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Overview

One obstacle to generalising results about cardinal characteristics of the
continuum is if the arguments use compactness properties of w.
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Overview

One obstacle to generalising results about cardinal characteristics of the
continuum is if the arguments use compactness properties of w. In these cases,
assuming your cardinal is weakly compact will often allow the argument to
generalise.

In this tutorial | want to give a couple of examples of this, digging into the
necessary preliminaries on the way.
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|
Weak compactness

There are many equivalent formulations of weak compactness; we will use a
couple of different ones.
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Weak compactness

There are many equivalent formulations of weak compactness; we will use a
couple of different ones.

Notice in each case that, if we didn't simply decree that weakly compact cardinals
(and inaccessible cardinals) must be uncountable, then w would fit the definition.
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Weak compactness

There are many equivalent formulations of weak compactness; we will use a
couple of different ones.

Notice in each case that, if we didn't simply decree that weakly compact cardinals
(and inaccessible cardinals) must be uncountable, then w would fit the definition.

Recommended Reference:

The Exercises for Section 4.2 of Chang & Keisler's Model Theory (but note that
their definition of weakly compact needs to have inaccessibility added to it).
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Infinitary languages

For any vocabulary ¥ (i.e. set of function and relation symbols) and for any
cardinal x the language L, , consists of formulas built via the usual construction
rules along with:

@ Conjunctions and disjunctions of less than x many formulas: if 6 < x and ¢,
is a formula for every v < 4, then

\/ ©ry and /\ ©ry
y<é y<o

are formulas.

o Less than x-fold quantifications: if x = (x, : v < J) is an d-tuple of variables
for some § < k and ¢ is a formula, then

Ixe and Vxp

are formulas.

Satisfaction of these formulas is defined as you would expect.
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|
Infinitary languages

Eg.

Being well-ordered can be expressed by a sentence of L, .,;:

-3(x; i € w) /\ Xi > Xit1

i€Ew
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|
Infinitary languages

Eg.

Being well-ordered can be expressed by a sentence of L, .,;:

-3(x; i € w) </\ Xj > X,'+1>

i€Ew

Weak compactness, 1st formulation

An uncountable cardinal x is weakly compact if and only if, for every set of T of
L, . sentences over a vocabulary ¥ of cardinality at most «, if every subset of T
of cardinality less than k has a model then T itself has a model.
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|
Infinitary languages

Eg.

Being well-ordered can be expressed by a sentence of L, .,;:

—3(x;: i € w) </\ X; > X,'+1>
iEw
Weak compactness, 1st formulation

An uncountable cardinal x is weakly compact if and only if, for every set of T of
L, . sentences over a vocabulary ¥ of cardinality at most «, if every subset of T
of cardinality less than k has a model then T itself has a model.

Note that if the constraint on |X| is dropped, then this defines strongly compact
cardinals.
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|
Elementary embeddings

Weak compactness, 2nd formulation

An uncountable cardinal k is weakly compact if and only if, for any structure M of
size k for a vocabulary & of cardinality k, there is a Z-structure N such that M is
a proper elementary substructure of N in the £, ,, sense.
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|
Elementary embeddings

Weak compactness, 2nd formulation

An uncountable cardinal k is weakly compact if and only if, for any structure M of
size k for a vocabulary & of cardinality k, there is a Z-structure N such that M is
a proper elementary substructure of N in the £, ,, sense.

Proof sketch that formulation 1 = formulation 2

Add to the vocabulary a constant c,, for each element m of M, and consider the
the complete L, ,, theory T of M for this language, with ¢, interpreted as m.
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Elementary embeddings

Weak compactness, 2nd formulation

An uncountable cardinal k is weakly compact if and only if, for any structure M of
size k for a vocabulary & of cardinality k, there is a Z-structure N such that M is
a proper elementary substructure of N in the £, ,, sense.

Proof sketch that formulation 1 = formulation 2

Add to the vocabulary a constant c,, for each element m of M, and consider the
the complete L, ,, theory T of M for this language, with ¢, interpreted as m.
Now add another constant ¢ to the vocabulary and add to the theory all of the
sentences ¢ # ¢p,. Every subset A of this extended theory T’ with cardinality < x
has a model (M with a suitable choice of ¢), so by formulation 1, T’ has a model;
this will be N.
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|
Elementary embeddings

Weak compactness, 2nd formulation

An uncountable cardinal k is weakly compact if and only if, for any structure M of
size k for a vocabulary & of cardinality k, there is a Z-structure N such that M is
a proper elementary substructure of N in the £, ,, sense.

