Completeness and universality for analytic equivalence relation

Filippo Calderoni

Generalized Baire Spaces 23 August 2018

Notation

Generalized Descriptive Set Theory is the study of definable subsets of the Generalized Baire Spaces κ_{κ} , and of all theirs isomorphic spaces.

Definition

▶ The κ^+ -Borel sets of a topological space are the ones obtained from the open sets by the operations of complementation and unions of size $\leq \kappa$.

- ▶ The κ^+ -Borel sets of a topological space are the ones obtained from the open sets by the operations of complementation and unions of size $\leq \kappa$.
- ▶ If $\kappa^{<\kappa} = \kappa$, then κ is a κ -space (κ is a basis of size κ).

- ▶ The κ^+ -Borel sets of a topological space are the ones obtained from the open sets by the operations of complementation and unions of size $\leq \kappa$.
- ▶ If $\kappa^{<\kappa} = \kappa$, then κ is a κ -space (κ is a basis of size κ).
- ▶ A function $f: X \to Y$ is κ^+ -Borel measurable if the preimage of every open $U \subseteq Y$ is κ^+ -Borel.

- ▶ The κ^+ -Borel sets of a topological space are the ones obtained from the open sets by the operations of complementation and unions of size $\leq \kappa$.
- ▶ If $\kappa^{<\kappa} = \kappa$, then κ is a κ -space (κ is a basis of size κ).
- A function $f: X \to Y$ is κ^+ -Borel measurable if the preimage of every open $U \subseteq Y$ is κ^+ -Borel.
 - $f: X \to Y$ is a κ^+ -Borel isomorphism if f^{-1} exists and is κ^+ -Borel.

- ▶ The κ^+ -Borel sets of a topological space are the ones obtained from the open sets by the operations of complementation and unions of size $\leq \kappa$.
- ▶ If $\kappa^{<\kappa} = \kappa$, then κ is a κ -space (κ is a basis of size κ).
- A function $f: X \to Y$ is κ^+ -Borel measurable if the preimage of every open $U \subseteq Y$ is κ^+ -Borel.
 - $f: X \to Y$ is a κ^+ -Borel isomorphism if f^{-1} exists and is κ^+ -Borel.
- ▶ A κ -space is **standard Borel** if it is κ^+ -Borel isomorphic to a κ^+ -Borel subset of κ .

Analytic sets

Definition

A set $A \subseteq X$ is κ^+ -analytic (or Σ_1^1) if it is the continuous image of of a closed subset of κ .

Generalized Borel reducibility

Definition

Let X and Y be standard Borel κ -space, and P,R be binary relations over X and Y, respectively. We say that P Borel reduces to R (or $P \leq_B R$) if and only if there is a κ^+ -Borel $f: X \to Y$ such that

$$x_1 P x_2 \Leftrightarrow f(x_1) R f(x_2)$$
.

Generalized Borel reducibility

Definition

Let X and Y be standard Borel κ -space, and P,R be binary relations over X and Y, respectively. We say that P Borel reduces to R (or $P \leq_B R$) if and only if there is a κ^+ -Borel $f: X \to Y$ such that

$$x_1 P x_2 \Leftrightarrow f(x_1) R f(x_2)$$
.

▶ The notion \leq_B has been used successfully to analyze the complexity of Σ_1^1 quasi-orders and equivalence relations.

Completeness and universality

Definition

An equivalence relation E on a standard κ^+ -Borel space X is a complete analytic equivalence relation (CAER) if

- 1. $E \subseteq X^2$ is Σ_1^1 ;
- 2. Every Σ_1^1 equivalence relation Borel reduces to E.

Completeness and universality

Definition

An equivalence relation E on a standard κ^+ -Borel space X is a complete analytic equivalence relation (CAER) if

- 1. $E \subseteq X^2$ is Σ_1^1 ;
- 2. Every Σ_1^1 equivalence relation Borel reduces to E.
- The classification problem associated to a complete $Σ_1^1$ equivalence relation is as complicated as it could be.

Completeness and universality

Definition

An equivalence relation E on a standard κ^+ -Borel space X is a complete analytic equivalence relation (CAER) if

- 1. $E \subseteq X^2$ is Σ_1^1 ;
- 2. Every Σ_1^1 equivalence relation Borel reduces to E.
- The classification problem associated to a complete $Σ_1^1$ equivalence relation is as complicated as it could be.
- ▶ While many results in GDST are independent from the model of set theory, a lot of results of completeness are derived from ZFC.

Some examples

Theorem (Mildenberger-Motto Ros)

The bi-embeddability relation $\equiv_{\mathsf{GRAPHS}}^{\kappa}$ is a CAER.

Theorem (C. 2018)

The bi-embeddability relation $\equiv_{\mathsf{TFA}}^{\kappa}$ between torsion-free abelian groups of size κ is a CAER.

