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ien
e.uva.nl.Abstra
tIn this paper I dis
uss various philosophi
al issues in relation to theformal study of learning as data 
ompression, also known as MinimumDes
ription Length or Two Part Code optimization. I show that learningis intimately related to basi
 questions in epistemology. Central is theproblem of the eÆ
ien
y of human learning. Drawing on fundamentalinsights from 
omplexity theory, information theory and thermodynami
sI sket
h a unifying view that 
lari�es this human eÆ
ien
y: a universe inwhi
h we 
an 
ompute is ne
essarily a 
ooperative universe in the sensethat it produ
es data sets that 
an easily be 
ompressed.1 Introdu
tionIn the summer of 1956 a number of s
ientists gathered at the Dartmouth Collegein Hanover, New Hampshire. Their goal was to study human intelligen
e withthe help of 
omputers. Their 
entral hypothesis was: "that every aspe
t oflearning or any other feature of intelligen
e 
an in prin
iple be so pre
iselydes
ribed that a ma
hine 
an be made to simulate it." On that 
onferen
e,where amongst others John M
Carthy, Claude Shannon and Marvin Minskywere present, the new dis
ipline of Arti�
ial Intelligen
e was born. It is striking'learning' was 
onsidered to be an important aspe
t of human intelligen
e fromthe start. A better understanding of the phenomenon of learning was high onthe agenda of the emerging young s
ien
e.Now, �fty years later, the study of learning is one of the su

ess stories ofAI. There is a multitude of learning te
hniques for the 
omputer. Data miningte
hniques are being used for marketing, sto
k management, produ
tion opti-mization and fraud dete
tion in the 
ommer
ial domain. Biologi
ally inspiredlearning models su
h as neural networks and geneti
 algorithms are being used tosimulate human 
ognition and evolution. In dis
iplines like 
omputer vision and
omputational linguisti
s ma
hine learning is in the 
enter of interest (Kearnsand Vazirani [1994℄, Mit
hell [1997℄, Adriaans and Zantinge [1997℄, Cornu�ejolsand Mi
let [2003℄).But, resear
hers do not have mu
h reason to sit ba
k and rest, be
ausethere is still a whole list of questions that are begging for answers. One of thebiggest embarrassments is that we still do not know what learning is exa
tly.The toolbox of a ma
hine learner looks like a haphazardly 
olle
ted bun
h of1



s
rewdrivers, hammers en 
hisels of dubious origin. For some jobs they work,but we do not understand why, for others they do not work and we also do notunderstand why. One thing is 
ertain. There will never be a general theory thatexplains what learning exa
tly is.Philosophy of informationIt is 
lear that with the adventure of arti�
ial intelligen
e we have hit upona problem domain that has mu
h wider reper
ussions than the 
reation of in-telligent 
omputers. Re
ently a new dis
ipline has emerged: the philosophyof information (Floridi [2004℄).1 This dis
ipline reformulates 
entral questionsof philosophy from the perspe
tive of modern insights from 
omputer s
ien
e.Developments like these, urge us to formulate the question of the relation be-tween philosophy on one side and logi
, mathemati
s, theory of information and
omputation on the other.First of all philosophy is not s
ien
e. It takes a meta-position and is alwaysat most a re
e
tion on s
ien
e and s
ienti�
 results. It is not the primary taskof the philosopher to formulate and prove theorems. It is his task to re
e
ton the 
onsequen
es of theorems and theories. On the other hand philosophy
an not 
laim to have any form of privileged a

ess to reality. There is no�xed ar
himedean position from whi
h the philosopher 
an judge the resultsof s
ienti�
 endeavors. 2 Philosophy and s
ien
e therefore are doomed to livepermanently in ea
h others shadow without any possibility of a �nal re
on-
iliation. Any s
ienti�
 result 
an be made obje
t of philosophi
al analysis,but . . . only, or predominantly, in terms of the 
on
epts that the s
ien
es have
onstru
ted themselves. Philosophy therefore is at its best when it is in di-alogue with foundational programs of s
ien
e and the humanities. The moreit removes itself from these 
entral issues, the more substan
e it loses and themore it deteriorates in to a (possibly brilliant) literary exer
ise at best. In thissense philosophi
al re
e
tion may be seen as an inherent and ne
essary aspe
tof s
ienti�
 heuristi
s. It provides us with a ri
h histori
al 
ontext of 2500 yearsof re
e
tion on foundational programs and invites us to investigate the moreextreme 
onsequen
es of our theories and models.The study of theory of knowledge, theory of information and 
omputation,methodology of s
ien
e, theory of indu
tion and meta-mathemati
s share a 
om-mon history in whi
h related questions have been analyzed in di�erent guises.The work of Solomono� and Kolmogorov provides dire
t answers to questionsabout the nature of knowledge and indu
tion proposed by Carnap and theWiener Kreis and mu
h earlier Kant and Hume. In this light one has to in-terpret the re
e
tions on theory of information and learning I present below.1See the 
hapter by Floridi in this book2Spe
i�
ally: no privileged dire
t a

ess to ones own 
ons
iousness, no Husserlian epo
he,no histori
al laws of materialism, no re
ourse to immediately given sense data, no spe
ialrapport with Being itself, et
. 2



Philosophy of learningFirst I show that the question of the essen
e of learning is embedded in funda-mental epistemologi
al questions. The old philosophi
al problem of the essen
eof knowledge is fundamentally asso
iated with learning. The notion of eÆ
ien
yof learning plays an essential role in this 
ontext. Our models of learning showus that tasks, like learning a language, that human beings perform without toomu
h problems, are from a formal point of view extremely 
omplex and nextto impossible. This leaves us with the riddle of human eÆ
ien
y. I show howthe 
ontours of an analysis of this mysterious eÆ
ien
y of human learning getsshape in the light of re
ent insights from 
omplexity theory and thermodynam-i
s. Central questions in this respe
t are:Question 1.1 What is learning?Question 1.2 What are data sets from whi
h we 
an learn?Question 1.3 What kind of systems produ
e those data sets?The answer to the �rst question is: learning is algorithmi
 
