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The problem of building models of consequences, at the level
of H(!2), of classical forcing axioms together with CH has a
long history, starting with Jensen’s landmark result that Suslin’s
Hypothesis is compatible with GCH.

Most of the work in the area done so far proceeds by showing
that some suitable countable support iteration whose iterands
are proper forcing notions not adding new reals fails to add new
reals at limit stages.

There are (nontrivial) limitations to what can be achieved in this
area. In fact, there cannot be any ‘master’ iteration lemma:

A.–Larson–Moore: Modulo a mild large cardinal assumption,
there are two ⇧2 statements over H(!2), each of which can be
forced, using proper forcing, to
hold together with CH, and whose conjunction implies 2@0 = 2@1 .



Above result closely tied to the following concrete well–known
obstacle to not adding reals: Given a ladder system
~C = (C� : � 2 Lim(!1)), let Unif(~C) denote the statement that
for every colouring F : Lim(!1) �! {0, 1} there is
G : !1 �! {0, 1} such that that for every � 2 Lim(!1) there is
some ↵ < � such that G(⇠) = F (�) for all ⇠ 2 C� \ ↵. We say
that G uniformizes F on ~C.

Given ~C and F as above there is a natural forcing notion, Q~C,F ,

for adding a uniformizing function for F on ~C by initial
segments. Easy to see that Q~C,F is proper, adds the intended
uniformizing function, and does not add reals. However, any
long enough iteration of forcings of the form Q~C,F , even with a

fixed ~C, will necessarily add new reals. In fact, the existence of
a ladder system ~C for which Unif(~C) holds cannot be forced
together with CH in any way whatsoever, as this statement
actually implies 2@0 = 2@1 (Devlin–Shelah).



Proof: Fix a bijection h : ! �! ! ⇥ ! such that i  n if
h(n + 1) = (i , j). For each g : !1 �! 2 construct fn : !1 �! 2
(n < !) such that

f0 = g

and
fn+1 � C� =fin fi(� + j)

for every limit � 6= 0, where h(n + 1) = (i , j).
Given fk (k  n), fn+1 exists by applying Unif(~C) to the colouring

� �! fi(� + j)

But now, for each limit � 6= 0, (fn � � : n < !) determines
(fn � � + ! : n < !). Hence,

(fn � ! : n < !)

determines
(fn : n < !),

and in particular f0 = g. Hence 2@0 = 2@1 . ⇤



Definition
Measuring holds if and only if for every sequence
~C = (C� : � 2 !1), if each C� is a closed subset of � in the
order topology, then there is a club C ✓ !1 such that for every
� 2 C there is some ↵ < � such that either

• (C \ �) \ ↵ ✓ C�, or
• (C \ ↵) \ C� = ;.

We say that C measures ~C.



Measuring implies ¬WCG: Suppose ~C = (C� : � 2 Lim(!1))

ladder system and C ✓ !1 is a club measuring ~C. Then, for
every � 2 C, if � is a limit point of limit points of C, then a tail of
C \ � is disjoint from C� since ot(C�) = !.

Natural forcing for adding a club measuring a given ~C by initial
segments is proper and adds no new reals. On the other hand
it is not known if these forcings can (consistently) be iterated
without adding new reals. Strongest failures of Club–Guessing
known to be within reach of current techniques for iterating
proper forcing without adding reals are in the region of ¬WCG
(Shelah, NNR revisited).

Question
(Moore) Is Measuring consistent with CH?
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In joint work with Mota, we addressed Moore’s question. In
order to do so we distanced ourselves from the tradition of
preserving CH by not adding reals; we aimed at building
interesting models of CH by a cardinal–preserving forcing
which actually adds reals (but only @1–many of them).
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Forcing with symmetric systems of
models as side conditions

Finite–support forcing iterations involving symmetric systems of
models as side conditions are useful in situations in which, for
example, we want to force

• consequences of classical forcing axioms at the level of
H(!2), together with

• 2@0 large.