Proof sketch that formulation 1 = formulation 2

Add to the vocabulary a constant c,, for each element m of M, and consider the
the complete L, ,, theory T of M for this language, with ¢, interpreted as m.
Now add another constant ¢ to the vocabulary and add to the theory all of the
sentences ¢ # ¢p,. Every subset A of this extended theory T’ with cardinality < x
has a model (M with a suitable choice of ¢), so by formulation 1, T’ has a model;
this will be N.

Remember that well-foundedness is definable in £, ,. for £ > w, so these
embeddings can be nice from a set theory point of view.
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|
Trees

A k-treeis a tree T of height x such for every a < k there are fewer than x many
nodes of T of height a.
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Trees

A k-treeis a tree T of height x such for every a < k there are fewer than x many
nodes of T of height a.. A cardinal k has the tree property if and only if every
k-tree has a cofinal branch (i.e. a branch of height k).
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|
Trees

A k-treeis a tree T of height x such for every a < k there are fewer than x many
nodes of T of height a.. A cardinal k has the tree property if and only if every
k-tree has a cofinal branch (i.e. a branch of height k).

Weak compactness, 3rd formulation

A cardinal is weakly compact if and only if it is inaccessible and has the tree
property.
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|
Trees

A k-treeis a tree T of height x such for every a < k there are fewer than x many
nodes of T of height a.. A cardinal k has the tree property if and only if every
k-tree has a cofinal branch (i.e. a branch of height k).

Weak compactness, 3rd formulation

A cardinal is weakly compact if and only if it is inaccessible and has the tree
property.

Proof sketch that formulation 2 = formulation 3

Code your k-tree T as a subset of V,,, and take

M = (V,,€, T, enough extra stuff to make V,, “rigid").

K is in the model N = (X, E, T',...) given by formulation 2, and T’ below level x
is just T. Choosing any node t of T’ at level k, the set of nodes below t is then a
cofinal branch through T.
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Warm-up example: s,

For A, B C & of cardinality x, say that A splits B if |[BNA| = |B ~\ Al = k.
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Warm-up example: s,

For A, B C & of cardinality x, say that A splits B if |[BNA| = |B ~\ Al = k.

A family A C [k]" is a splitting family if for every B C k with |B| = &, there is an
A € A which splits B.
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Warm-up example: s,

For A, B C & of cardinality x, say that A splits B if |[BNA| = |B ~\ Al = k.

A family A C [k]" is a splitting family if for every B C k with |B| = &, there is an
A € A which splits B.

The splitting number s,; is the least cardinality of a splitting family.
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Proposition

szwl
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Proposition

szwl

Proof.
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Proposition

5u.zzwl

Proof.

Diagonalise!
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Proposition

5wzwl

Proof.

Diagonalise!

Consider any A= {A; : i € w} C [w]¥. We will inductively define a sequence of
infinite subsets B; of w and a sequence of elements ¢; of w such that no Ain A
splits C = {¢; : i € w}.
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Proposition

5wzwl

Proof.

Diagonalise!

Consider any A= {A; : i € w} C [w]¥. We will inductively define a sequence of
infinite subsets B; of w and a sequence of elements ¢; of w such that no A in A
splits C = {¢; : i € w}.

For the base case, let By = w and ¢y = 0. Having defined B;, at least one of
B; N A; and B; . A; is infinite, so pick one that is infinite, and take that to be
Bi+1. Then let ¢jy1 be the least element of B;y; that is greater than c;.

Note that for each i € w, {¢j :j > i} C Bjy1, and so is disjoint from or contained
in A;. So no A; splits C.

O
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Generalising to higher k
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|
Generalising to higher k

Potential problems
To generalise this inductive argument to higher x, we have to be able to deal with
limit stages.

o At limit stages « along the way, the natural choice is to take B, =)
What if this intersection is empty, or even just of size < Kk?

B,.

<o
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Generalising to higher k

Potential problems

To generalise this inductive argument to higher x, we have to be able to deal with
limit stages.

o At limit stages « along the way, the natural choice is to take B, =)
What if this intersection is empty, or even just of size < Kk?

<o B“/'
» The tree of possible choices we could have made for B, is a binary tree. If  is
inaccessible, then at any stage «, since there are only 2% < k possible nodes,

and they between them partition &, at least one of them must have cardinality

K.