ompression ofdata sets. Not all forms of learning are 
aught by this de�nition, but a broad
lass of philosophi
ally relevant learning phenomena fall under this des
ription. 3The answer to the se
ond question is: data sets that 
an be 
ompressed by a
omputer algorithm without too mu
h e�ort. 4 An answer to the third questionis - quite naturally - systems with relative low entropy: i.e. self-organizingsystems, systems that are not in a state of thermal equilibrium and systems thatredire
t energy from their environment in order to keep their internal entropylower than that of the environment. This kind of self-organization is typi
al forlife and for 
omputational pro
esses. The pi
ture that emerges is that thosesystems in nature that produ
e data sets from whi
h something 
an be learnedare by ne
essity systems with a relatively low entropy. The data sets themselves
onsequently have low entropy and are easy to de
ipher. This seems to be thesolution to the problem of the eÆ
ien
y of our learning algorithms. A deepanalysis of the idea that the universe 
an be interpreted as a 
omputationalpro
ess shows that nature ne
essarily a
ts as a 
ooperative tea
her. This is aphilosophi
al insight that trans
ends the lo
al 
ontext of Arti�
ial Intelligen
e.At the same time these insights help us to develop new algorithms that solveproblems from every day life. Learning as data 
ompression helps us to 
lassifyviruses, analyze musi
 (Cilibrasi and Vitanyi [2005℄) and to learn languages(Adriaans [2001℄).3Neural networks, geneti
 algorithms, de
ision tree indu
tion, 
lustering, nearest neighbor,support ve
tor ma
hines, asso
iation rules, to name a few. As a 
ounter example: simple rotelearning of a �nite set of fa
ts does not ne
essarily involve 
ompression of data.4Te
hni
ally: data sets that 
an be 
ompressed by means of 
onstru
tive resour
e bounded
ompression. The 'without too mu
h e�ort' restri
tion is added be
ause it a
tually is possibleto 
onstru
t highly 
ompressible data sets that from the outside look random, e.g. en
rypteddata or expansions of very spe
ial real numbers like � and e. There are no general algorithmsto 
ompress these sets. It is highly unlikely that these data sets o

ur frequently in nature.Anyhow, we would not noti
e them. 3



A short histori
al digressionThe notion that knowing something implied knowing its 'form' goes ba
k toPlato's theory of ideas as forms. Aristotle's more empiri
al do
trine of the four
auses (
ausalis, �nalis, formalis and eÆ
iens) also distinguishes the notion ofform as a 
ru
ial element of knowledge. The original te
hni
al notion of theLatin word 'in-formare' (giving form to something, impressing ideas/forms inthe mind in the Platoni
 sense) that is found in the writings of Ci
ero5 andAugustine seems to have played no role in the emergen
e of the modern 
on
eptof information. The word 'idea' seems the true modern heir of the 
lassi
al term'information' (Capurro [1978℄, Capurro and Hj�rland [2003℄).In the 15th 
entury the Fren
h term 'information' �nds its way into the
olloquial vo
abulary of European languages with various subtle di�eren
es inmeaning, 
lustering around meanings like 'investigation', 'edu
ation', 'the a
tof informing or 
ommuni
ating knowledge', 'intelligen
e' et
. After Des
artesthe te
hni
al term seems to vanish from the philosophi
al debate. It does notplay any spe
i�
 role in the work of a broad philosopher like Kant. There isno lemma on information in Windelbands famous 'Lehrbu
h der Ges
hi
hte derPhilosophie' from 1889 (Windelband [1921℄). Even Edward's En
y
lopedia ofPhilosophy from 1967 does not have a separate lemma on information (Edwards[1967℄). The same holds for the well-known History of Logi
 written by Knealeand Kneale that �rst appeared in 1962 (Kneale and Kneale [1988℄). In short theterm 'information' seems to have been absent from the philosophi
al dialoguefor hundreds of years.In the history of philosophy the phenomenon of learning for a long timeonly has been studied impli
itly, be
ause it is related to knowledge, but sin
e
ir
a 1700 AD the problem of learning is pla
ed expli
itly on the philosophi
alagenda. A key insight in the study of the history of the 
on
ept of informa-tion is formulated in this book by Devlin and Rosenberg in their 
hapter oninformation in the so
ial s
ien
es. The basi
 idea is that information is an ab-stra
t notion that is the natural byprodu
t of the emergen
e of modern media.When human 
ommuni
ation was transformed from a dire
t dialogi
al inter-a
tion between individuals to an intera
tion that was mediated by te
hnology(teles
opes, mi
ros
opes, books, newspapers, the telephone, television, internetet
.) the need to 
reate an abstra
t umbrella term to denote the 'stu�' thatwas 
owing between sender and re
eiver of a message emerged. In this respe
tthe emergen
e of the empiri
al s
ien
es in the 17th 
entury is a 
entral periodin history of the 
on
eptualization of information.Des
artes (1596-1650) formulated a �rm mathemati
al framework for thedes
ription of the material world, but his dualism prevented him from under-standing the interplay between language and the growth of knowledge. For5Ci
ero used the word information as a translation of the Epi
urean notion of 'prolepsis',i.e. a representation in the mind. A notion that 
an be 
ompared to the later use of the word'idea' by Des
artes and Lo
ke. See 'On the nature of the Gods", I, 43. Also Greek terms like'hypothesis' and 'eidos' were translated with the term 'information' by Latin authors (Capurro[1978℄). 4



Des
artes, man's rationality was equivalent to mastering language and was aninnate quality. The 
ommuni
ation between the res extensa and the res 
og-itans remained a 
entral problem. Des
artes is important be
ause he is the�rst philosopher who formulated a theoreti
al framework in whi
h the medi-ation between mind and body, between the knower and the known be
omesproblemati
. With hindsight one 
ould say that in the work of Des
artes theneed for an abstra
t 
on
ept of mediation between knower and the known, i.e. a
on
ept of information, is identi�ed for the �rst time. Des
artes' metaphysi
s
an not des
ribe su
h a mediation. Be
ause of this la
k, he was in
apable of de-veloping an adequate philosophi
al theory of language and thus of an adequate
on
eptualization of the interplay between language and knowledge.The next philosopher to take up this 
hallenge was Lo
ke (1632-1704) whodeveloped a psy
hologi
al version of 
arthesian dualism in the "Essay 
on
erninghuman understanding" (1690)( Lo
ke [1961℄). The 
artesian 
ogito be
omes aepistemologi
al subje
t that starts as a tabula rasa and is gradually �lled up with'ideas' that �nd their origin in experien
e. Des
artes had formulated the notionof ideas as innate forms of thought but Lo
ke is quite liberal in his 
on
eptof an 'idea': "whatsoever is the obje
t of understanding when a man thinks. . . whatever is meant by phantasm, notion, spe
ies, or whatever it is whi
h themind 
an be employed about when thinking". (Essay, I,i,8) This abstra
t notionof an idea, as a qualitative building blo
k of knowledge, 
an be interpretedas a philosophi
al pre
ursor of the modern 
on
ept of information. Ideas 
owfrom the knower to the known, they 
an be isolated and 
ombined in to newknowledge. When we re
eive ideas our knowledge grows.This 
on
eptualization of the growth of knowledge in terms of the 
ombi-nation of '
hunks' of knowledge implied a reformulation of a number of 
entralproblems in philosophy that would dominate the dis
ussion for the next 
en-turies. Central questions are:� Can we validate general statements about the properties of a 
lass on thebasis of a �nite number of observations of members of that 
lass? Can wederive the statement "All swans are white" on the basis of "All swans wehave seen so far are white"?� Can we generalize from the past to the future?� What part of knowledge is a priori, what part a posteriori?In An Enquiry Con
erning Human Understanding, (par. 4.1.20-27, par.4.2.28-33) the philosopher Hume (1711-1776) argued that there is no logi
alne
essity that the future will resemble the past. The insight that it is impos-sible to sele
t the best theory to explain a set of observations with absolute
ertainty, is known as the indu
tion problem sin
e Hume (Hume [1914℄). It de-nies s
ien
e the possibility to formulate universal laws with absolute 
ertainty.Several philosophers have tried to deal with this problem. It was the main mo-tivation for the development of Kant's trans
endental philosophy in the Kritikder reinen Vernuft. Kant's attempt is the last major e�ort to bridge the gap5