Given a cardinal  and T ✓ H(), a finite N ✓ [H()]@0 is a
T–symmetric system if
(1) for every N 2 N ,

(N,2,T ) 4 (H(),2,T ),

(2) given N0, N1 2 N , if N0 \ !1 = N1 \ !1, then there is a
unique isomorphism

 N0,N1 : (N0,2,T ) �! (N1,2,T )

and  N0,N1 is the identity on N0 \ N1.
(3) Given N0, N1 2 N such that N0 \ !1 = N1 \ !1 and

M 2 N0 \N ,  N0,N1(M) 2 N .
(4) Given M, N0 2 N such that M \ !1 < N0 \ !1, there is

some N1 2 N such that N1 \ !1 = N0 \ !1 and M 2 N1.



The pure side condition forcing

P0 = ({N : N a T –symmetric system},◆)

(for any fixed T ✓ H()) preserves CH:

This exploits the fact that given N, N 0 2 N , N a symmetric
system, if N \ !1 = N 0 \ !1, then  N,N0 is an isomorphism

 N,N0 : (N;2,N \ N) �! (N 0;2,N \ N 0)

Proof: Suppose (ṙ⇠)⇠<!2 are names for subsets of ! and
N �P0 ṙ⇠ 6= ṙ⇠0 for all ⇠ 6= ⇠0. For each ⇠, let N⇠ be a sufficiently
correct model such that N , ṙ⇠ 2 N⇠.
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By CH we may find ⇠ 6= ⇠0 such that there is an isomorphism

 : (N⇠;2,T ⇤,N , ṙ⇠) �! (N⇠0 ;2,T ⇤,N , ṙ⇠0)

(where T ⇤ is the satisfaction predicate for (H();2,T )). Then
N ⇤ = N [ {N⇠,N⇠0} 2 P0. But N ⇤ is (N⇠,P0)–generic and
(N⇠0 ,P0)–generic.

Now, let n < ! and let N 0 be an extension of N ⇤. Suppose
N 0 �P0 n 2 ṙ⇠. Then there is N 00 2 P0 extending both N 0 and
some M 2 N⇠ \ P0 such that M �P0 n 2 ṙ⇠. By symmetry, N 00

extends also  (M). But  (M) �P0 n 2  (ṙ⇠) = ṙ⇠0 .

We have shown N ⇤ �P0 ṙ⇠ ✓ ṙ⇠0 , and similarly we can show
N ⇤ �P0 ṙ⇠0 ✓ ṙ⇠. Contradiction since N ⇤ extends N and ⇠ 6= ⇠0.
⇤
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We have shown N ⇤ �P0 ṙ⇠ ✓ ṙ⇠0 , and similarly we can show
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In typical forcing iterations with symmetric systems as side
conditions, 2@0 is large in the final extension. Even if P0 can be
seen as the first stage of these iterations, the forcing is in fact
designed to add reals at (all) subsequent successor stages.

Something one may want to try at this point: Extend the
symmetry requirements also to the working parts in such a way
that the above CH–preservation argument goes trough. Hope
to be able to force something interesting this way.
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Theorem
(A.–Mota) (CH) Let  > !2 be a regular cardinal such that
2< = . There is then a partial order P with the following
properties.
(1) P is proper and @2–Knaster.
(2) P forces the following statements.

(a) Measuring
(b) CH
(c) 2µ =  for every uncountable cardinal µ < .



The following question addresses whether or not adding reals
is a necessary feature of forcing Measuring.

Question
(Moore) Does Measuring imply that there are non-constructible
reals?



Trees on @2 and GCH

This is joint work with Mohammad Golshani.



Let  be a regular uncountable cardinal.

• A –tree is a tree T of height  all of whose levels are
smaller than . A –Aronszajn tree is a –tree which has
no –branches.

• A –Souslin tree is a –tree which has no –branches and
no antichains of size .

• If  = �+, a –Aronszajn tree T is said to be special if there
exists a function f : T ! � such that f (x) 6= f (y) whenever
x , y 2 T are such that x <T y . We say that f specializes T .

• The special Aronszajn tree property at  = �+, SATP(), is
the statement “there exist –Aronszajn trees and all such
trees are special”.



Aronszajn trees were introduced by Kurepa, and Aronszajn
(1934) proved the existence, in ZFC, of a special @1–Aronszajn
tree. Later, Specker (1949) showed that 2<� = � implies the
existence of special �+–Aronszajn trees for � regular, and
Jensen (1972) produced special �+–Aronszajn trees for
singular � in L.