Some examples

Theorem (Mildenberger-Motto Ros)

The bi-embeddability relation $\equiv_{\mathsf{GRAPHS}}^{\kappa}$ is a CAER.

Theorem (C. 2018)

The bi-embeddability relation $\equiv_{\mathsf{TFA}}^{\kappa}$ between torsion-free abelian groups of size κ is a CAER.

▶ The second theorem was derived before establishing the completeness for $\equiv_{\mathsf{TFA}} = \equiv_{\mathsf{TFA}}^{\omega}$ in the classical framework.

Some examples

Theorem (Mildenberger-Motto Ros)

The bi-embeddability relation $\equiv_{\mathsf{GRAPHS}}^{\kappa}$ is a CAER.

Theorem (C. 2018)

The bi-embeddability relation $\equiv_{\mathsf{TFA}}^{\kappa}$ between torsion-free abelian groups of size κ is a CAER.

- ▶ The second theorem was derived before establishing the completeness for $\equiv_{\mathsf{TFA}} = \equiv_{\mathsf{TFA}}^{\omega}$ in the classical framework.
- ▶ Now we know that \equiv_{TFA} is a CAER (C.-Thomas), but no explicit reduction from \equiv_{GRAPHS} to \equiv_{TFA} is known.

Combing through the literature...

Proposition

The bi-embeddability relation of κ -sized structure is a CAER in the following cases.

- ▶ Unital rings (ess. Fried, and Sichler 1973);
- ► Fields (ess. Fried, and Kollár 1982);
- ▶ Quandles and others (Brooke-Taylor, and S. Miller);
- **...**

Let \mathcal{L} be a language of size $\leq \kappa$, and $\varphi \in \mathcal{L}_{\kappa^+\kappa}$.

Let \mathcal{L} be a language of size $\leq \kappa$, and $\phi \in \mathcal{L}_{\kappa^+\kappa}$.

Definition

The bi-embeddability relation $\equiv_{\varphi}^{\kappa}$ is invariantly universal if for every Σ_1^1 equivalence relation E there is an $\mathcal{L}_{\kappa^+\kappa}$ -sentence ψ such that $X_{\psi} \subseteq X_{\varphi}$ and $E \sim_B \equiv_{\psi}$.

Let \mathcal{L} be a language of size $\leq \kappa$, and $\phi \in \mathcal{L}_{\kappa^+\kappa}$.

Definition

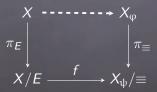
The bi-embeddability relation $\equiv_{\varphi}^{\kappa}$ is strongly invariant universality if for every Σ_1^1 equivalence relation E there is an $\mathcal{L}_{\kappa^+\kappa}$ -sentence ψ such that $X_{\psi} \subseteq X_{\varphi}$ and $E \cong_B \equiv_{\psi}$.

Let \mathcal{L} be a language of size $\leq \kappa$, and $\phi \in \mathcal{L}_{\kappa^+\kappa}$.

Definition

The bi-embeddability relation $\equiv_{\varphi}^{\kappa}$ is strongly invariant universality if for every Σ_1^1 equivalence relation E there is an $\mathcal{L}_{\kappa^+\kappa}$ -sentence ψ such that $X_{\psi} \subseteq X_{\varphi}$ and $E \cong_B \equiv_{\psi}$.

▶ I.e., there is a bijection between the quotient spaces $f: X/E \to X_\psi/\equiv_\varphi$ such that both f and f^{-1} admit Borel lifting.

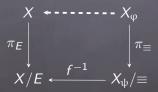


Let \mathcal{L} be a language of size $\leq \kappa$, and $\phi \in \mathcal{L}_{\kappa^+\kappa}$.

Definition

The bi-embeddability relation $\equiv_{\varphi}^{\kappa}$ is strongly invariant universality if for every Σ_1^1 equivalence relation E there is an $\mathcal{L}_{\kappa^+\kappa}$ -sentence ψ such that $X_{\psi} \subseteq X_{\varphi}$ and $E \cong_B \equiv_{\psi}$.

▶ I.e., there is a bijection between the quotient spaces $f: X/E \to X_\psi/\equiv_\varphi$ such that both f and f^{-1} admit Borel lifting.



Strong universality

Theorem (Mildenberger-Motto Ros)

The bi-embeddability relation $\equiv_{\mathsf{GRAPHS}}^{\kappa}$ is strongly invariantly universal.

Theorem (C.-Motto Ros)

The bi-embeddability relation $\equiv_{\mathsf{GROUPS}}^{\kappa}$ is strongly invariantly universal

► The methods generalizes for fields, quandles and other structures...