between empiri
al s
ien
e and traditional philosophy striving at the formula-tion of absolute truths. The empiri
ist program was revived by the so-
alledVienna 
ir
le in the beginning of the 20th 
entury. The ambition was to seekthe foundation of s
ien
e in the analysis of elementary phenomena that 
ouldbe observed empiri
ally. Needless to say that with this methodology the indu
-tion problem is a major obsta
le for s
ien
e. Popper, who o

asionally attendedmeetings of the Vienna 
ir
le, formulated a solution in terms of the asymmetrybetween veri�
ation and falsi�
ation (Popper [1952℄). Although this solved partof the problem the issue of heuristi
s remained open (Context of dis
overy ver-sus 
ontext of justi�
ation). One solution to the indu
tion problem is to views
ienti�
 knowledge as being essentially statisti
al. The 
on
ept of probabilityis far from harmless from a philosophi
al point of view (H�ajek [2002℄). Carnap[1950℄ has argued that there exist two very distin
t forms of probability: a prioriprobability or "Rational 
redibility" and empiri
al probability in the sense of"limiting relative frequen
y of o

urren
e". Indeed there seems to be a distin
tdi�eren
e between the use of the notion of probability in observations like: "Itis highly probable that an English senten
e 
ontains more e's than q's" and "Itis highly probable that life on earth originated from outer spa
e". The �rst isa statement about the frequen
y of letters in English. It 
an be 
orroboratedby a sequen
e of experiments. The se
ond statement seems di�erent. It hasprima fa
ie nothing to do with limiting frequen
y. It 
an not be 
orroboratedby experiments. Even if our planet was the only planet in the universe withlife, the statement still 
ould be true. It seems to express a rational belief thatsomebody 
ould have after 
arefully examining the eviden
e. Bla
k [1967℄ has
riti
ized Carnap: di�erent modes of veri�
ation for probability statements donot imply that there ne
essarily exist di�erent notions of probability. The fa
tremains that we sometimes make judgements about the probability of individ-ual isolated stru
tures. This seems to involve a notion of a priori probability.If we 
an assign a priori probabilities to theories and data sets and 
onditionalprobabilities to a data set given a theory, then we 
an 
al
ulate the probabilityof a theory given a data set. The formulation of an exa
t answer to these the-oreti
al questions is one of the great a
hievements of 
omputer s
ien
e in the20th 
entury. Solomono� de�ned the idea of algorithmi
 
omplexity of a binaryobje
t as the shortest program that 
omputes this obje
t on a universal refer-en
e Turing ma
hine ( Solomono� [1997℄).6. He showed that the algorithmi
 orKolmogorov 
omplexity of an obje
t is asso
iated with an a priori probabilityof this obje
t. It allows us in theory to assign an a priori probability as well asa 
omplexity to an individual binary obje
t. (universal distribution). This isthe basis for modern theories about learnability and studies of methodology ofs
ien
e.A 
entral 
on
ept that ties information theory and learning together is the so-
alled Minimum Des
ription Length Prin
iple (MDL)(Rissanen [1999℄). BelowI will give a formal treatment of the prin
iple but the main idea is that formal6The same 
on
ept was somewhat later dis
overed independently by Kolmogorov andChaitin. 6



representations of s
ienti�
 theories 
an be used to 
ompress data sets withempiri
al observations. The shortest adequate MDL 
ode explaining a data setwill be the one that minimizes the sum of a des
ription, in bits, of the theory,plus a des
ription, in bits, of the set of observations given the theory. One
ould think of the observations of Ty
ho Brahe and Keppler's laws as theory.The laws of Keppler explain the observations of Ty
ho Brahe, be
ause theseobservations 
an be represented 
on
isely using these laws. One of the mainambitions of this paper is to study the philosophi
al impli
ations of this 
on
ept.The theory of Kolmogorov 
omplexity provides us with an ex
ellent frameworkfor a philosophi
al analysis of the 
on
epts behind MDL. This is, in my view,the form in whi
h the problem of indu
tion should be studied in the 
urrent
ontext of philosophy of information.The MDL prin
iple is often des
ribed as being equivalent to O
kham's ra-zor (entia non sunt multipli
anda preater ne
essitate, William of O
kham, 
a.1290-1349). An asso
iation that is debatable, sin
e O
kham's razor is relatedto a spe
i�
 nominalisti
 
ritique of Plato's theory of ideas (as defended byDuns S
otus, 1266-1308) that is quite far removed from the general problem ofindu
tion. In fa
t the idea of explaining a 
ertain set of observations in termsof an optimized two-part 
ode (Theory + Data en
oded with the theory) 
ouldas well be interpreted as a Platoni
 ambition, where the Theory is the idealdes
ription of the data and the Data en
oded with the theory is a des
riptionof the noise, or faults, in the data. The underlying problem seems to have adi�erent nature: the question of the regularity of nature, or in other words thenotion of a 
ooperative universe.2 An uneasy marriage betweenlearning and knowing:parti
ipation versus 
onstru
tionA theory of learning has 
onsequen
es in at least three areas:� Theory of knowledge: how do we gather knowledge?� Cognition: how does our brain work?� Methodology of s
ien
e: how do we 
onstru
t s
ienti�
 knowledge?Knowledge and learning always have had a bit uneasy relationship in phi-losophy. The subje
t easily 
ould �ll a book in itself. A 
lear pi
ture emergesif we try to develop a simple logi
 of learning and knowing. We 
an adopt twoaxioms:1. Priority of knowing: I know everything that I have learned.2. Priority of learning: I have learned everything that I know.7



