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Overview

One obstacle to generalising results about cardinal characteristics of the
continuum is if the arguments use compactness properties of ω.

In these cases,
assuming your cardinal is weakly compact will often allow the argument to
generalise.

In this tutorial I want to give a couple of examples of this, digging into the
necessary preliminaries on the way.

Andrew Brooke-Taylor Generalising the weak compactness of ω Generalised Baire 2018 2 / 32



Overview

One obstacle to generalising results about cardinal characteristics of the
continuum is if the arguments use compactness properties of ω. In these cases,
assuming your cardinal is weakly compact will often allow the argument to
generalise.

In this tutorial I want to give a couple of examples of this, digging into the
necessary preliminaries on the way.

Andrew Brooke-Taylor Generalising the weak compactness of ω Generalised Baire 2018 2 / 32



Overview

One obstacle to generalising results about cardinal characteristics of the
continuum is if the arguments use compactness properties of ω. In these cases,
assuming your cardinal is weakly compact will often allow the argument to
generalise.

In this tutorial I want to give a couple of examples of this, digging into the
necessary preliminaries on the way.

Andrew Brooke-Taylor Generalising the weak compactness of ω Generalised Baire 2018 2 / 32



Weak compactness

There are many equivalent formulations of weak compactness; we will use a
couple of different ones.

Notice in each case that, if we didn’t simply decree that weakly compact cardinals
(and inaccessible cardinals) must be uncountable, then ω would fit the definition.

Recommended Reference:

The Exercises for Section 4.2 of Chang & Keisler’s Model Theory (but note that
their definition of weakly compact needs to have inaccessibility added to it).
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Infinitary languages

For any vocabulary Σ (i.e. set of function and relation symbols) and for any
cardinal κ the language Lκ,κ consists of formulas built via the usual construction
rules along with:

Conjunctions and disjunctions of less than κ many formulas: if δ < κ and ϕγ
is a formula for every γ < δ, then∨

γ<δ

ϕγ and
∧
γ<δ

ϕγ

are formulas.

Less than κ-fold quantifications: if x = (xγ : γ < δ) is an δ-tuple of variables
for some δ < κ and ϕ is a formula, then

∃xϕ and ∀xϕ

are formulas.

Satisfaction of these formulas is defined as you would expect.
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Infinitary languages

E.g.

Being well-ordered can be expressed by a sentence of Lω1,ω1 :

¬∃(xi : i ∈ ω)

(∧
i∈ω

xi > xi+1

)

Weak compactness, 1st formulation

An uncountable cardinal κ is weakly compact if and only if, for every set of T of
Lκ,κ sentences over a vocabulary Σ of cardinality at most κ, if every subset of T
of cardinality less than κ has a model then T itself has a model.

Note that if the constraint on |Σ| is dropped, then this defines strongly compact
cardinals.
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Elementary embeddings

Weak compactness, 2nd formulation

An uncountable cardinal κ is weakly compact if and only if, for any structure M of
size κ for a vocabulary Σ of cardinality κ, there is a Σ-structure N such that M is
a proper elementary substructure of N in the Lκ,κ sense.

Proof sketch that formulation 1 ⇒ formulation 2
Add to the vocabulary a constant cm for each element m of M, and consider the
the complete Lκ,κ theory T of M for this language, with cm interpreted as m.
Now add another constant c to the vocabulary and add to the theory all of the
sentences c 6= cm. Every subset A of this extended theory T ′ with cardinality < κ
has a model (M with a suitable choice of c), so by formulation 1, T ′ has a model;
this will be N.

Remember that well-foundedness is definable in Lκ,κ for κ > ω, so these
embeddings can be nice from a set theory point of view.
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Trees

A κ-tree is a tree T of height κ such for every α < κ there are fewer than κ many
nodes of T of height α.

A cardinal κ has the tree property if and only if every
κ-tree has a cofinal branch (i.e. a branch of height κ).

Weak compactness, 3rd formulation

A cardinal is weakly compact if and only if it is inaccessible and has the tree
property.

Proof sketch that formulation 2 ⇒ formulation 3
Code your κ-tree T as a subset of Vκ, and take

M = 〈Vκ,∈,T , enough extra stuff to make Vκ “rigid”〉.