Generalising the weak compactness of w Generalised Baire 2018 10 / 32



Generalising to higher k

Potential problems

To generalise this inductive argument to higher x, we have to be able to deal with
limit stages.

o At limit stages « along the way, the natural choice is to take B, =)
What if this intersection is empty, or even just of size < Kk?

<o B“/'
» The tree of possible choices we could have made for B, is a binary tree. If  is
inaccessible, then at any stage «, since there are only 2% < k possible nodes,

and they between them partition &, at least one of them must have cardinality
K.

@ Does this tree of possibilities have a cofinal branch, allowing us to define C?
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Generalising to higher k

Potential problems

To generalise this inductive argument to higher x, we have to be able to deal with
limit stages.

o At limit stages « along the way, the natural choice is to take B, =)
What if this intersection is empty, or even just of size < Kk?

<o B“/'
» The tree of possible choices we could have made for B, is a binary tree. If  is
inaccessible, then at any stage «, since there are only 2% < k possible nodes,
and they between them partition &, at least one of them must have cardinality
K.
@ Does this tree of possibilities have a cofinal branch, allowing us to define C?
» If k also has the tree property, then yes!
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So:
Proposition (Kamo; see Zapletal [4])

If Kk is weakly compact, then s,, > k.
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So:

Proposition (Kamo; see Zapletal [4])
If Kk is weakly compact, then s,, > k. Actually, this is if and only if.
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So:

Proposition (Kamo; see Zapletal [4])

If Kk is weakly compact, then s,, > k. Actually, this is if and only if.

To get 5, > T one requires even more large cardinal strength — see Zapletal [4].

Andrew Brooke-Taylor
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More involved example: ¢,

Evasion and prediction were introduced by Blass in a paper motivated by group
theory [1].
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More involved example: e,

Evasion and prediction were introduced by Blass in a paper motivated by group
theory [1].
Definition
A predictor is a a function 7 such that
@ dom(w) C k and |dom(7)| = &, and

o for each o € dom(w), w(a) is a function from k® to k.
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More involved example: e,

Evasion and prediction were introduced by Blass in a paper motivated by group
theory [1].
Definition
A predictor is a a function 7 such that
@ dom(w) C k and |dom(7)| = &, and

o for each o € dom(w), w(a) is a function from k® to k.

Definition

Given a predictor 7 and a function f: kK — K, we say 7 predicts f if there is some
a < K such that for all 5 > «a, w(B)(f[8) = f(B).
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Definition

The evasion number ¢,; is the "bounding number for prediction”:

e, = min{|F| : F C k™ A =3 predictor 7Vf € F(r predicts f)}.
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Definition
The evasion number ¢,; is the "bounding number for prediction”:

e, = min{|F| : F C k™ A =3 predictor 7Vf € F(r predicts f)}.

In the framework of relations introduced in the first talk today, ¢, is the norm of
the dual relation to (k", predictors, is predicted by).
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evs b

e, = min{|F| : F C k™ A =3 predictor 7Vf € F(r predicts f)}.
b, = min{|F|: F C k" A—3g € s"Vf € F(g >* f)}.
(Recall g >* f means there is some « < & such that for all 8 > «, g(8) > f(5).)
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evs b

e, = min{|F| : F C k™ A =3 predictor 7Vf € F(r predicts f)}.
b, = min{|F|: F C k" A—3g € s"Vf € F(g >* f)}.

(Recall g >* f means there is some « < & such that for all 8 > «, g(8) > f(5).)

¢, Is independent of b,,: there is a model in which ¢, > b,,, a model in which
¢, < by, and a model in which ¢, = b,,.
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evs b

e, = min{|F| : F C k™ A =3 predictor 7Vf € F(r predicts f)}.
b, = min{|F|: F C k" A—3g € s"Vf € F(g >* f)}.

(Recall g >* f means there is some « < & such that for all 8 > «, g(8) > (5).)

¢, Is independent of b,,: there is a model in which ¢, > b,,, a model in which
¢, < by, and a model in which ¢, = b,,.

| will focus on Brendle and Shelah’s construction of a model with e, > b, [2].
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|
Getting ¢ > b

How to get a model of ¢, > b,,? The natural approach:
@ start with a model of CH, where ¢, = b,, = wq,
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|
Getting e > b

How to get a model of ¢, > b,,? The natural approach:
@ start with a model of CH, where ¢, = b,, = wq,
o force to make e, large, whilst keeping b, small.
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Getting e > b

How to get a model of ¢, > b,,? The natural approach:
@ start with a model of CH, where ¢, = b, = wy,

o force to make ¢, large, whilst keeping b, small.