The �rst axiom seems obvious. Learning would not really be learning if it didnot lead to knowledge. Yet, this is not unproblemati
. Learning has a temporalaspe
t. It involves a transformation from not knowing to knowing. If we simplylearn a �nite number of fa
ts this is straight forward. If somebody tells me thatAmsterdam is the 
apital of the Netherlands and I did not know that, then Ihave learned something. Of 
ourse I trust my sour
e of information to speak thetruth. He must be a trustworthy tea
her. Even if that is the 
ase things get more
ompli
ated if I try to learn an in�nite number of fa
ts in a �nite time. Sin
eHume, philosophers know that this is logi
ally impossible. One 
an never learna general law on the basis of a �nite number of observations. Even if I have seenmillions of white swans, this does not allow me to draw the 
on
lusion that thestatement "All swans are white" is true. I only need to observe one bla
k swanand my general law 
an be s
rapped (Popper [1952℄). The 
on
lusion seems
lear. Logi
ally it is impossible to learn a in�nite set on the basis of a �nitenumber of observations. To put it in other words: we 
an learn fa
ts, but we 
annot learn general laws. This would mean the end of s
ien
e. Philosophers thatendorse the �rst axiom impli
itly wipe the problem of learning under the 
arpet:learning a
tually is remembering what you already know (Plato), you 
an onlylearn if knowledge is innate (Des
artes, Chomsky), mathemati
al resear
h is thedis
overy of what is already there (Hilbert, G�odel). Under axiom 1) s
ienti�
knowledge is only possible if one has what I 
all a parti
ipation theory of truth.The amount of knowledge of the human subje
t grows in time, but not by meansof learning. The human mind seems to parti
ipate in the realm of truth andthis parti
ipation allows us to separate true from untrue insights. It is 
learthat this theory of learning is less satisfa
tory.So let's have a look at axiom 2) the priority of learning. From this perspe
tivewe seem to loose our grip on the 
on
ept of knowledge. Results that we havelearned are preliminary, they 
an 
hange, they have a statisti
al nature. In most
ases learning leads to a hypothesis that only has a 
ertain degree of plausibility.It does not seem to be a good idea to a

ept the derivation "The hypothesisthat P is very probable, therefore I know that P" as valid. Knowing seemsto be an absolute 
on
ept. The situation in whi
h I testify in 
ourt that Iknow that John has killed Mary is very di�erent from the situation in whi
hI testify that it is very probably that John is the killer. Nevertheless we arewilling to senten
e somebody, even if we are not 
ompletely sure that he isguilty. Beyond reasonable doubt is a phrase that �nds its philosophi
al rootsin the work of Hume, who has 
hosen the se
ond axiom as his starting point.This position leads to what I 
all a 
onstru
tion theory of truth. A supporterof this theory has two options. Either he admits that knowledge is a statisti
alphenomenon or he limits himself to knowledge that 
an be 
onstru
ted out ofelementary observations. This last option leaves very little room for s
ien
e. Yetthis position has been defended vigorously in the philosophy of mathemati
s byBrouwer and the early Wittgenstein. Tra
es of the �rst solution 
an be foundin the works of Aristotle, Eu
lid, Lo
ke, Hume and the members of the WienerKreis. 8



This short analysis shows that one 
ould rewrite the history of philosophywith learning as a 
entral theme. For a long time su
h a history would not
ontain mu
h more than what I summarized above. Both axioms lead to un-fortunate 
on
lusions. A good 
hoi
e is not really possible: a real philosophi
alproblem. In the se
ond half of the 20th 
entury theoreti
al ideas developedrapidly mainly as a result of the appli
ation of insights from mathemati
al modeltheory and thermodynami
s to an analysis of the phenomenon of learning.3 The riddle of human eÆ
ien
yThe mathemati
s of learning starts with the 
on
eption of learning as a gamethat is played between a student and a tea
her. The game theoreti
al model oflearning was �rst introdu
ed by Gold in Information and Control in 1967. Theproblem that Gold studies is learning a language. The form of the game is asfollows:1. There is ba
kground knowledge. The tea
her and the student agree be-forehand on a(n) (in�nite) 
lass of possible languages, one of whi
h is tobe learned.2. The tea
her 
hooses one language from this 
lass that he is going to tea
h.3. A move of the tea
her 
onsists of the presentation of an example senten
efrom the language he has 
hosen. The tea
her must be faithful. He isobliged to produ
e all possible senten
es of the language in the limit atleast on
e.4. A move of the pupil 
onsists of a guess of the language (a hypothesis) thatthe tea
her has sele
ted.5. The game 
ontinues inde�nitely. The pupil learns the language (wins thegame) if he does not need to update his hypothesis from a 
ertain momenton.We 
an suggest the following pra
ti
al interpretations of this abstra
t model:� Theory of knowledge: the student is any human being, experien
e is thetea
her, the 
lass of languages is the set of possible theories about theworld.� Cognition: the student is the brain, the tea
her is per
eption, the 
lass oflanguages is the number of 
on
epts that the human brain 
an learn.� Methodology of s
ien
e: the student is the s
ientist, the tea
her is nature,the 
lass of languages is the set of possible laws of nature.For our purpose the abstra
t model is ri
h enough. The surprise of Golds pa-per was that he 
ould prove that under these 
onditions, even if the game 
ould9



go on for ever, the student 
ould not learn 
lasses of languages of any interestwith absolute 
ertainty. This holds a fortiori for all natural languages that we alllearn as 
hildren without mu
h diÆ
ulty. Here we �nd an interesting problemthat has not been solved adequately until this day and really only has be
omemore urgent. One 
ould baptize this problem the riddle of human eÆ
ien
y. Allour formal models of learning tasks indi
ate that learning, from a formal pointof view, is next to impossible or at least extremely hard. The 
entral issue hereis that learning in Gold's model is distribution free, i.e. the only 
onstraint isthat every senten
e of the language has a probability bigger than zero to beprodu
ed by the tea
her. This allows for highly non-standard distributions onwhi
h one 
annot expe
t general learning algorithms to 
onverge.In the last 40 years we have seen an overwhelming amount of amendmentsand adaptations of Golds model and theory 
onstru
tion 
ertainly is not �nished(See e.g. Angluin [1988℄). The resear
h 
on
entrates on a number of issues:a restri
tion on the 
lass of languages, using statisti
al te
hniques to sele
tthe hypothesis, ri
her intera
tion between the student and the tea
her and theattitude of the tea
her. In the original model of Gold the tea
her only has to bereliable. He gives all the examples in a random sequen
e. It is easy to imaginethat the tea
her helps the student a bit, for instan
e by sele
ting simple examples�rst or by adapting the information 
ontent of the examples to the progress ofthe student. In this 
ase we have a 
ooperative tea
her. In its simplest formthe 
ooperative tea
her is nothing but a probability distribution over the set ofexamples that gives a higher probability to simpler examples. A student thatstudies under the guidan
e of a 
ooperative tea
her has a mu
h higher 
han
eof sele
ting the right hypothesis with the help of statisti
al reasoning. Herewe distinguish the 
ontours of an interesting solution to the riddle of humaneÆ
ien
y in learning. Our eÆ
ien
y might not be a a
hievement of humanintelligen
e but more a re
e
tion of the stru
ture of the world in whi
h we live.Nature around us is not 
ompletely random, it is organized and works as a
ooperative tea
her. Before we explore this 
on
ept further we need to developa formal framework to study these 
on
epts.Learning as data 
ompressionSuppose you swit
h on your television set and there are three di�erent 
hannelsfrom whi
h you 
an 
hoose: random noise, a pi
ture of a forest and a test image.From a 
omputational point of view we 
an analyze these three data sets in thefollowing way:1. Random noise: this data set has a high 
omplexity and therefore 
on-tains from a theoreti
al view a lot of information. Be
ause the data setis the result of a random pro
ess it 
annot be 
ompressed in to a shorterdes
ription. This means that it does not 
ontain any meaningful infor-mation. Nothing 
an be learned from it. These data sets are typi
al forsystems that are in thermal equilibrium and thus have maximal entropy.10