If A and B are two structures over the languages K and L, respectively, an **interpretation** Γ of A into B is given by

1. \mathcal{L} -formula $\partial_{\Gamma}(x)$;

If A and B are two structures over the languages $\mathcal K$ and $\mathcal L$, respectively, an **interpretation** Γ of A into B is given by

- 1. \mathcal{L} -formula $\partial_{\Gamma}(x)$;
- 2. an \mathcal{L} -formula $\phi_{\Gamma}(x_0, ..., x_n)$ for each unnested atomic \mathcal{K} -formula $\phi(x_0, ..., x_n)$;

If A and B are two structures over the languages K and L, respectively, an **interpretation** Γ of A into B is given by

- 1. \mathcal{L} -formula $\partial_{\Gamma}(x)$;
- 2. an \mathcal{L} -formula $\phi_{\Gamma}(x_0, ..., x_n)$ for each unnested atomic \mathcal{K} -formula $\phi(x_0, ..., x_n)$;
- 3. a surjective map $f_{\Gamma} : \partial_{\Gamma}(B) \to A$;

If A and B are two structures over the languages $\mathcal K$ and $\mathcal L$, respectively, an **interpretation** Γ of A into B is given by

- 1. \mathcal{L} -formula $\partial_{\Gamma}(x)$;
- 2. an \mathcal{L} -formula $\phi_{\Gamma}(x_0, ..., x_n)$ for each unnested atomic \mathcal{K} -formula $\phi(x_0, ..., x_n)$;
- 3. a surjective map $f_{\Gamma} \colon \partial_{\Gamma}(B) \to A$; such that for all unnested atomic K-formulæ $\phi(x_0, \dots, x_n)$ and all $\bar{b} = (b_0, \dots, b_n) \in \partial_{\Gamma}(B)$, we have

$$A \models \varphi[f_{\Gamma}(b_0), \ldots, f_{\Gamma}(b_n)] \iff B \models \varphi_{\Gamma}[b_0, \ldots, b_n].$$

Let $\mathcal{K} = \{R\}$ be the language of graphs.

Let $K = \{R\}$ be the language of graphs.

Lemma (C.-Motto Ros)

There exist a formula $\partial(x)$ and a set of unnested atomic formulæ Φ in the language of groups such that for each graph $G \in X_{\mathsf{GRAPHS}}$, there is a function $f_G \colon \partial(H(G)) \to G$ so that the triple

$$\Gamma := (\partial(x), \Phi, f_G)$$

is an interpretation of G into the group H(G).

Let $K = \{R\}$ be the language of graphs.

Lemma (C.-Motto Ros)

There exist a formula $\partial(x)$ and a set of unnested atomic formulæ Φ in the language of groups such that for each graph $G \in X_{\mathsf{GRAPHS}}$, there is a function $f_G \colon \partial(H(G)) \to G$ so that the triple

$$\Gamma := (\partial(x), \Phi, f_G)$$

is an interpretation of G into the group H(G).

Corollary

For every K-formula $\varphi(\bar{x})$ there is a formula $\varphi_{\Gamma}(\bar{x})$ in the language of groups such that

$$G \models \varphi[f_G(\bar{a})] \iff H(G) \models \varphi_{\Gamma}[\bar{a}].$$

The bi-embeddability relation $\equiv_{\mathsf{GROUPS}}^{\kappa}$ is strongly invariantly universal.

The bi-embeddability relation $\equiv_{\mathsf{GROUPS}}^{\kappa}$ is strongly invariantly universal.

Sketch.

There is a formula ϕ_W such that if $H \models \phi_W$ then

$$H\cong H(G)$$
,

for some graph $G \in X_{\mathsf{GRAPHS}}^{\kappa}$.

The bi-embeddability relation $\equiv_{\mathsf{GROUPS}}^{\kappa}$ is strongly invariantly universal.

Sketch.

There is a formula ϕ_W such that if $H \models \phi_W$ then

$$H\cong H(G),$$

for some graph $G \in X_{\mathsf{GRAPHS}}^{\kappa}$

√ The map on the quotients

$$X_{\mathsf{GRAPHS}}^{\kappa}/{\equiv}\longrightarrow X_{\Phi_W}/{\equiv}$$

induced by H has inverse and admits Borel liftings; and...

The bi-embeddability relation $\equiv_{\mathsf{GROUPS}}^{\kappa}$ is strongly invariantly universal.

Sketch.

There is a formula ϕ_W such that if $H \models \phi_W$ then

$$H\cong H(G),$$

for some graph $G \in X_{\mathsf{GRAPHS}}^{\kappa}$.

√ The map on the quotients

$$X_{\mathsf{GRAPHS}}^{\kappa}/{\equiv}\longrightarrow X_{\Phi_W}/{\equiv}$$

induced by H has inverse and admits Borel liftings; and...

 \checkmark ...the inverse map has Borel lifting too.