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Notation

Generalized Descriptive Set Theory is the study of definable subsets
of the Generalized Baire Spaces “k, and of all theirs isomorphic

spaces.
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Basic definitions

Definition

» The x"-Borel sets of a topological space are the ones
obtained from the open sets by the operations of
complementation and unions of size <k.

» If k<% =k, then "k is a K-space (<"k is a basis of size k).

» e A function f: X — Y is k"-Borel measurable if the preimage
of every open U C Y is k'-Borel.
e f: X = Y is a kT-Borel isomorphism if f~! exists and is
kT-Borel.

» A k-space is standard Borel if it is x™-Borel isomorphic to a
x+-Borel subset of “x .



Analytic sets

Definition
A set A C X is kT-analytic (or X1) if it is the continuous image of
of a closed subset of “k.
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Definition
Let X and Y be standard Borel x-space, and P, R be binary
relations over X and Y, respectively. We say that P Borel reduces
to R (or P <g R) if and only if there is a k™-Borel f: X — Y
such that

X1 PX2 <~ f(Xl) R f(Xg) X

» The notion <pg has been used successfully to analyze the
complexity of X1 quasi-orders and equivalence relations.
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Definition
An equivalence relation E on a standard x*-Borel space X is a
complete analytic equivalence relation (CAER) if

1. EC X%is X1

2. Every X1 equivalence relation Borel reduces to E.

» The classification problem associated to a complete X1
equivalence relation is as complicated as it could be.

» While many results in GDST are independent from the model
of set theory, a lot of results of completeness are derived from

ZFC.
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Some examples

Theorem (Mildenberger-Motto Ros)
The bi-embeddability relation =¢gapys is @ CAER.

Theorem (C. 2018)

The bi-embeddability relation =, between torsion-free abelian
groups of size k is a CAER.

» The second theorem was derived before establishing the
completeness for =1pa = =¥p, in the classical framework.

» Now we know that =tga is a CAER (C.-Thomas), but no
explicit reduction from =grapHs to =TFa is known.



Combing through the
literature. ..

Proposition
The bi-embeddability relation of k-sized structure is a CAER in the
following cases.

» Unital rings (ess. Fried, and Sichler 1973);

» Fields (ess. Fried, and Kollar 1982);

» Quandles and others (Brooke-Taylor, and S. Miller);

> ...
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Strong universality

Theorem (Mildenberger-Motto Ros)

The bi-embeddability relation =¢gapns is strongly invariantly
universal.

Theorem (C.-Motto Ros)

The bi-embeddability relation =¢rqyps IS strongly invariantly
universal.

» The methods generalizes for fields, quandles and other
structures...
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Definition
If A and B are two structures over the languages K and L,
respectively, an interpretation I of A into B is given by

1. L-formula or(x);
2. an L-formula ¢r(xo, ..., x,) for each unnested atomic
K-formula ¢(xo, ..., Xn);
3. a surjective map fr: Or(B) — A;
such that for all unnested atomic K-formulze ¢(xo, ..., x,) and all
b= (bo,...,bn) € Or(B), we have

A ): d)[fr(bo), 0 fr(bn)] <~— B }: d)r[bo, 5.0 bn].






Let K = {R} be the language of graphs.

Lemma (C.-Motto Ros)

There exist a formula 9(x) and a set of unnested atomic formulae ©
in the language of groups such that for each graph G € XgrapHs,
there is a function fg: O(H(G)) — G so that the triple

M= (3(x), D, f¢)

is an interpretation of G into the group H(G).
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Lemma (C.-Motto Ros)

There exist a formula 9(x) and a set of unnested atomic formulae ©
in the language of groups such that for each graph G € XgrapHs,
there is a function fg: O(H(G)) — G so that the triple

M= (0(x), D, fs)

is an interpretation of G into the group H(G).

Corollary

For every K-formula ¢(X) there is a formula ¢r(X) in the language
of groups such that

G = ¢lfe(3)] < H(G) = rlal.
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Theorem (C.-Motto Ros)

The bi-embeddability relation =¢rqps is strongly invariantly
universal.

Sketch.
There is a formula ¢y such that if H = ¢ then

H = H(G),

for some graph G € Xfrapus-
v" The map on the quotients

XerapHs /= — Xoy /=

induced by H has inverse and admits Borel liftings; and...

v’ ...the inverse map has Borel lifting too.