κ is in the model N = 〈X ,E ,T ′, . . .〉 given by formulation 2, and T ′ below level κ
is just T . Choosing any node t of T ′ at level κ, the set of nodes below t is then a
cofinal branch through T .
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Warm-up example: sκ

For A,B ⊆ κ of cardinality κ, say that A splits B if |B ∩ A| = |B r A| = κ.

A family A ⊆ [κ]κ is a splitting family if for every B ⊆ κ with |B| = κ, there is an
A ∈ A which splits B.

The splitting number sκ is the least cardinality of a splitting family.
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Proposition

sω ≥ ω1

Proof.
Diagonalise!

Consider any A = {Ai : i ∈ ω} ⊆ [ω]ω. We will inductively define a sequence of
infinite subsets Bi of ω and a sequence of elements ci of ω such that no A in A
splits C = {ci : i ∈ ω}.

For the base case, let B0 = ω and c0 = 0. Having defined Bi , at least one of
Bi ∩ Ai and Bi r Ai is infinite, so pick one that is infinite, and take that to be
Bi+1. Then let ci+1 be the least element of Bi+1 that is greater than ci .

Note that for each i ∈ ω, {cj : j > i} ⊆ Bi+1, and so is disjoint from or contained
in Ai . So no Ai splits C .
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Generalising to higher κ

Potential problems

To generalise this inductive argument to higher κ, we have to be able to deal with
limit stages.

At limit stages α along the way, the natural choice is to take Bα =
⋂
γ<α Bγ .

What if this intersection is empty, or even just of size < κ?
I The tree of possible choices we could have made for Bγ is a binary tree. If κ is

inaccessible, then at any stage α, since there are only 2α < κ possible nodes,
and they between them partition κ, at least one of them must have cardinality
κ.

Does this tree of possibilities have a cofinal branch, allowing us to define C?
I If κ also has the tree property, then yes!
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So:

Proposition (Kamo; see Zapletal [4])

If κ is weakly compact, then sκ > κ.

Actually, this is if and only if.

To get sκ > κ+ one requires even more large cardinal strength — see Zapletal [4].
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More involved example: eκ

Evasion and prediction were introduced by Blass in a paper motivated by group
theory [1].

Definition
A predictor is a a function π such that

dom(π) ⊆ κ and | dom(π)| = κ, and

for each α ∈ dom(π), π(α) is a function from κα to κ.

Definition
Given a predictor π and a function f : κ→ κ, we say π predicts f if there is some
α < κ such that for all β > α, π(β)(f �β) = f (β).
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Definition
The evasion number eκ is the “bounding number for prediction”:

eκ = min{|F| : F ⊆ κκ ∧ ¬∃ predictor π∀f ∈ F(π predicts f )}.

In the framework of relations introduced in the first talk today, eκ is the norm of
the dual relation to (κκ, predictors, is predicted by).
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e vs b

eκ = min{|F| : F ⊆ κκ ∧ ¬∃ predictor π∀f ∈ F(π predicts f )}.

bκ = min{|F| : F ⊆ κκ ∧ ¬∃g ∈ κκ∀f ∈ F(g ≥∗ f )}.

(Recall g ≥∗ f means there is some α < κ such that for all β ≥ α, g(β) ≥ f (β).)

eω is independent of bω: there is a model in which eω > bω, a model in which
eω < bω, and a model in which eω = bω.

I will focus on Brendle and Shelah’s construction of a model with eω > bω [2].
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Getting e > b

How to get a model of eω > bω? The natural approach:

start with a model of CH, where eω = bω = ω1,

force to make eω large, whilst keeping bω small.

A natural approach to this latter:

do the most obvious forcing to make eω large, and
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force to make eω large, whilst keeping bω small.

A natural approach to this latter:
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Making e large

There is a standard way to make a “bounding number”-type cardinal
characteristic large:

force to kill all ground model unbounded sets: add a new bound for them all,

do a long (however large you want the cardinal) iteration of these forcings
with finite support. Any small potentially unbounded set appears after an
initial fragment of the iteration, and then is forced to be bounded at the next
step.