A natural approach to this latter:
@ do the most obvious forcing to make ¢, large, and

@ hope for the best.
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|
Getting e > b

How to get a model of ¢, > b,,? The natural approach:
@ start with a model of CH, where ¢, = b, = wy,

o force to make ¢, large, whilst keeping b, small.

A natural approach to this latter:
@ do the most obvious forcing to make ¢, large, and

@ use a clever argument to show that b,, remains small.
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|
Making ¢ large

There is a standard way to make a “bounding number”-type cardinal
characteristic large:

o force to kill all ground model unbounded sets: add a new bound for them all,
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Making ¢ large

There is a standard way to make a “bounding number”-type cardinal
characteristic large:

o force to kill all ground model unbounded sets: add a new bound for them all,

@ do a long (however large you want the cardinal) iteration of these forcings
with finite support.
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Making ¢ large

There is a standard way to make a “bounding number”-type cardinal
characteristic large:

o force to kill all ground model unbounded sets: add a new bound for them all,

@ do a long (however large you want the cardinal) iteration of these forcings
with finite support. Any small potentially unbounded set appears after an
initial fragment of the iteration, and then is forced to be bounded at the next
step.
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Making ¢ large

There is a standard way to make a “bounding number”-type cardinal
characteristic large:

o force to kill all ground model unbounded sets: add a new bound for them all,

@ do a long (however large you want the cardinal) iteration of these forcings
with finite support. Any small potentially unbounded set appears after an
initial fragment of the iteration, and then is forced to be bounded at the next
step.

In particular, to make ¢, equal to some regular cardinal A > wy, we:

o force to add a new predictor that predicts all ground model functions,
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|
Making ¢ large

There is a standard way to make a “bounding number”-type cardinal
characteristic large:
o force to kill all ground model unbounded sets: add a new bound for them all,

@ do a long (however large you want the cardinal) iteration of these forcings
with finite support. Any small potentially unbounded set appears after an
initial fragment of the iteration, and then is forced to be bounded at the next
step.

In particular, to make ¢, equal to some regular cardinal A > wy, we:
o force to add a new predictor that predicts all ground model functions,

@ do a length X iteration with finite supports of this forcing. Any set F C w¥
in the extension of cardinality less than A\ must have appeared by some initial
stage of the forcing, and then the predictor added at the next step predicts it.
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|
Adding a predictor

How do we force to add a predictor that predicts all ground model functions?
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|
Adding a predictor

How do we force to add a predictor that predicts all ground model functions?
By finite approximations!
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Adding a predictor

Definition (Brendle-Shelah [2])

We define the single step predictor forcing P. Conditions are triples (d, 7, F) such
that
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Adding a predictor

Definition (Brendle-Shelah [2])

We define the single step predictor forcing P. Conditions are triples (d, 7, F) such
that

Q dec2<vw
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Adding a predictor

Definition (Brendle-Shelah [2])

We define the single step predictor forcing P. Conditions are triples (d, 7, F) such
that

@ d € 2<% (a finite approximation to the characteristic function of the domain
of the predictor),
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Adding a predictor

Definition (Brendle-Shelah [2])
We define the single step predictor forcing P. Conditions are triples (d, 7, F) such
that
@ d € 2<% (a finite approximation to the characteristic function of the domain
of the predictor),
@ T is a function with domain d~1{1} such that ¥n € d=1{1}, n(n) is a finite
partial function from w" to w
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that
@ d € 2<% (a finite approximation to the characteristic function of the domain
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partial function from w" to w (a finite approximation to the predictor),
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|
Adding a predictor

Definition (Brendle-Shelah [2])

We define the single step predictor forcing P. Conditions are triples (d, 7, F) such
that

@ d € 2<% (a finite approximation to the characteristic function of the domain
of the predictor),

@ T is a function with domain d~1{1} such that ¥n € d=1{1}, n(n) is a finite
partial function from w" to w (a finite approximation to the predictor),

@ F C w¥ s finite and for f # g € F, max({n: f|n= g|n}) < dom(d)
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|
Adding a predictor

Definition (Brendle-Shelah [2])