Baumgartner, Malitz and Reinhardt (1970) showed that Martin’s
Axiom + 2@0 > @1 implies SATP(@1), and hence Souslin’s
Hypothesis at @1 as well. Later, and as already mentioned,
Jensen (1974) produced a model of GCH in which SATP(@1)
holds.
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The situation at @2 turned out to be more complicated. Jensen
(1972) proved that the existence of an @2–Souslin follows from
each of the hypotheses CH+}({↵ < !2 | cf(↵) = !1}) and
⇤!1 +}({↵ < !2 | cf(↵) = !}). The second result was
improved by Gregory (1976); he proved that GCH together the
existence of a non–reflecting stationary subset of
{↵ < !2 | cf(↵) = !} yields the existence of an @2–Souslin tree.

Laver and Shelah (1981) produced, relative to the existence of
a weakly compact cardinal, a model of ZFC+CH in which
SATP(@2) holds. But in their model 2@1 > @2, and the following
remained a major open problem (s. e.g. Kanamori–Magidor
1977):

Question
Is ZFC+GCH consistent with the non–existence of @2–Souslin
trees?
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In December 2017, while visiting Golshani in Tehran, we
started thinking about combining the ideas from Measuring +
CH with the Laver–Shelah construction for SATP(@2). We
eventually succeeded:

Theorem (A.–Golshani) Suppose  is a weakly compact
cardinal. Then there exists a set–generic extension of the
universe in which
(1) GCH holds,
(2)  = @2, and
(3) SATP(@2) holds (and hence there are no @2–Souslin trees).



(1) Our argument can be easily extended to the successor of
any regular cardinal. Also, the method can be applied to
the construction of a model of SATP(@1) + GCH (no need
of weakly compact cardinal for this). This consistency
result is originally due to Shelah.

(2) Our large cardinal assumption is optimal:
? Rinot (2017) proved that GCH + Souslin’s Hypothesis at @2

implies ¬⇤(!2); on the other hand, Todorčević (1987)
proved that ¬⇤(!2) implies that !2 is weakly compact in L.

(3) We have recently found a simplified proof of the theorem.
This is the proof I will present here.
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Definition of forcing

Let  be weakly compact. W.l.o.g. we may assume 2µ = µ+ for
all µ � .
We define by induction on �, a sequence hQ� | �  +i of
forcing notions.

Fix �  + and suppose Q↵ defined for all ↵ < �.



The new idea: Revisionism (copying
information from the future into the

past).

Let us call
h(N0, �0), (N1, �1)i

an edge below � if
(1) for all i 2 {0, 1}, �i is an ordinal in the closure of Ni \ Ord

such that �i  � and (Ni ,2,�↵) 4 (H(+),2,�↵) for all
↵ 2 Ni \ �i (for suitable sequence of increasingly
expressible �↵ ✓ H(+)), and

(2) N0 ⇠= N1 via an isomorphism  N0,N1 : N0 �! N1 such that
(i) (N0,2,�↵) ⇠= (N1,2,� N0,N1 (↵)

) for all ↵ < �0 such that
 N0,N1(↵) < �1,

(ii)  N0,N1 is the identity on N0 \ N1, and
(iii)  N0,N1(⇠)  ⇠ for every ordinal ⇠ 2 N0.



We build Q� as a forcing with side conditions consisting of sets
of edges. Given an edge h(N0, �0), (N1, �1)i in the side
condition, we copy information in N0 attached to ↵ < �0 via
 N0,N1 into N1 if  N0,N1(↵) < �1. We do not require that

information in N1 attached to  N0,N1(↵) be copied into N0.



A condition in Q� is an ordered pair of the form q = (fq, ⌧q) with
the following properties.

(1) fq is a countable function such that dom(fq) ✓ + \ � and
such that the following holds for every ↵ 2 dom(fq).
(a) If ↵ = 0, then fq(↵) 2 Col(!1, <).
(b) If ↵ > 0, then

fq(↵) : ⇥ !1 ! !1

is a countable function.

