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Classical descriptive set theory

According to Kechris' book, “descriptive set theory is the study of
definable sets in Polish (i.e. separable completely metrizable) spaces”,
and of their regularity properties.

Kechris, Classical descriptive set theory, 1995

Polish spaces: separable completely metrizable spaces, e.g. the Cantor
space “2 and the Baire space “w.

Definable subsets: Borel sets, analytic sets, projective sets...

Regularity properties: Perfect set property (PSP), Baire property,
Lebesgue measurability, ...

There has been various attempts to generalize classical DST to different
setups, usually first varying the spaces under consideration, and then
naturally adapting (some of) the other definitions to the new context.
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Non-separable spaces

Drop separability from the definition of a Polish spaces (while keeping
complete metrizability). Approach mainly motivated by analysis, where one
deals with non-separable Banach spaces as well, and general topology.

A. H. Stone, Non-separable Borel sets, 1962

Baire spaces: [, 7n where each T;, is discrete. In particular, the space
B(\) =“X and, if cof(\) = w, the space C'(\) = [[.., Ai, where the \;'s
are increasing and cofinal in A (in symbols, A; 7 \).

€W

Definable sets: usual Borel sets (o-algebra generated by open sets);
A-analytic sets = continuous images of B(\) (plus 0).

Regularity properties: \-PSP for a set A = either |A| < A, or B()\)
topologically embeds into A.

Among many other things, Stone showed e.g. that B(\) ~ C(\) when
A > w, and that all Borel/\-analytic subsets of B(\) have the A-PSP.
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Quasi-Polish spaces and alike

Drop (complete) metrizability, while keeping separability (or
second-countability). Useful to encompass the study of topological spaces
relevant to theoretical computer science which are not metrizable, like the
w-continuous domains (e.g. the Scott domain P(w)).

M. de Brecht, Quasi-Polish spaces, 2013

Quasi-Polish spaces: separable spaces which are completely
quasi-metrizable, where a quasi-metric is like a metric without the
condition d(z,y) = d(y, z).

Definable sets: usual Borel and analytic/ projective sets.

Regularity properties: the usual ones, e.g. PSP, Baire property, and so
on.

A general theory for such spaces can be fully developed: in fact, it turns
out that quasi-Polish spaces are “almost” Polish, and differences occurs
only at finite levels in the Borel hierarchy.
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Generalized descriptive set theory

Don't care about separability and (complete) metrizability, but rather
systematically replace w with an uncountable cardinal  in all definitions.
Motivation not totally clear to me, but, a posteriori, remarkable connections
with other areas of set theory and model theory (Shelah's stability theory).

(Too many authors to be cited, most of which are in this room...)

Generalized Cantor space and Baire space: “2 and "k, endowed with
the bounded topology, i.e. the topology generated by the sets
N, ={x €"2]|sC z} with s € <*2 (and similarly for "x).

Definable sets: x*-Borel sets = sets in the x-algebra generated by open
sets; k-analytic sets = continuous images of closed subsets of "k
(equivalently, continuous images of x*-Borel subsets of #2).

Regularity properties: x-PSP for a set A = either |A| < &, or %2
topologically embeds into A; x-Baire property (when it makes sense); other
“combinatorial” regularity properties.

y
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Generalized descriptive set theory

Usually, generalized descriptive set theory is developed under the crucial

condition
K=k (1)

to ensure that e.g. both 2 and "k have a separability-like condition (i.e.
they have a dense subset of size k). This condition can equivalently be
rewritten as

K is regular and 2K = K.

The (first half of the) assumption above causes the loss of metrizability
when k > w: indeed, ©2 is (completely) metrizable iff #2 is first-countable
iff cof (k) = w. (The same holds for “x.)

The resulting theory is extremely rich and interesting, but quite different
from the classical one: most of the nontrivial results are either simply false
or at least independent of ZFC when k > w (e.g. both the Lusin’s
separation theorem and Souslin's theorem fail).
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Generalized descriptive set theory

A general trend emerging from various papers is

Large cardinals (expecially when « itself is a large cardinal) allow to
preserve a bit more of the classical picture.

For example, “x % *2 if (and only if) x is weakly compact. On the other
extreme, the generalized Cantor and Baire spaces enjoy all possible
“pathologies” in the constructible universe L.

Many years ago, Dzamonja suggested that maybe singular cardinals could
give a better picture. Indeed, together with Vdinanen, she studied a bit of
generalized descriptive set theory with « singular, mainly in connection with
model theory (chainable models).