2. The pi
ture of a forest: this data set has high 
omplexity, but it also
ontains stru
ture (the forms of the bran
hes, leaves and trees repeatthemselves). Therefore the image 
an be 
ompressed in to a shorter de-s
ription. We 
an extra
t meaningful information from the pi
ture (e.g.the fa
t that we 
an distinguish 10 trees in the pi
ture). We 
an learn a lotfrom this data set. These data set are typi
al for self-organizing systemsthat extra
t energy from the environment to 
reate some form of order,e.g. living things, 
omputational pro
esses.3. The test image: this data set looks very simple with regular geometri
alshapes. It 
an easily be 
ompressed and thus 
ontains little informationat all. Nothing mu
h 
an be learned from it.From these examples it is 
lear that we 
an learn the most interesting thingsfrom data sets that show a mix of stru
ture and random elements. This is exa
tlythe sort of data sets that one would expe
t in a 
omputationally 
ooperativeuniverse. Modern learning theory fo
uses on the analysis of this kind of datasets. The ambition is to �nd an optimal short des
ription of the data set interms of two new data sets:� A stru
tural part that des
ribed the regularities in the data set.� An ad ho
 part that des
ribes the random elements of the data set.Su
h a des
ription is te
hni
ally adequate if the length of the new des
riptionin terms of two data sets is (mu
h) shorter than that of the original data set.In the literature this prin
iple is known as the Minimum Des
ription Lengthprin
iple (Rissanen [1999℄) or also as two part 
ode optimization (Veresh
haginand Vit�anyi [2004℄). Suppose that the pi
ture of the forest has a size of 1280 x800 pixels of 256 
olors, than the un
ompressed �le will have a size of about 31Mb. This is the amount of bytes we need to send via a 
ommuni
ation 
hannel ifwe want to 
ommuni
ate the 
ontents of the �le. As soon as we have an analysisof the meaningful 
ontent of the pi
ture at our disposal we 
an summarize the
ontent. In this way we get a sequen
e of interpretations of the pi
ture in whi
hmore and more of the 
ontent is revealed:Ad Ho
 Stru
turalA forest A general des
riptionof forestsA set of 10 trees A general des
ription ofthe stru
ture of a treeA set of 3 bir
hes, A des
ription of4 willows and 3 oaks the spe
i�
 stru
ture of bir
hes,willows and oaksEt
. Et
.An important part of the resear
h in learning theory 
on
entrates itself onthe development of algorithms that 
an separate a data set in an ad ho
 and a11



stru
tural part. Many s
ienti�
 problems 
an be reformulated in terms of a twopart 
ode optimization problem. I give a number of examples:Data Set Ad Ho
 Stru
turalDes
ription of our Traje
tories and size Kepplers lawssolar system of the planetsReuters Database Stru
ture and sequen
e English grammarof the individual senten
esA 
omposition by Stru
ture and sequen
e Spe
i�
s ofBa
h of themes Ba
hs styleHuman DNA Stru
ture and sequen
e A des
riptionof regions that 
ode genes of genesFinding su
h a two part 
ode optimization is usually not an easy task. One
an formally prove that there is no universal learning algorithm for su
h atask. For some data sets we have good algorithms, for others not (yet). Itis possible with a learning te
hnique 
alled geneti
 programming to derive thelaws of Keppler from the observations of Ty
ho Brahe, but a good algorithmfor learning a grammar on the basis of a 
orpus is not yet available (Adriaansand van Zaanen [2004℄). In the following paragraphs we will develop a deeperunderstanding of learning as 
ompression.4 Learning, Computation, Information and En-tropyIn this se
tion we will develop a formal framework that helps us to understandlearning better. The 
ru
ial step is the de�nition of the 
on
ept of informationas something that 
ould be obje
tively quanti�ed. Prima fa
ie it is immediately
lear that the 
on
epts of information and learning are related. If somebodytells me that Amsterdam is the 
apital of Holland and I did not know this,then I am getting new information and I have learned something. It seems im-possible to learn without getting information and impossible to get informationwithout learning. A dis
ussion of the te
hni
al issues 
on
erning the 
on
ept ofinformation is not possible without an understanding of the 
on
ept of a Turingma
hine. In the next paragraphs we will �rst des
ribe this basi
 notion andthen turn our attention to the de�nition of information.The Turing ma
hineIn its simplest form a Turing ma
hine is a devi
e with a read-write head, ain�nite working tape on whi
h symbols 
an be read and written and a �nite de-terministi
 program for the manipulation of symbols. The only symbols neededare '1', '0' and 'b' (blank). The ma
hine starts its 
al
ulation by reading inputfrom the tape, its stops when a 
ertain prede�ned �nal state is rea
hed. Not allprograms will stop. In fa
t Turing proved that there does not exist a program12



that de
ides in all 
ases whether a 
ertain ma
hine will stop given a 
ertain in-put (unde
idability). The 
ombination of ma
hines and programs that stop in�nite time is known as the Halting Set. This set 
ould be seen as a trans
endentobje
t in 
omputer s
ien
e: we know it exists, but it 
an not be 
onstru
ted.There are a number of reasons why Turing's devi
e 
an 
laim to be asso
iatedwith a universal s
ienti�
 language. First of all the set of all possible programsfor a Turing ma
hine is the set of all possible binary strings f0; 1g�, whi
h isequivalent to the set of natural numbers. Se
ondly, one 
an de�ne a 'universal'Turing ma
hine, that emulates all possible 
omputations of all possible Turingma
hines by �rst reading a de�nition of a ma
hine from the tape followed bythe de�nition of the program and the exe
ution of the program on the emulatedma
hine. This allows us to interpret the Turing ma
hine as a universal 
omput-ing devi
e. Thirdly, all the 
urrent de�nitions of the 
on
ept of 
omputation(Lambda 
al
ulus, 
ombinatorial logi
, re
ursive fun
tions, et
.) are known tobe Turing equivalent, i.e. 
an be emulated on a Turing ma
hine. This fa
t haslead to the formulation of the so-
alled Chur
h-Turing thesis, whi
h states ev-erything 
omputable is 
omputable on a Turing ma
hine. It is hard to imaginehow this 
laim 
ould ever be veri�ed. In the worst 
ase it is destined to be anunproven metaphysi
al 
laim for ever. The thesis 
ould easily be falsi�ed by a
on
eption of 
al
ulation that 
an not be emulated on a Turing ma
hine, butsofar these 
on
eptions of 
omputation es
ape our imagination. From a tran-s
endental point of view the Turing ma
hine en
apsulates fundamental notions:The lo
al physi
al storage and pro
essing of a �nite set of dis
rete symbols as asequential �nite dis
rete pro
ess in time a