We define the single step predictor forcing P. Conditions are triples (d, 7, F) such
that

@ d € 2<% (a finite approximation to the characteristic function of the domain
of the predictor),

@ T is a function with domain d~1{1} such that ¥n € d=1{1}, n(n) is a finite
partial function from w" to w (a finite approximation to the predictor),

Q@ F Cw@isfinite and for f £ g € F, max({n: f|n=g|n}) < dom(d)
(a promise to predict the functions in F from now on).
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|
Adding a predictor

Definition (Brendle-Shelah [2])
We define the single step predictor forcing P. Conditions are triples (d, 7, F) such
that

@ d € 2<% (a finite approximation to the characteristic function of the domain
of the predictor),

@ T is a function with domain d~1{1} such that ¥n € d=1{1}, n(n) is a finite
partial function from w" to w (a finite approximation to the predictor),
Q@ F Cw@isfinite and for f £ g € F, max({n: f|n=g|n}) < dom(d)
(a promise to predict the functions in F from now on).
We say (d’, 7', F') < (d,m, F) if and only if
ed Dd, " DOm and F' O F, and

Generalising the weak compactness of w Generalised Baire 2018 18 / 32



|
Adding a predictor

Definition (Brendle-Shelah [2])

We define the single step predictor forcing P. Conditions are triples (d, 7, F) such
that

@ d € 2<% (a finite approximation to the characteristic function of the domain
of the predictor),

@ T is a function with domain d~1{1} such that ¥n € d=1{1}, n(n) is a finite
partial function from w" to w (a finite approximation to the predictor),

Q@ F Cw@isfinite and for f £ g € F, max({n: f|n=g|n}) < dom(d)
(a promise to predict the functions in F from now on).

We say (d’, 7', F') < (d,m, F) if and only if
ed Dd, " DOm and F' O F, and

o forall f € Fand ne (d')" {1} ~ d~Y{1}, #'(n)(f I n) = f(n) (and in
particular is defined).
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Centred-ness

Let P be a partial order.

@ A subset X of P is (1, < w)-centred if any finitely many conditions in X have
a common extension in P.

@ A subset Y of Pis (A, < w)-centred if Y may be decomposed as
Y =U,., Yy where each Y, is (1, < w)-centred in P.

e P is said to be o-centred if it is (w, < w)-centred (as a subset of itself).
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a common extension in P.

@ A subset Y of Pis (A, < w)-centred if Y may be decomposed as
Y =U,., Yy where each Y, is (1, < w)-centred in P.

e P is said to be o-centred if it is (w, < w)-centred (as a subset of itself).

Clearly any o-centred forcing is ccc.
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N
Centred-ness

Let P be a partial order.

@ A subset X of P is (1, < w)-centred if any finitely many conditions in X have
a common extension in P.

@ A subset Y of Pis (A, < w)-centred if Y may be decomposed as
Y =U,., Yy where each Y, is (1, < w)-centred in P.

e P is said to be o-centred if it is (w, < w)-centred (as a subset of itself).

Clearly any o-centred forcing is ccc.

Note that the predictor forcing P is o-centred: any set of conditions with the
same d and ™ components are compatible: take the union of the F components,

and extend d to take the value O for long enough to satisfy requirement 3 on
conditions.
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So P is ccc, and hence preserves cardinals and cofinalities.
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So P is ccc, and hence preserves cardinals and cofinalities.

Given a generic filter G for P, the union of the m components of the conditions in
G is a predictor, with domain the union of the d components, which predicts every
ground model function from w to w.
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So P is ccc, and hence preserves cardinals and cofinalities.

Given a generic filter G for P, the union of the m components of the conditions in
G is a predictor, with domain the union of the d components, which predicts every
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So P is ccc, and hence preserves cardinals and cofinalities.

Given a generic filter G for P, the union of the m components of the conditions in
G is a predictor, with domain the union of the d components, which predicts every
ground model function from w to w. Iterating P with finite support for length A a
regular cardinal makes ¢,, = A in the generic extension, as outlined above.

To show that b, = w; in the extension, we use the following lemma:

Lemma

If F is an unbounded (with respect to <*) family of functions from w to w, then

Ikp F is unbounded.

Generalising the weak compactness of w Generalised Baire 2018 20 / 32



To prove the Lemma, we use the following definitions.
e For a condition p = (d,m, F) € IP define

l, ={fdom(d): f € F}.
@ For h a P-name for a function in w* define hdx1 € (w+1)¥ by

hg z,1(n) = min{m < w : there is no p € P of the form p = (d, 7, F)
with [, = I such that p IF h(n) > m}.

