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Notation

Generalized Descriptive Set Theory is the study of definable subsets
of the Generalized Baire Spaces κκ, and of all theirs isomorphic
spaces.



Basic definitions

Definition

I The κ+-Borel sets of a topological space are the ones
obtained from the open sets by the operations of
complementation and unions of size ≤κ.

I If κ<κ = κ, then κκ is a κ-space (<κκ is a basis of size κ).

I • A function f : X → Y is κ+-Borel measurable if the preimage
of every open U ⊆ Y is κ+-Borel.

• f : X → Y is a κ+-Borel isomorphism if f −1 exists and is
κ+-Borel.

I A κ-space is standard Borel if it is κ+-Borel isomorphic to a
κ+-Borel subset of κκ .
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Analytic sets

Definition
A set A ⊆ X is κ+-analytic (or Σ1

1) if it is the continuous image of
of a closed subset of κκ.



Generalized Borel reducibility

Definition
Let X and Y be standard Borel κ-space, and P,R be binary
relations over X and Y , respectively. We say that P Borel reduces
to R (or P ≤B R) if and only if there is a κ+-Borel f : X → Y
such that

x1 P x2 ⇔ f (x1) R f (x2) .

I The notion ≤B has been used successfully to analyze the
complexity of Σ1

1 quasi-orders and equivalence relations.
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Completeness and universality

Definition
An equivalence relation E on a standard κ+-Borel space X is a
complete analytic equivalence relation (CAER) if
1. E ⊆ X 2 is Σ1

1;
2. Every Σ1

1 equivalence relation Borel reduces to E .

I The classification problem associated to a complete Σ1
1

equivalence relation is as complicated as it could be.

I While many results in GDST are independent from the model
of set theory, a lot of results of completeness are derived from
ZFC.
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Some examples

Theorem (Mildenberger-Motto Ros)
The bi-embeddability relation ≡κGRAPHS is a CAER.

Theorem (C. 2018)
The bi-embeddability relation ≡κTFA between torsion-free abelian
groups of size κ is a CAER.

I The second theorem was derived before establishing the
completeness for ≡TFA = ≡ωTFA in the classical framework.

I Now we know that ≡TFA is a CAER (C.-Thomas), but no
explicit reduction from ≡GRAPHS to ≡TFA is known.
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Combing through the
literature...

Proposition
The bi-embeddability relation of κ-sized structure is a CAER in the
following cases.
I Unital rings (ess. Fried, and Sichler 1973);
I Fields (ess. Fried, and Kollár 1982);
I Quandles and others (Brooke-Taylor, and S. Miller);
I ...



Beyond completeness
Let L be a language of size ≤ κ, and ϕ ∈ Lκ+κ.

Definition
The bi-embeddability relation ≡κϕ is if for every Σ1

1 equivalence
relation E there is an Lκ+κ-sentence ψ such that Xψ ⊆ Xϕ and
E≡ψ.
I I.e., there is a bijection between the quotient spaces

f : X/E → Xψ/ ≡ϕ such that both f and f −1 admit Borel
lifting.
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Strong universality

Theorem (Mildenberger-Motto Ros)
The bi-embeddability relation ≡κGRAPHS is strongly invariantly
universal.

Theorem (C.-Motto Ros)
The bi-embeddability relation ≡κGROUPS is strongly invariantly
universal.

I The methods generalizes for fields, quandles and other
structures...



Definition
If A and B are two structures over the languages K and L,
respectively, an interpretation Γ of A into B is given by
1. L-formula ∂Γ(x);

2. an L-formula φΓ(x0, . . . , xn) for each unnested atomic
K-formula φ(x0, ..., xn);

3. a surjective map fΓ : ∂Γ(B)→ A;
such that for all unnested atomic K -formulæ φ(x0, . . . , xn) and all
b̄ = (b0, . . . , bn) ∈ ∂Γ(B), we have

A |= φ[fΓ(b0), . . . , fΓ(bn)] ⇐⇒ B |= φΓ[b0, . . . , bn].
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Let K = {R} be the language of graphs.

Lemma (C.-Motto Ros)
There exist a formula ∂(x) and a set of unnested atomic formulæ Φ
in the language of groups such that for each graph G ∈ XGRAPHS,
there is a function fG : ∂(H(G ))→ G so that the triple

Γ := (∂(x),Φ, fG )

is an interpretation of G into the group H(G ).

Corollary
For every K-formula φ(x̄) there is a formula φΓ(x̄) in the language
of groups such that

G |= φ[fG (ā)] ⇐⇒ H(G ) |= φΓ[ā].
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Theorem (C.-Motto Ros)
The bi-embeddability relation ≡κGROUPS is strongly invariantly
universal.

Sketch.
There is a formula φW such that if H |= φW then

H ∼= H(G ),

for some graph G ∈ Xκ
GRAPHS.

X The map on the quotients

Xκ
GRAPHS/≡ −→ XφW

/≡

induced by H has inverse and admits Borel liftings; and...
X ...the inverse map has Borel lifting too.
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