More recently, Woodin suggested to study generalized DST under 10 in
connection with his study of the model L(V ;1) (where X is the witness of
10). Notice that such a A has always countable cofinality.
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10 and Woodin's analysis

The axiom 10

[0()) is the statement: There is a nontrivial elementary embedding
J: L(Vat1) < L(Vayg1) with crt(5) < A (we call j a witness to 10(X)).

10 is the statement: there is A for which 10()\).

Woodin considers V12 = P(V11) as a large cardinal version of P(“2):
indeed, one can see V as an analogue of V, & w, so that V.1 = P(V,)
is the analogue of P(w) &~ “2. Following this analogy, Woodin considers
the topology on V.1 generated by the sets of the form

Opo={X eV | XNVy=0a}
fora < Xand a C V,.

Woodin claims that “the theory of P(V 1) in L(Vx11) under I0()) is
reminiscent of the theory of P(R) in L(R) = L(V41) under AD".
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10 and Woodin's analysis

A test for Woodin's claim is the Perfect Set Property PSP. Some of the
following statements involve U (j)-representability, which is a technical
notion isolated by Woodin reminiscent of the one of k-weakly
homogenously Souslin sets.

Theorem (Woodin)

Assume 10(), as witnessed by j. Every U(j)-representable set A C V41
in L(V41) satisfies the following dichotomy: either |A| < A or “2
topologically embeds into A.

Theorem (Shi)

Assume 10(), as witnessed by j. Then every set A in Ly(V ;1) satisfies
the following dichotomy: either |A| < A or C(\) =[], \i topologically
embeds into A, where \; 7 A.

1EW
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10 and Woodin's analysis

Theorem (Shi)

Assume 10(A), as witnessed by j. Assume that all subsets of V11 in
L(Vat1) are U(j)-representable. Then every A C V1 in L(Vay1)
satisfies the following dichotomy: either |A| < X or C(A) = [[.o, Ai
topologically embeds into A, where A\; 7 A.

1EW

Theorem (Cramer)

Assume 10(A), as witnessed by j. Every A C V1 in L(V ;1) satisfies the
following dichotomy: either |A| < X or B(A) = “\ topologically embeds
into A.

The proofs are remarkably long and complicated, heavily using forcing,
absoluteness, and a great part of Woodin's machinery.
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Back to generalized DST: the singular case

Our goal is to study the generalized Cantor space *2 when \ is singular.
We denote by A; a(ny) sequence of length 1 = cof()\) cofinal in A.

Proposition (Dzamonja-Viinanen, Dimonte-M.)

The following spaces are homeomorphic (products of length 1 are endowed
with the < p-supported product topology):

0 *2;
° HKu 2 where each 2V is discrete;

o #(2<%), where 2<* is discrete.
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The generalized Cantor space *2

Dropping the first half of the usual condition

A=) = cof(\) =\ and 2<% =\ (1)
we remain with a singular X satisfying 2<* = \ or, equivalently, with a
singular strong limit A. In this situation, *2 still has density \ and the

previous result reads as

A2zni<u)\i%“)\. J

Moreover, in this case *2 % AX because the latter has density A<A >\
(Indeed, 2 and *X may even fail to be (A*-)Borel isomorphic.)

If furthermore cof(\) = w, then we get

22~ C(\) ~ B()).
Thus when ) is strong limit of countable cofinality, the generalized Cantor
space 22 is a completely metrizable space of density )\, briefly: a A-Polish

space. These very simple observations have lot consequences.
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The generalized Cantor space *2

A space X is said uniformly zero-dimensional if for every € > 0, every
open set of X can be partitioned into clopen sets with diameter < ¢.

(Uniform zero-dimensionality follows from ultrametrizability and is equivalent to

ultraparacom pactness.)

Proposition (Dimonte-M.)

Let A > w be strong limit of countable cofinality.

@ 2 is universal for uniformly zero-dimensional \-Polish spaces, that is:
X is A-Polish and uniformly zero-dimensional iff it is homeomorphic to
a closed subset of A2, iff it admits a compatible complete ultrametric.

@ In a uniformly zero-dimensional A-Polish space X, every closed set
C C X is a retract, i.e. there is a continuous surjection g: X — C
with g | C' =id¢.

@ Every nonempty A-Polish space is a continuous image of *2.
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The generalized Cantor space *2 and Woodin's L(V 1)

Woodin's approach to the study of V1 falls in this setup as well. Recall
that V41 is endowed with the topology generated by
Ogo={X€eVap1 | XNVy=a}fora<Aanda CV,.

Lemma
If cof(A) =w and A; A, then

Vi1 & Hiew V1| = ”(Supiew :Ai—i—l) ~ Y (:A)-

If furthermore A is limit of inaccessible cardinals (which is the case under
[0(A)), then

~ ~ ~ A
Vgl ~ Hiew PYRNE W ED)
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A\-Borel sets

As usual, on *2 we consider \*-Borel sets. It can be proven that these
sets can be stratified in a hierarchy with exactly A™-many levels (if
2<* > X, a new proof is needed for the non-collapsing part).