ording to a �nite set of (determin-isti
) rules. The apparent universality of these notions lead to what one might
all the 
entral working hypothesis of modern 
omputer s
ien
e:Conje
ture 4.1 Any �nite dis
rete system or pro
ess 
an be des
ribed in termsof a program for a Turing ma
hine.Personally I expe
t this 
laim to be falsi�ed (or at least amended) somewherein the future, but for the moment it gives the foundation for a methodologi
alresear
h program that is ri
h in perspe
tives and far from exhausted. It de�nesa universal s
ienti�
 methodology. For any system X we have to ask ourselvesthe fundamental question: is X a �nite dis
rete system? If so we 
an applyour methodology and try to 
onstru
t an adequate program to model it. Thede
ision to 
onsider a 
ertain phenomenon X (say a �nan
ial administration,turbulen
e around a sail, human 
ons
iousness, the human 
ell, a bla
k hole orthe universe as a whole) to be a �nite dis
rete system 
an be 
ontroversial froma philosophi
al point of view and require a separate philosophi
al motivation.These questions are not part of our 
urrent analysis. For the moment I aim at
lari�
ation of the 
entral 
on
epts and not at an analysis of their appli
ability.The asso
iation with the old philosophi
al ambition of a mathesis universalisis immediately 
lear from the Turing equivalen
e of re
ursive fun
tions, whi
hlead to the following 
ollorary:Corollary 4.2 Any �nite dis
rete system or pro
ess 
an be des
ribed in terms13



of operations on natural numbers. 7This analysis of Turing ma
hines does not lead to a theory of information. Itis a theory neutral 
on
eption of manipulation of binary strings. In order todetermine what kind of information, and how mu
h of it, is 
ontained in thesestrings we need separate de�nitions. Even within this 
ontext there are a numberof 
ompeting 
on
eptualizations of the notions of information that need to betreated here.Shannon Information and optimal 
odesThe idea that the frequen
y of a letter is asso
iated with the information it
ontains (or its value) is well known to any person who solves a 
rossword puzzleor plays S
rabble. If one knows that a word 
ontains a 'z' this is more informativethan an 'e' be
ause there are less words with a 'z'. This 'information' about the'z' implies a bigger redu
tion of the sear
h spa
e. The 
ru
ial insight that haslead to a mathemati
al theory of information is formulated by Shannon (Weaverand Shannon [1949℄). Here the information 
ontent of a message is de�ned interms of its probability:De�nition 4.3 The Shannon information 
ontained in a message x is I(x) =log 1=P (x) = � logP (x),where I(x) is the amount of bits of information 
ontained in x and P (x) is aprobability distribution (0 � P (x) � 1). Note that8: If P (x) = 1 then I(x) = 0.I(x and y) = I(x) + I(y).From a philosophi
al point of view it is important to note that Shannoninformation says nothing about the meaning of the messages, nor about theirepistemologi
al status. If x is a message and P (x) = 2�3 then the amount ofinformation 
ontained in x is three bits and an optimal 
ode for x would use threebits, say 001. Apart from this x 
ould have any meaning, varying from "John haspassed his exam" to "Goldba
h's 
onje
ture is true". In itself this is strange. Weare in
lined to say that if we get the information that John passed his exam froma reliable sour
e we 
onsequently know that John passed his exam. A simple bit
ode like 001 does not 
onvey this information. Apparently there are meaningsof the term 'information' that are not fully 
overed by Shannon's de�nitions.Shannon himself, by the way, would be the �rst to a
knowledge this. Alsothere is no straightforward translation of Shannon's de�nitions in to a theoryof knowledge. A valuable attempt to �ll this gap is made by Dretske. Dretske[1981℄ The least one 
an say is that, on top of the formal de�nitions that areo�ered by Shannon, the fa
tual information that is transferred from a sender toa re
eiver is dependent on the 
ontext of the dialogue and on the ba
kgroundknowledge shared by parties involved in the ex
hange of messages.7Wolfram states a related notion that he 
alls the Prin
iple of Computational Equiva-len
e: ". . . whenever one sees behavior that is not obviously simple . . . it 
an be thought of as
omputation of equivalent sophisti
ation" (Wolfram [2001℄, p. 5).8log is used for log2 14



A se
ond observation that is philosophi
ally relevant is that Shannon in-formation as su
h is independent of the notion of a Turing ma
hine. Shannonde�nes information in terms of bits and Turing ma
hines operate on strings ofzeros and ones that 
ould be interpreted as bit strings. In these terms Turingma
hines 
ould be seen as information pro
essing devi
es, but this is only avery weak 
onne
tion. Shannon's notion of information and Turing de�nition of
omputation seem to orthogonal. Shannon uses the notion of a bit to measureamounts of information, but his theory does not say anything about the amountof information that is stored in a string of bits itself.The 
on
ept of Shannon information only makes sense in the 
ontext of aset of potential messages that are sent between a sender and a re
eiver and aprobability distribution over this set. If we have su
h a setting we 
an designan optimal 
ode system. Suppose X is a set of messages xi(I = 1; : : : n) the
ommuni
ation entropy of X is: 9H(X) = � Xi=1;nP (xi) logP (xi). The Maximal entropy of a set of n messages, if P (xi) = 1=n for ea
h I:Hmax(X) = �n(1=n) log (1=n) = logn. The Relative entropy: Hr = H=Hmax, the Redundan
y: 1 � Hr, theOptimal 
ode (that minimizes the expe
ted message length) assigns�logP (xi)bits to en
ode message xi. One �nds an extensive dis
ussion of these de�nitionsin the 
hapter by Harremo�es and Tops�e. The notion of optimality of a 
odesystem is asso
iated with the idea of 
ompression of a set of messages. Suppose,for the sake of argument, that we want to develop an optimal 
ode for a 
ertainbook, say Di
kens' "A Tale of Two Cities", and that we simplify the task to�nding an optimal 
ode for an alphabet of 26 letters. 10 We 
an 
ode ea
h ofthe 26 letters with a standard length of 5 bits. A set of messages in whi
h thefrequen
y of ea
h letter would be equal (e.g. 1=26) has maximal entropy. Of
ourse su
h a set would 
ontain only nonsense. It 
ould not be normal Englishsin
e the frequen
y of letters in English varies greatly. Therefore a standard 5bit 
ode is redundant and 
an be optimized. We 
an assign shorter 
odes tomore frequent letters. Giving up the �xed 
ode length implies that our 
ode hasto be pre�x free: no 
ode 
an be a pre�x of any other 
ode. Standard Hu�man
ode provides an optimal solution for this problem. Using Hu�man 
ode one
an 
ompress "A Tale of Two Cities" 0.81 bit per 
hara
ter 
omparison withthe 5 bit 
ode. We 
an ask ourselves if Hu�man 
ode is the best solution for
ompressing a book. In a sense it is, if one sti
ks to 
ompression of 
hara
ters,but there is no reason to do this. One 
ould try to 
ompress words instead ormaybe one 
ould use an analysis of idiosyn
rasies of Di
kens' style. This posesan interesting theoreti
al problem: what would be the theoreti
al shortest 
ode9This de�nition is exa
tly equal to the de�nition of Gibbs entropy in thermodynami
s. Seethe 
hapter by Bais and Farmer in this book.10This example is dis
ussed extensively by Harremo�es and Tops�e.15