(2) ⌧q is a countable set of edges below �.
(3) The following holds for every edge h(N0, �0), (N1, �1)i 2 ⌧q.

(a) If h(N 0
0, �

0
0), (N

0
1, �

0
1)i 2 N0 \ ⌧q , then

h( N0,N1(N
0
0), �

⇤
0 ), ( N0,N1(N

0
1), �

⇤
1 )i 2 ⌧q

for ‘sufficiently high’ �⇤
0 and �⇤

1 .
(b) The following holds for each nonzero ordinal

↵ 2 dom(fq) \ N0 \ �0 such that  N0,N1(↵) < �1.
(i)  N0,N1(↵) 2 dom(fq)
(ii) fq(↵) � �N0 ⇥ !1 ✓ fq( N0,N1(↵))



(4) For all ↵ < �, q � ↵ 2 Q↵, where

q � ↵ = (fq � ↵, ⌧q � ↵)

(5) For every nonzero ↵ 2 dom(fq), if x 6= y are both in
dom(fq(↵)), and

(fq(↵))(x) = (fq(↵))(y),

then q � ↵ forces, in Q↵, that x and y are incomparable in
T⇠↵.



The extension relation:
Given q1, q0 2 Q�, q1 � q0 (q1 is an extension of q0) if and
only if the following holds.
(A) dom(fq0) ✓ dom(fq1)

(B) for every ↵ 2 dom(fq0), fq0(↵) ✓ fq1(↵).
(C) ⌧q0 ✓ ⌧q1



Main facts

(0) For every �  +,
(i) Q↵ ✓ Q� for all ↵ < �, and
(ii) if cf(�) � , then Q� =

S
↵<� Q↵.

(1) Thanks to the fact that we are only copying information
‘from the future into the past’, (Q�)�+ is a forcing
iteration (i.e., Q↵ lQ� for all ↵ < �): Given q 2 Q� and
r 2 Q↵, if r ↵ q � ↵, then

(fr [ fq � [↵, �), ⌧q [ ⌧r )

is a common extension of q and r in Q�.
(2) Q1 forces  = @2.



(3) Q� is �-closed for every �  +. In fact, every decreasing
!-sequence of Q�-conditions has a greatest lower bound
in Q�. In particular, forcing with Q� does not add new
!-sequences of ordinals, and therefore it preserves both
!1 and CH.

(4) Q+ adds –many new subsets of !1, but not more than
that; in particular, Q+ preserves 2@1 = @2 [essentially the
same argument we saw a few slides back].

(5) If Q+ is -c.c., then it forces SATP(@2).



The –chain condition

Lemma
For each �  +, Q� has the -chain condition.

This is the only place where we use the weak compactness of
.

Proof sketch: Let us fix a sequence (q� | � < ) of
Q�-conditions. Want � 6= �0 such that q� and q�0 are
compatible. The proof is by induction on �.



The case � = 0 is trivial and the case � = 1 follows from
inaccessibility of  (Q1 is essentially the Lévy collapse turning 
into !2). The case � = + follows from Fact (0) together with
the induction hypothesis.

It remains to consider the case 1 < � < +. For this case we
use an (almost literal) adaptation of the following key separation
argument from Laver–Shelah.
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Lemma
(Laver–Shelah) Suppose  is weakly compact and (Q�)�⌘ is a
countable support iteration such that Q1 = Col(!1, <) and for
all 1  � < ⌘, Q�+1 = Q� ⇤ Ṙ�, where Ṙ� is the natural forcing
for specializing
some given –Aronszajn tree Ṫ�. Then Q� is –c.c. for all �  ⌘.

Proof sketch: Let M 4 H(✓) containing everything relevant of
size  and such that <M ✓ M and let (M�)�< be a continuous
filtration of M. Let Q⇤

↵ = Q↵ \ M for all ↵. By –c.c. of Q↵ for alll
↵ < ⌘ (by induction hypothesis), Q⇤

↵ lQ↵ for all ↵ < ⌘.