Notice also that if A is singular then

AT-Borel = \-Borel.

Similar results hold for the generalized Baire space *\.
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A-Analytic sets

In the classical case, the following conditions (defining analytic sets) are
equivalent:

@ A is a continuous image of a Polish space

@ A =0 or Ais a continuous image of “w

© A is a continuous image of a closed F' C “w

© A is a continuous/Borel image of a Borel subset of “2
© A is the projection of a closed subset of X x “w

O A is the projection of a Borel subset of X x “2.

There are some problems when trying to generalize these equivalences by
replacing “2 and “w with ©2 and "k, especially when « is regular.

However...
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A-Analytic sets

If cof(A) = w and A is strong limit, TFAE:

@ A is a continuous image of a A-Polish space

@ A =0 or Ais a continuous image of “\

© A is a continuous image of a closed F' C Y\

@ A is a continuous/Borel image of a Borel subset of *2
© A is the projection of a closed subset of X x ¥\

@ A is the projection of a Borel subset of X x *2.

This is exactly the notion of a A-analytic set isolated by Stone.

Remark: One may be tempted to generalize the notion of “analytic” as
“continuous image of a closed subset of *)\", as in the regular case.
However, this would give a much coarser definition, encompassing
A-analytic sets, A-coanalytic sets, E%()\) sets, and, under the assumption
that A<* is large, also all A-projective sets.
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A-analytic vs \-Borel

Assume again that \ is strong limit with countable cofinality.

Proposition (Dimonte-M.)

The collection of all A-analytic sets (properly) contain the A(+)-Borel ones.

Generalized Lusin's separation theorem (Dimonte-M.)

If A, B are disjoint analytic subsets of a A-Polish space, then A can be
separated from B by a A-Borel set.

Generalized Souslin's theorem (Dimonte-M.)

A subsets of a A-Polish space is A-bianalytic iff it is A(*)-Borel.

This has many consequences:
@ a function is A\-Borel iff its graph is A-analytic, iff its graph is A-Borel;
@ the injective A-Borel image of a A-Borel set is still A\-Borel;

o ...
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A-Perfect set property

Definition

A subset A of a topological space X has the \-PSP if either |A| < A, or
else 22 topologically embeds into A.

Similarly to the classical case

Theorem (essentially A. H. Stone)

Let A\ be strong limit of countable cofinality. Every A-analytic subset of a
uniformly zero-dimensional A\-Polish space has the A\-PSP.

What for more complicated sets?

Motivated by the fact that, in the classical context, x-homogeneously
Souslin sets have the PSP (and inspired by Woodin's notion of
U (j)-representability), we developed the following machinery.
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(U, k)-representable sets

Definition

A family U of ultrafilters is orderly iff there exists a set K such that for all
U € U there is n € w for which "K € U/. Such an n is called the level of /.

A tower of ultrafilters in such a U is a sequence (I;)icw such that for all
m<n<w:

o U, € U has level n;

@ U, projects to U,y,, i.e. for each A C ™K we have

AeU, < {s€"K|s|me A} €lU,.

A tower of ultrafilters (U;);e., is well-founded iff for every sequence
(Aj)iew with A; € U; there is z € “K such that z [ i € A; for all i € w.
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(U, k)-representable sets

From now on X is strong limit with cof(\) = w, and A; A

Let x > X be a cardinal, and let U be an orderly family of x-complete

ultrafilters. A (U, k)-representation for Z C “\ is a function
72 Ujew ‘A X *A = U such that:

e if s,t € ')\, then 7(s,t) has level i;
e for any (s,t) € "X if (s/,t') 3 (s,t) then w(s',t') projects to 7 (s, t);
o x € Ziff thereis y € “As.t. (m(x [ i,y [ 7))icw is well-founded.

Remark 1: If A = w and A C “w is k-weakly homogenously Souslin, then
A is (U, k)-representable for a suitable orderly family of ultrafilters U.
Remark 2: Exploiting the natural homeomorphism between V), and “)\
the above definition yields Woodin's U (jj)-representability when x = A*
and U is a certain family of ultrafilters usually denoted by U(j, k, (a;)icw)-
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Tower condition

The following condition turns out to be very helpful when checking
well-foundness of towers of ultrafilters.

