa} \to \kappa$ be in M, then z defined by $z(i) := f(\sigma_i)$ is also in M. Hence, for all but $<\kappa$ -many i we have z(i) < d(i). Hence, for all but $<\kappa$ -many α we have $z(\alpha) = d(\lceil x \upharpoonright \alpha \rceil) > z(\lceil x \upharpoonright \alpha \rceil) = f(x \upharpoonright \alpha)$.

Interpretation structure

Let $\mathbb P$ be a $<\kappa$ -closed forcing and $\dot x$ a $\mathbb P$ -name for an element of κ^κ .

Definition

The \dot{x} -decision structure is the collection:

$$U_{\dot{x}} := \{ (\sigma, q) : q \Vdash \sigma \subseteq \dot{x} \}$$

ordered by $(\sigma, q) \subseteq (\tau, r)$ iff $\sigma \subseteq \tau$ and $r \le q$.

Interpretation structure

Let $\mathbb P$ be a $<\kappa$ -closed forcing and $\dot x$ a $\mathbb P$ -name for an element of κ^κ .

Definition

The \dot{x} -decision structure is the collection:

$$U_{\dot{x}} := \{ (\sigma, q) : q \Vdash \sigma \subseteq \dot{x} \}$$

ordered by $(\sigma, q) \subseteq (\tau, r)$ iff $\sigma \subseteq \tau$ and $r \le q$.

Note: $U_{\dot{x}}$ is not a tree. However, we call $(\sigma,q) \in U_{\dot{x}}$ κ -splitting if there are $\{\xi_{\alpha}: \alpha<\kappa\}$ and corresponding $\{q_{\alpha}: \alpha<\kappa\}$ such that $(\sigma^{\frown}\langle\xi_{\alpha}\rangle,q_{\alpha})\in U_{\dot{x}}$ and $(\sigma,q) \leq (\sigma^{\frown}\langle\xi_{\alpha}\rangle,q_{\alpha})$ for all α . Otherwise, we say that (σ,q) is $<\kappa$ -splitting.

Strongly dominating reals

Lemma

Suppose \dot{x} is a name such that $p_0 \Vdash_{\mathbb{P}} \dot{x}$ is a strongly dominating κ -real. Then for every $p \leq p_0$ there is $(\sigma,q) \in U_{\dot{x}}$ with $q \leq p$, such that all $(\tau,r) \in U_{\dot{x}}$ with $(\sigma,q) \unlhd (\tau,r)$ are κ -splitting.

Proof.

Suppose not, and fix a counterexample $p \leq p_0$. Define $f: \kappa^{<\kappa} \to \kappa$ thus: for every $\tau \in \kappa^{<\kappa}$, **if there exists** $r \in \mathbb{P}$ such that $(\tau, r) \in U_{\dot{x}}$ and is $<\kappa$ -splitting, then let $f(\tau) := \delta$ where δ is the an upper bound. For all other τ , let $f(\tau) := 0$.

Since $p \Vdash \dot{x}$ is strongly dominating, there exists $p' \leq p$, and an ordinal β_0 , such that

$$p' \Vdash \forall \alpha > \beta_0 \ (\dot{x}(\alpha) > f(\dot{x} \upharpoonright \alpha))$$
 (*)

Let $q \leq p'$ decide $\dot{x} \upharpoonright \beta_0$, which is possible because \mathbb{P} is $<\kappa$ -closed. In other words, there is σ with $|\sigma| \geq \beta_0$ such that $(q,\sigma) \in U_{\dot{x}}$. By assumption there exists $(\tau,r) \in U_{\dot{x}}$, such that $(\sigma,q) \trianglelefteq (\tau,r)$, and (τ,r) is $<\kappa$ -splitting.

Strongly dominating reals

Lemma

Suppose \dot{x} is a name such that $p_0 \Vdash_{\mathbb{P}} \dot{x}$ is a strongly dominating κ -real. Then for every $p \leq p_0$ there is $(\sigma,q) \in U_{\dot{x}}$ with $q \leq p$, such that all $(\tau,r) \in U_{\dot{x}}$ with $(\sigma,q) \unlhd (\tau,r)$ are κ -splitting.

Proof.