Given conditions qL, qR, ↵ 2 dom(fqL) \ dom(fqR ),
x 2 dom(fqL(↵)) and y 2 dom(fqR (↵)) (x and y may or may not
be equal), we say that

• x and y are separated by qL � ↵ and qR � ↵ at stage ↵
below � by means of x̄ , ȳ

if there is ⇢̄ < �, together with ⇣ 6= ⇣ 0 in !1, such that letting
x̄ = (⇢̄, ⇣) and ȳ = (⇢̄, ⇣ 0),

qL � ↵ �↵ x̄ <Ṫ↵
x

and
qR � ↵ �↵ ȳ <Ṫ↵

y



Let � = (q� | � < ) be a sequence of conditions in Q⇤
⌘. Let F

be the weak compactness filter on  (i.e., F is the filter
generated by the sets {↵ <  | (V↵,2,A \ V↵) |= �}, for
A ✓ V and for a ⇧1

1 sentence � over (V,2,A)). F is a proper
normal filter on .

Given X 2 F+, say that

(qL
� | � 2 X ), (qR

� | � 2 X )

is a separating pair for (q� | � < ) if for all � 2 X :



Let � = (q� | � < ) be a sequence of conditions in Q⇤
⌘. Let F

be the weak compactness filter on  (i.e., F is the filter
generated by the sets {↵ <  | (V↵,2,A \ V↵) |= �}, for
A ✓ V and for a ⇧1

1 sentence � over (V,2,A)). F is a proper
normal filter on .

Given X 2 F+, say that

(qL
� | � 2 X ), (qR

� | � 2 X )

is a separating pair for (q� | � < ) if for all � 2 X :



(1) Both of qL
� and qR

� extend q�.
(2) dom(fqL

�
) = dom(fqR

�
)

(3) For all nonzero ↵ 2 dom(fqL
�
) \ M� and all

x 2 dom(fqL
�
(↵)) \ (�⇥ !1) and y 2 dom(fqR

�
(↵)) \ (�⇥ !1),

x and y are separated at stage ↵ below � by qL
� � ↵ and

qR
� � ↵ via some pair �0(x , y ,↵,�), �1(x , y ,↵,�).

(4) The following holds for all �0 > � in X .
(a) qL

� � M� = qR
�0 � M�0

(b) qL
� 2 M�0

(5) The following holds for all �0 > � in X , all nonzero
↵ 2 dom(qL

�) \ dom(qR
�0), and all x 2 dom(fqL

�(↵)
) \ (�⇥ !1)

and y 0 2 dom(fqR
�0 (↵)

) \ (�0 ⇥ !1).
(a) ↵ 2 M�

(b) There are x 0 2 dom(fqL
�0 (↵)

) \ (�0 ⇥ !1) and
y 2 dom(fqR

�(↵)
) \ (�⇥ !1) such that

�0(x , y ,↵,�) = �0(x 0, y 0,↵,�0)

and
�1(x , y ,↵,�) = �1(x 0, y 0,↵,�0)



The following claim is easy.
Claim
Let X 2 S and suppose �L = (qL

� | � 2 X ), �R = (qR
� | � 2 X )

is a separating pair for �. Then for all � < �0 in X ,

qL
�

and
qR
�0

are compatible conditions.

Hence, it suffices to prove that there is �L = (qL
� | � 2 X ),

�R = (qR
� | � 2 X ), a separating pair for �. But this follows

essentially from a construction in ! steps such that
⇤ at every step we separate some given sequence of pair of

nodes x , y ,
followed by a pressing–down argument using the normality of
F .



The relevant separation, at every step of the construction, is
effected via a ⇧1

1 reflection argument: There is a measure 1 set
C in F of � <  such that, for relevant ↵,

• M� \Q↵ lQ↵ and
• M� \Q↵ forces, over V , that Ṫ↵ \ M� has no �–branches.

Using this idea one can find suitable conditions

qLL
�  qL

�

and
qRR
�  qR

�

such that
• qLL

� � M� = qRR
� � M� and

• x and y are separated by qLL
� � ↵ and qRR

� � ↵ at stage ↵
below �

(if this were not possible, we would be able to find �–branches
through Ṫ↵ \ M� in the M� \Q↵–extension, which is
impossible). ⇤



An open question

Question (Shelah): Is it consistent to have GCH together with a
regular  � !1 such that SATP() + SATP(+)?
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