Definition

A (U, k)-representation 7 for a set Z C “\ has the tower condition if
there exists F': ranm — |JU such that:

o F(U) €U for all U € ran(r);

o for every z,y € “\, the tower of ultrafilters (w(x [ i,y [ ©))icy is
well-founded iff there is z € “K such that z [ i € F( (3: [,y [4)) for
all i € w.

v

Remark 1: When \ = w, the tower condition automatically follows from
the k-weakly homogeneously Souslin condition.

Remark 2: Woodin has an analogous notion of “tower condition” in the
context of U(j)-representability. Cramer later proved that if 10(\) holds,
then all U(j)-representable sets in P(Vy11) NL(Va41) admit in fact a
U (j)-representation with the tower condition.
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Here is our main theorem in this direction.

Theorem (Dimonte-M.)

Let A be strong limit with cof(\) = w, and let K > A be a cardinal. If
Z C“)\ admits a (U, k)-representation with the tower condition, then Z

has the \-PSP.

The proof of this result uses only elementary arguments and exploit some
variants of classical games: no forcing/absoluteness/Woodin's machinery is
involved...
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Perfect set property under 10

Corollary

Assume [0()), as witnessed by j. If A € P(Vyi1) NL(Vagq) is
U (j)-representable, then A has the A\-PSP.

Corollary

Assume 10(A). All A-projective subsets of any uniformly zero-dimensional
A-Polish space have the \-PSP.

Corollary (of the proof of the main theorem)

Assume 10()), as witnessed by a proper j with crt(j) = k. Let IP be the
Prikry forcing on x with respect to the measure generated by j. Then there
exists a P-generic extension V|G| of V in which all x-projective subsets of
any uniformly zero-dimensional x-Polish space have the x-PSP.

Remark: The cardinal s is much smaller than ), and possibly does not

satisfy 10 in the generic extension.
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Proof of the main theorem

Theorem (Dimonte-M.)

Let A be strong limit with cof(\) = w, and let Kk > X be a cardinal. If Z C “\
admits a (U, k)-representation with the tower condition, then Z has the A\-PSP.

Proof. Let m be a (U, k)-representation for Z with the tower condition,
as witnessed by F'. Let G(Z) (or rather G(w, F')) be the game

I H <j0)(5?7t9)i<)\0> ‘ ZO7<j17(5117t%)i<)\1> ‘ Zl7<j27(8127t12)i<)\2> ‘
IT || io | i1 | o | ... J

° ji €w, sF th € Jkpy for some py < A, and s¥ %sf, if i # 4,

1771
0 i < M\
@ 2, € F(Tr(sfk,tfk));

@ jri1 > Jk, sf“ J sfk and tf“ 3 tfk for all i < A\gy1, and 21 3 2.

I wins if she can play for infinitely many turns. J
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Proof of the main theorem

When I wins a run, she has built an element z = Ukew sfk e ¥\, and a
¥ = Upew tr. € “X witnessing that 2 € Z — the well-foundedness of the

corresponding tower is witnessed by z = | J;,c,, 2, since z; € F(Tr(sfk,tfk)).

G(Z) is a closed game, hence determined. If I has a winning strategy,
testing it against all possible moves of 11 we get an embedding of
[Ticw A = C(A) = *2 into Z. So let us assume that II has a winning
strategy 7 in G(Z).

Consider the ausiliary game G*(Z) (or rather G(m))

L || (o, (2, 8D)icxo) | (s (35 8)icns) | G2, (53, 8) i) | - -
IT || io | i1 | iz | ...

where I does not have to produce the witnesses z;,, and I wins iff
= Upeo sfk € Z with y = tfk witnessing this. Such a game is not
necessarily determined (the complexity of the payoff depends on the
complexity of Z and ), but...
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Proof of the main theorem

...any winning strategy 7 of IT in G(Z) can be converted into a winning
strategy 7* of II in G*(2).

The idea is that II simulates a run in G(Z) testing all possible z;, € F(m(s¥ ,tk))

1) Vi
that I could play. Using A-completeness of w(s¥ , ¢ ), for a measure-one set of
these possibilities 7 will suggest the very same move 7;: then II plays precisely

this 7 in his corresponding turn in G*(Z).

Claim. If IT wins G*(Z), then |Z]| < A.

Given a position p in the game G*(Z) consisting of k-many rounds, let A,
be the set of those sfk_}l C = € “X for which whatever I plays in her next
turn, the answer by II following 7* is such that sfk [Z x. Arguing as in the
classical case, one gets [Ap| < (Ag)* < A. Moreover, Z C | J, A) because
any x € 7'\ Up A, would yield a strategy for I in G*(Z) defeating 7*.
Finally, a direct computation shows that there are only A-many possible

positions p in G*(Z), whence |Z| < ‘UpAp <A A=A O
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Thank you for your attention!
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