for "A Tale of Two Cities"? In order to �nd an answer for this question we haveto turn our attention to a di�erent de�nition of the 
on
ept of information that isintri
ately related to the notion of a Turing ma
hine: Algorithmi
 Information.Algorithmi
 informationWe have seen that with the theory developed by Turing we 
an de�ne a universalTuring ma
hine. In fa
t there is an in�nite number of su
h universal Turingma
hines, so let us sele
t a standard (small) one and 
all it U . The input of U
onsists of two parts: a de�nition of a spe
ial Turing ma
hine Ti in pre�x 
ode,followed by the input 
ode, or data D for Ti. Observe that, using Hu�man 
ode,we 
an 
reate a program that reprodu
es "A Tale of Two Cities" as output onU . The 
ru
ial insight is that it is easy to 
onstru
t a Turing ma
hine thatde
odes Hu�man 
ode. Let DToTC;Huf be the Hu�man 
ode for "A Tale ofTwo Cities" and let THuf be a Turing ma
hine that de
odes Hu�man 
ode inthe standard pre�x free input format of U . The text of "A Tale of Two Cities"
an be 
oded as U(THuf +DToTC;Huf )When 
onfronted with the input THuf + DToTC;Huf our universal ma
hine Uwill �rst read the de�nition of THuf , re
on�gure itself as an interpreter forHu�man 
ode and then start to interpret DToTC;Huf resulting in the text of "ATale of Two Cities" as output. The bit string THuf +DToTC;Huf 
an be seenas a program for the text of "A Tale of Two Cities". Let jDj be the length inbits of the data set D and let DToTC;5bit be the 5 bit 
ode for "A Tale of TwoCities. We will have: jTHuf +DToTC;Huf j < jDToTC;5bitjGiven the fa
t that a Turing ma
hine for interpreting Hu�man 
ode is not
ompli
ated, the set THuf + DToTC;Huf will be shorter than the original 5bit 
ode for "A Tale of Two Cities". In this way we have 
reated a 
omputerprogram that generates the text of "A Tale of Two Cities" on a universal Turingma
hine. The bit 
ode of this program is shorter than the original text. We
ould go on and try to �nd more 
lever 
ode systems that 
ompress the text evenmore. Su
h a 
ode system, say TCodeSystemi 
ould make use of the frequen
y ofwords in the text, knowledge about the grammar of English and idiosyn
rasies inthe style of the author. Su
h a 
ode system would be 'better' than the Hu�man
ode if: jTCodeSystemi +DToTC:ij < jTHuf +DToTC;Huf jwhere DToTC:i is the text en
oded in the new 
ode.We 
an now answer the theoreti
al 
hallenge from the previous paragraph:the theoreti
al shortest 
ode for "A Tale of Two Cities" would be the shortestprogram that generates this text on U . In order to �nd this program ideally,what we have to do is enumerate all possible programs for U , test them, andsele
t the shortest that generates "A Tale of Two Cities". Alas this is impossible16



be
ause of the un
omputability of the halting set. We know that su
h a programexists, but it remains an intensional obje
t.This fa
t gives rise to a di�erent de�nition of the 
on
ept of information( Li and Vit�anyi [1997℄). The des
riptive 
omplexity of a string x relative to aTuring ma
hine T and a binary string y is de�ned as the shortest program thatgives output x on input y:KT (xjy) = minfjpj : p 2 f0; 1g�; T (p; y) = xgOne 
an prove that there is a universal Turing ma
hine U , su
h that for ea
hTuring ma
hine T there is a 
onstant 
T , su
h that for all x and y, we haveKU (xjy) � KT (xjy) + 
T . 11 This de�nition is invariant up to a 
onstant withrespe
t to di�erent universal Turing ma
hines. Hen
e we �x a referen
e universalTuring ma
hine U , and drop the subs
ript U by setting K(xjy) = KU (xjy). Wede�ne:De�nition 4.4 The Pre�x Kolmogorov 
omplexity of a binary string x isK(x) =K(xj�). That is the shortest pre�x free program that produ
es x on an emptyinput string.Kolmogorov 
omplexity is a 
ompeting notion of information. It allows usto assign a 
omplexity to individual strings and data sets.A uni�ed view on Shannon information and Kolmogorov 
omplexityWe are now in a position to evaluate the di�eren
e between Shannon informationand Algorithmi
 information, i.e. Kolmogorov 
omplexity. Suppose we have adata set en
oded in bits, say a �ve bit 
ode of the text of "A Tale of Two Cities".We 
an analyze this set from two perspe
tives:� From a Shannon perspe
tive as a 
olle
tion of messages. In this we 
an
onstru
t an optimal 
ode using variation in frequen
y of the messages.This leads to a relative 
ompression of the set of messages that 
an be
omputed. More frequent messages get shorter 
odes and 
ontain lessinformation. We 
ould 
all this 
on
ept of information relative.� From a Kolmogorov perspe
tive as a single message. In this 
ase relativefrequen
y has no meaning, but there exists an optimal 
ompression of themessage in terms of the shortest program on a Turing ma
hine. The lengthof this program is an absolute measure for the amount of information
ontained in the message. This program is an intensional obje
t and 
annot be 
omputed as su
h. Messages that are highly 
ompressible 
ontainlittle information. This 
ould be seen as a 
on
ept of absolute information.As an example, suppose we have a bit string 0101010101010101010101010101.We 
an re
ode this string in Shannon's sense as '01'=1;11111111111111, or11For an extensive dis
ussion of these de�nitions, see the 
hapter by Gr�unwald and Vit�anyiin this book. 17