In particular, to make eω equal to some regular cardinal λ > ω1, we:

force to add a new predictor that predicts all ground model functions,

do a length λ iteration with finite supports of this forcing. Any set F ⊆ ωω
in the extension of cardinality less than λ must have appeared by some initial
stage of the forcing, and then the predictor added at the next step predicts it.
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Adding a predictor

How do we force to add a predictor that predicts all ground model functions?

By finite approximations!
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Adding a predictor

Definition (Brendle-Shelah [2])

We define the single step predictor forcing P. Conditions are triples 〈d , π,F 〉 such
that

1 d ∈ 2<ω (a finite approximation to the characteristic function of the domain
of the predictor),

2 π is a function with domain d−1{1} such that ∀n ∈ d−1{1}, π(n) is a finite
partial function from ωn to ω (a finite approximation to the predictor),

3 F ⊂ ωω is finite and for f 6= g ∈ F , max({n : f �n = g �n}) < dom(d)
(a promise to predict the functions in F from now on).

We say 〈d ′, π′,F ′〉 ≤ 〈d , π,F 〉 if and only if

d ′ ⊇ d , π′ ⊇ π, and F ′ ⊇ F , and

for all f ∈ F and n ∈ (d ′)−1{1}r d−1{1}, π′(n)(f �n) = f (n) (and in
particular is defined).
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Centred-ness

Let P be a partial order.

A subset X of P is (1, < ω)-centred if any finitely many conditions in X have
a common extension in P.

A subset Y of P is (λ,< ω)-centred if Y may be decomposed as
Y =

⋃
γ<λ Yγ where each Yγ is (1, < ω)-centred in P.

P is said to be σ-centred if it is (ω,< ω)-centred (as a subset of itself).

Clearly any σ-centred forcing is ccc.

Note that the predictor forcing P is σ-centred: any set of conditions with the
same d and π components are compatible: take the union of the F components,
and extend d to take the value 0 for long enough to satisfy requirement 3 on
conditions.
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So P is ccc, and hence preserves cardinals and cofinalities.

Given a generic filter G for P, the union of the π components of the conditions in
G is a predictor, with domain the union of the d components, which predicts every
ground model function from ω to ω. Iterating P with finite support for length λ a
regular cardinal makes eω = λ in the generic extension, as outlined above.

To show that bω = ω1 in the extension, we use the following lemma:

Lemma

If F is an unbounded (with respect to ≤∗) family of functions from ω to ω, then


P F̌ is unbounded.
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To prove the Lemma, we use the following definitions.

For a condition p = 〈d , π,F 〉 ∈ P define

Ip = {f �dom(d) : f ∈ F}.

For ḣ a P-name for a function in ωω define hd,π,I ∈ (ω + 1)ω by

hd,π,I (n) = min{m ≤ ω : there is no p ∈ P of the form p = 〈d , π,F 〉
with Ip = I such that p 
 ḣ(n) > m}.

Main Claim
Actually, hd,π,I ∈ ωω.

Proof.
Compactness of ω.
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Part II

Andrew Brooke-Taylor Generalising the weak compactness of ω Generalised Baire 2018 22 / 32



Recap

π predicts f if for all large enough n in dom(π), π(n)(f �n) = f (n).

eω = min{|F| : F ⊆ ωω ∧ ∀ predictor π∃f ∈ F(π does not predict f )}
Want to force eω > bω with a long iteration.

Conditions in the individual forcing step: 〈d , π,F 〉 — finite approximations to
the generic predictor and its domain, and a promise to predict the functions
in F .

Lemma: F unbounded before the forcing ⇒ F unbounded after.

Towards proof of the Lemma, let Ip = {f �dom(d) : f ∈ F}, and given a

P-name ḣ for a funtion ω → ω, define

hd,π,I (n) = min{m ≤ ω : there is no p ∈ P of the form p = 〈d , π,F 〉
with Ip = I such that p 
 ḣ(n) > m}.

Main Claim: hd,π,I (n) is finite for all n.
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How the Main Claim proves the Lemma

Given ḣ, there are only countably many functions hd,π,I (as d , π and I vary), so
there is some h∗ : ω → ω such that hd,π,I ≤∗ h∗. Since F is unbounded there is
some f ∈ F such that f (n) > h∗(n) for infinitely many n.