Generalising the weak compactness of w Generalised Baire 2018 21 / 32



To prove the Lemma, we use the following definitions.
@ For a condition p = (d,, F) € IP define

l, ={fdom(d): f € F}.
@ For h a P-name for a function in w* define hdx1 € (w+1)¥ by
hg z,1(n) = min{m < w : there is no p € P of the form p = (d, 7, F)
with [, = I such that p IF h(n) > m}.
Main Claim
Actually, hg ~; € w®.

Proof.

Compactness of w. O
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Part 1l
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|
Recap

o 7 predicts f if for all large enough n in dom(x), w(n)(f | n) = f(n).

e ¢, = min{|F|: F Cw¥ AV predictor 73f € F(r does not predict )}
o Want to force ¢, > b, with a long iteration.

(]

Conditions in the individual forcing step: (d,m, F) — finite approximations to
the generic predictor and its domain, and a promise to predict the functions
in F.

@ Lemma: F unbounded before the forcing = F unbounded after.

@ Towards proof of the Lemma, let |, = {f [dom(d) : f € F}, and given a
P-name h for a funtion w — w, define

hd . 1(n) = min{m < w : there is no p € P of the form p = (d, 7, F)
with I, = I such that p I+ h(n) > m}.

e Main Claim: hy - (n) is finite for all n.
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How the Main Claim proves the Lemma

Given h, there are only countably many functions hg »; (as d, m and [ vary), so
there is some h*: w — w such that hy »; <* h*. Since F is unbounded there is
some f € F such that f(n) > h*(n) for infinitely many n.
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How the Main Claim proves the Lemma

Given h, there are only countably many functions hg »; (as d, m and [ vary), so
there is some h*: w — w such that hy »; <* h*. Since F is unbounded there is
some f € F such that f(n) > h*(n) for infinitely many n. Then also

kg £(n) > h(n) for infinitely many n. ()

Otherwise, for some m and some p we would have p I-p ¥n > m(f(n) < h(n)).
But taking d, 7 and [ corresponding to p and n > m such that

f(n) > h*(n) > hg .1(n), we'd have p IFp hy . 1(H) < F(#) < h(#), contradicting
the definition of hg ;. So (t) holds, and so F is not bounded by the function
named by h, which was arbitrary; so F remains unbounded.
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|
Proving the Main Claim

Main Claim: hg  (n) is finite for all n, where

hd =,1(n) = min{m < w : there is no p € P of the form p = (d, 7, F)
with 1, = I such that p I h(n) > m}.

Suppose not. Then there are d, 7, | and p; for i € w with p; = (d,w, F;) and
lp; = I such that

pi IFp h(ﬁ) > i
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Proving the Main Claim

Main Claim: hg  (n) is finite for all n, where

hd =,1(n) = min{m < w : there is no p € P of the form p = (d, 7, F)
with 1, = I such that p I h(n) > m}.

Suppose not. Then there are d, 7, | and p; for i € w with p; = (d,w, F;) and
lp; = I such that

pi IFp h(ﬁ) > i

Let's index / as | = {f, : £ < |I|} and each F; as F; = {f/ : £ < |I|} such that
f/ Idom(d) = f,.

We may thin out the sequence of p; so that for each ¢ < |/|, either
o Jgr € w*Vi(f/ i =gili), or
o Jip € wIgy € WVI(F) Tip = &0 A fi(i0) > i).
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|
Proving the Main Claim

Main Claim: hg  (n) is finite for all n, where

hd =,1(n) = min{m < w : there is no p € P of the form p = (d, 7, F)
with 1, = I such that p I h(n) > m}.

Suppose not. Then there are d, 7, | and p; for i € w with p; = (d,w, F;) and
lp; = I such that

pi IFp h(ﬁ) > i
Let's index / as | = {f, : £ < |I|} and each F; as F; = {f/ : £ < |I|} such that
f/ Idom(d) = f,.

We may thin out the sequence of p; so that for each ¢ < |/|, either
o Jgr € w*Vi(f/ i =gili), or
o Jip € wIgy € WVI(F) Tip = &0 A fi(i0) > i).