So there exists δ which is larger than all $\xi < \kappa$ for which $\exists s \le r \ (\tau ^\frown \langle \xi \rangle, s) \in U_{\dot{x}}$, and $f(\tau) = \delta$. In other words: for all $s \le r$, if $s \Vdash \tau ^\frown \langle \xi \rangle \subseteq \dot{x}$ then $\xi < \delta$, so in fact $r \Vdash \dot{x}(\alpha) < \delta = f(\tau)$, where $\alpha = |\tau|$. Since also $r \Vdash \tau = \dot{x} \upharpoonright \alpha$, we have $r \Vdash \dot{x}(\alpha) < f(\dot{x} \upharpoonright \alpha)$. But since $r \le q \le p'$ and $\alpha > \beta_0$, this contradicts (*).

|ロ > 《母 > 《き > 《き > こ の へ ©

Proof of Main Theorem

Proof of Main Theorem

Let $\mathbb P$ be a $<\kappa$ -closed forcing adding a dominating κ -real. Then it also adds a strongly dominating κ -real. Let $\dot x$ be a name such that $p_0 \Vdash_{\mathbb P} \dot x$ is strongly dominating. Consider the mapping $\varphi:\kappa^\kappa \to 2^\kappa$ from before (defined using $S_0 \cup S_1 = \operatorname{Cof}_\omega(\kappa)$). We claim that $p_0 \Vdash \varphi(\dot x)$ is κ -Cohen.

Let D be Cohen-dense and $p \leq p_0$. Using the previous Lemma, find a $(\sigma,q) \in U_{\dot{x}}$ such that $q \leq p$ and all $(\tau,r) \in U_{\dot{x}}$ extending (σ,q) are κ -splitting.

Inductively, build a κ -Laver tree L, with stem $(L) = \sigma$, and for every $u \in L$ pick a **unique** $r_u \leq q$ such that $(u, r_u) \in U_{\dot{x}}$.

Proof of Main Theorem

Construction of L:

- $\circ \sigma \in L$, and $r_{\sigma} = q$.
- if $u \in L$ and r_u given, choose a unique $r_{u \cap \langle \xi \rangle} \leq r_u$ for each $\xi < \kappa$ witnessing the κ -splitting of (u, r_u) , and add $u \cap \langle \xi \rangle$ to L.
- for every increasing sequence $\{u_\alpha: \alpha < \lambda\} \subseteq L$, by assumption there is a corresponding increasing sequence of \mathbb{P} -conditions $\{r_{u_\alpha}: \alpha < \lambda\}$. By $<\kappa$ -closure, there exists an extending condition r_λ such that $r_\lambda \Vdash \bigcup_{\alpha < \lambda} \sigma_\alpha \subseteq \dot{x}$. So we can add $\bigcup_{\alpha < \lambda} \sigma_\alpha$ to L.

But then, using the supremum game and going along the Laver tree L, we can find a $(u,r) \in U_{\dot{x}}$ such that $(q,\sigma) \unlhd (u,r)$ and $\varphi(u) \in D$. Since $r \Vdash u \subseteq \dot{x}$, also $r \Vdash \varphi(u) \subseteq \varphi(\dot{x})$, as we had to show. So indeed $p_0 \Vdash \varphi(\dot{x})$ is Cohen.

Proof of Main Theorem

Construction of L:

- $\circ \sigma \in L$, and $r_{\sigma} = q$.
- if $u \in L$ and r_u given, choose a unique $r_{u \frown \langle \xi \rangle} \leq r_u$ for each $\xi < \kappa$ witnessing the κ -splitting of (u, r_u) , and add $u \frown \langle \xi \rangle$ to L.
- for every increasing sequence $\{u_\alpha: \alpha<\lambda\}\subseteq L$, by assumption there is a corresponding increasing sequence of \mathbb{P} -conditions $\{r_{u_\alpha}: \alpha<\lambda\}$. By $<\kappa$ -closure, there exists an extending condition r_λ such that $r_\lambda \Vdash \bigcup_{\alpha<\lambda} \sigma_\alpha \subseteq \dot{x}$. So we can add $\bigcup_{\alpha<\lambda} \sigma_\alpha$ to L.

But then, using the supremum game and going along the Laver tree L, we can find a $(u,r) \in U_{\dot{x}}$ such that $(q,\sigma) \unlhd (u,r)$ and $\varphi(u) \in D$. Since $r \Vdash u \subseteq \dot{x}$, also $r \Vdash \varphi(u) \subseteq \varphi(\dot{x})$, as we had to show. So indeed $p_0 \Vdash \varphi(\dot{x})$ is Cohen.

Remark: If we use the stationary partition $\{S_t: t \in \kappa^{<\kappa}\} \subseteq \mathsf{Cof}_\omega(\kappa)$ and the corresponding mapping π , we only need to assume that $\mathbb P$ is σ -closed and $<\kappa$ -distributive (then it is enough to build a **short** κ -Laver tree at the relevant location).

Thank you!

Yurii Khomskii yurii@deds.nl