Then also


P f̌ (n) > ḣ(n) for infinitely many n. (†)

Otherwise, for some m and some p we would have p 
P ∀n ≥ m̌(f̌ (n) ≤ ḣ(n)).
But taking d , π and I corresponding to p and n ≥ m such that
f (n) > h∗(n) ≥ hd,π,I (n), we’d have p 
P ȟd,π,I (ň) < f̌ (ň) ≤ ḣ(ň), contradicting
the definition of hd,π,I . So (†) holds, and so F is not bounded by the function

named by ḣ, which was arbitrary; so F remains unbounded.
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Proving the Main Claim

Main Claim: hd,π,I (n) is finite for all n, where

hd,π,I (n) = min{m ≤ ω : there is no p ∈ P of the form p = 〈d , π,F 〉
with Ip = I such that p 
 ḣ(n) > m}.

Suppose not. Then there are d , π, I and pi for i ∈ ω with pi = 〈d , π,Fi 〉 and
Ipi = I such that

pi 
P ḣ(ň) > ǐ .

Let’s index I as I = {f̄` : ` < |I |} and each Fi as Fi = {f i` : ` < |I |} such that
f i` �dom(d) = f̄`.

We may thin out the sequence of pi so that for each ` < |I |, either

∃g` ∈ ωω∀i(f i` � i = g` � i), or

∃i` ∈ ω∃ĝ` ∈ ωi`∀i(f i` � i` = ĝ` ∧ f i` (i`) > i).

Compactness of ω has been used here!
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With the pi thinned out to get this dichotomy, we have enough hands-on control
to build a contradiction.
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Generalising to κ

(Joint work with Jörg Brendle)

To carry over the proof for the single step of the iteration, the main obstacle is to
generalise this thinning out.

There is a natural tree to consider — the set of all restrictions f i` �k. But it would
still be helpful to think of “climbing up through the tree” rather than just using a
branch that the tree property hands down to use.

To do this we can use the embedding form of weak compactness to give us an
ultrafilter to follow.
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Proposition

Let κ be a weakly compact cardinal. Then for suitable structures M of size κ for a
vocabulary of size at most κ, there is an M-normal ultrafilter: a set U such that

〈M,∈,U |= U is a κ-complete normal ultrafilter on κ.

In particular, if M<κ ⊂ M, then U really is closed under < κ-fold intersections.

Proof sketch.
Use the embedding formulation of weak compactness, define for X ⊂ κ in M,

X ∈ U ⇔ j(X ) 3 κ.

Andrew Brooke-Taylor Generalising the weak compactness of ω Generalised Baire 2018 28 / 32



So working in a κ-sized model containing everything needed (such as the tree), we
can use this ultrafilter to guide our way up the tree, and at the end, use normality
to get the final thinned out sequence. We get:

Lemma

Suppose κ is a weakly compact cardinal, γ is a cardinal less than κ, and for each
β ∈ γ, 〈f δβ : δ ∈ κ〉 is a sequence of functions in κκ. Then there is a strictly
increasing sequence of ordinals less than κ, 〈δη : η ∈ κ〉, such that for every β ∈ γ,

either (a)β : ∃gβ ∈ κκ∀η < κ(f
δη
β �η = gβ �η)

or (b)β : ∃ιβ < κ∃ĝβ ∈ κιβ∀η < κ(f
δη
β � ιβ = ĝβ ∧ f

δη
β (ιβ) ≥ η).
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Finishing the generalisation

The above Lemma is enough to generalise the single forcing step. How about the
rest of the proof?

More problems:

We want κ to remain weakly compact for later stages of the forcing.

Solution: Johnstone [3] showed that strongly unfoldable cardinals, which
are somewhat stronger than weakly compact cardinals but still
far below supercompact, can be made indestructible to a class
of forcings including these. So we just assume this stronger
large cardinals.

The iteration theorems that deal with limit stages of the iteration in the ω
case don’t carry over for small cofinality limit stages.

Solution: Work with the fact that P is κ centred with canonical lower
bounds (caution: not written down yet. . . ).
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Questions

What large cardinal assumption is really needed for eκ > bκ? Strong
unfoldability? Weak compactness? None?

What other cardinal characteristics of the continuum results use compactness
& need weak compactness to generalise?

This is saying something about the necessity of compactness for these
arguments from the ω case. Is there an interesting way to view this from a
reverse mathematics perspective?
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