Compactness of w has been used here!
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With the p; thinned out to get this dichotomy, we have enough hands-on control
to build a contradiction. ]
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Generalising to &

(Joint work with Jorg Brendle)

To carry over the proof for the single step of the iteration, the main obstacle is to
generalise this thinning out.
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Generalising to &

(Joint work with Jorg Brendle)

To carry over the proof for the single step of the iteration, the main obstacle is to
generalise this thinning out.

There is a natural tree to consider — the set of all restrictions fz" [ k. But it would
still be helpful to think of “climbing up through the tree” rather than just using a
branch that the tree property hands down to use.
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Generalising to &

(Joint work with Jorg Brendle)

To carry over the proof for the single step of the iteration, the main obstacle is to
generalise this thinning out.

There is a natural tree to consider — the set of all restrictions fz" [ k. But it would
still be helpful to think of “climbing up through the tree” rather than just using a
branch that the tree property hands down to use.

To do this we can use the embedding form of weak compactness to give us an
ultrafilter to follow.
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Proposition

Let k be a weakly compact cardinal. Then for suitable structures M of size  for a
vocabulary of size at most k, there is an M-normal ultrafilter: a set U such that

(M, e, U E U is a k-complete normal ultrafilter on k.

In particular, if M<% C M, then U really is closed under < k-fold intersections.

Proof sketch.
Use the embedding formulation of weak compactness, define for X C k in M,

X el & j(X) s k.
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So working in a k-sized model containing everything needed (such as the tree), we
can use this ultrafilter to guide our way up the tree, and at the end, use normality
to get the final thinned out sequence. We get:

Lemma

Suppose k is a weakly compact cardinal, v is a cardinal less than k, and for each
B €, <fﬁ6 : 0 € k) Is a sequence of functions in k". Then there is a strictly
increasing sequence of ordinals less than r, (6, : n) € k), such that for every 3 € ,
. s
either (a)s : Jgg € K"V < k(3" [ = gg 1)
A s N s
or (b)g : i < k3B € KV < K(fy" [1g = 8 N fy" (1) > m).
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Finishing the generalisation

The above Lemma is enough to generalise the single forcing step. How about the
rest of the proof?
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Finishing the generalisation

The above Lemma is enough to generalise the single forcing step. How about the
rest of the proof?

More problems:

@ We want k to remain weakly compact for later stages of the forcing.

Andrew Brooke-Taylor
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Finishing the generalisation

The above Lemma is enough to generalise the single forcing step. How about the
rest of the proof?

More problems:

@ We want k to remain weakly compact for later stages of the forcing.

Solution: Johnstone [3] showed that strongly unfoldable cardinals, which
are somewhat stronger than weakly compact cardinals but still
far below supercompact, can be made indestructible to a class
of forcings including these. So we just assume this stronger
large cardinals.
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rest of the proof?

More problems:

@ We want k to remain weakly compact for later stages of the forcing.

Solution: Johnstone [3] showed that strongly unfoldable cardinals, which
are somewhat stronger than weakly compact cardinals but still
far below supercompact, can be made indestructible to a class
of forcings including these. So we just assume this stronger
large cardinals.

@ The iteration theorems that deal with limit stages of the iteration in the w
case don't carry over for small cofinality limit stages.
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Finishing the generalisation

The above Lemma is enough to generalise the single forcing step. How about the
rest of the proof?

More problems:

@ We want k to remain weakly compact for later stages of the forcing.

Solution: Johnstone [3] showed that strongly unfoldable cardinals, which
are somewhat stronger than weakly compact cardinals but still
far below supercompact, can be made indestructible to a class
of forcings including these. So we just assume this stronger
large cardinals.

@ The iteration theorems that deal with limit stages of the iteration in the w
case don't carry over for small cofinality limit stages.

Solution: Work with the fact that P is x centred with canonical lower
bounds (caution: not written down vyet. . .).
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|
Questions

@ What large cardinal assumption is really needed for ¢, > b, 7 Strong
unfoldability? Weak compactness? None?
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unfoldability? Weak compactness? None?

@ What other cardinal characteristics of the continuum results use compactness
& need weak compactness to generalise?
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|
Questions

@ What large cardinal assumption is really needed for ¢, > b, 7 Strong
unfoldability? Weak compactness? None?

@ What other cardinal characteristics of the continuum results use compactness
& need weak compactness to generalise?

@ This is saying something about the necessity of compactness for these
arguments from the w case. Is there an interesting way to view this from a
reverse mathematics perspective?
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