we 
an reprogram it in Kolmogorov's sense as for x = 1 to 13 write '01'.Both stru
tures are shorter than the original 
ode re
e
ting the fa
t that thestring shows a regular pattern. In this 
ase both the Shannon and the Kol-mogorov 
ompression do their work. In my view both algorithmi
 informationand Shannon information are di�erent mathemati
al guises of one and the same
on
ept of information that is asso
iated with entropy of data sets.Claim 4.5 Information is asso
iated with the entropy of data sets. Data setswith low entropy 
an be 
ompressed and 
ontain less information than datasets with maximal entropy, whi
h 
annot be 
ompressed and 
ontain exa
tlythemselves as information. There are various ways to explain these relationsmathemati
ally.Shannon information starts with a segmentation of the set. In the limiting
ase where we have very few segments, or only one, Shannon's theory 
ollapsesin to Kolmogorov's 
on
eption of information. Kolmogorov's 
on
eption of in-formation is more powerful, but the pri
e we have to pay is threefold: it isnon-
onstru
tive, therefore it 
an only be approximated and it is asymptoti
.Lemma 4.6 The 
on
epts of Kolmogorov 
omplexity and Shannon informationare equivalent in terms of predi
ting in
ompressibility of data sets with maximalentropy.Proof: In Shannon's 
on
eption a set of messages 
an not be 
ompressed ifthey all have equal probability. Suppose we have a sequen
e of k messages withmaximal entropy based on a 
ode system of 2n 
ode words of n bits, then this isequivalent to a random string of l = kn bits and thus it 
an not be 
ompressedin Kolmogorov's sense. Suppose, 
onversely, that we have a random bit stringl = kn bits with l �xed, then for ea
h segmentation of l in k messages theentropy is maximal thus it 
an not be 
ompressed in Shannon's sense.Note that the di�eren
e between Shannon information and Kolmogorv infor-mation 
an be seen as a di�eren
e in graining. Kolmogorov 
omplexity is 
oarsegrained giving the whole set of messages a 
omplexity in one shot. Shannoninformation is �ne grained, it 
al
ulates the information for individual messages�rst and then establishes an entropy for the whole set. Given the equivalen
e ofShannon information and Kolmogorov 
omplexity one would expe
t that alsoin the limiting 
ase of 
onsidering a bit string as one unsegmented message itis possible to assign a probability to it. This is indeed the 
ase. In Shannon's
ase we reason from probabilities to entropies, in the Kolmogorov world we de-rive probabilities from entropies. Using results of Solomono�( Solomono� [1997,2003℄) and Levin we 
an de�ne an a priori probability of a �nite binary string.De�nition 4.7 (Solomono�, Levin) The universal a priori probability PU (x)of a binary string x is PU (x) = XU(p)=x 2�jpj18



This is the sum of the probabilities of all the programs that generate x ona universal Turing ma
hine on an empty input string. Thus strings with a lowKolmogorov 
omplexity, i.e. the ones that are 
ompressible, get a higher a prioriprobability. Asso
iated with a universal a priori probability we expe
t to geta universal distribution. We 
an de�ne a semi-measure along these lines. Are
ursively enumerable semi-measure � on N is 
alled universal if it multipli
a-tively dominates every other enumerable semi-measure �0 i.e. �(x) � 
�0(x) fora �xed positive 
onstant 
 independent of x. Levin proved that su
h a universalenumerable semi-measure exists. Sin
e there might be more we �x a universalsemi-measure m(x). The semi-measure m(x) 
onverges to 0 slower than anypositive re
ursive fun
tion whi
h 
onverges to 0. Of 
ourse m(x) itself is notre
ursive. We now give without proof a theorem that relates all these 
on
eptswith ea
h other:Theorem 4.8 (Levin)� logm(x) = � logPU (x) +O(1) = K(x) +O(1)The universal distribution has quite wonderful qualities and its philosophi
alrelevan
e has hardly been explored up till now.Thermodynami
s, Information and ComputationIt is 
lear that the study of information and 
omputation is related to 
on
eptsof thermodynami
s on a fundamental level. The �rst law of thermodynami
sstates that energy in a 
losed system is 
onserved. The se
ond law states thatthe entropy of a 
losed system 
an never de
rease. After a 
ertain time a 
losedsystem will rea
h an equilibrium in whi
h the entropy is maximal. Anotherway of phrasing the se
ond law is that self-organization is not possible withoutexternal energy.As the entropy of a set of messages grows, so does the set of a

essible statesand so does the number of bits that we need to identify those states (a

ordingto Boltzmann the formula entropy was simply S = lnw, where w is the numberof a

essible states, this is equal to the maximum entropy in Shannon's de�ni-tion). Consequently in a 
losed system, when the entropy grows, the amountof information stored in the system grows. A 
losed system 
an in
rease itsinternal information without ex
hange of heat with the environment. This isa
tually what is happening in our universe. There is mu
h more information inthe universe now, than there was at the moment of the big bang (otherwise itwould be a dull pla
e). At the same time the universe is getting more and moreimprobable.A thought experiment 
an help here. Think of a bit string as a gas in aone dimensional 
ontainer (say 0's are spa
es and 1's mole
ules). If the bits areallowed to move freely through the spa
e starting from any 
on�guration theywill eventually rea
h an equilibrium state in whi
h the Kolmogorov 
omplexityof the a

essible states is maximal. These states are exa
tly the ones in whi
hthe bits 
ontain maximal information (in terms of Kolmogorov 
omplexity).19



Random bit strings 
ontain the most information, have the highest entropy and
orrespond to a thermal equilibrium. 12All this is quite 
ounter intuitive. If we dissolve milk in 
o�ee, or we spoilsugar in sand we feel we loose possibilities. It seems strange to assume that noiseon a 
hannel is a
tually the ri
hest sour
e of information possible. The reasonfor our unease seems to be the fa
t that high entropy is the normal situationin the universe. Order (i.e. low entropy) is more interesting sin
e is needs tohave a spe
i�
 
ause. High entropy does not point at spe
i�
 
ausal pro
essesof any interest. Low entropy is a sign that somebody or something redire
tedenergy to a system. That is the reason why, when we want to dete
t life in outerspa
e, we s
an the sky for signals with less then maximal entropy. It is thereforebetter to speak about meaningful information. In order to be meaningful to us,a set of messages has to have some stru
ture and 
onsequently have less thanmaximal entropy. This 
on
ept of meaningful information in a system is from athermodynami
al point of view related to the free energy in the system and froma learning view to minimum des
ription length and two part 
ode optimization.Thermodynami
s therefore has interesting 
onsequen
es for the physi
s of
omputing. A universe in whi
h 
an be 
al
ulated has to obey the following
onditions:� It must be stable enough to store information. Stru
tures should havea 
ertain stability; identity over a 
ertain period of time should be guaran-teed. This points at relatively low entropy. In a system in thermodynami
equilibrium stru
tures would not be robust enough to store informationover a 
ertain period of time.� There must be enough free energy to pro
ess information. There mustbe reversible pro
esses that fa
ilitate the transition between stable states:i.e. there must be me
hanisms to 
ip bits. Be
ause of the se
ond law ofthermodynami
s su
h a system will, a

ording to the Landauer prin
iple13,always require energy to erase information. This is quite subtle. Erasingof information requires energy, 
reation not ne
essarily. This 
onditionimplies more than minimal entropy. Computation 
an not exist in systemswith extremely low entropy, e.g. 
omputation at zero degrees Kelvin isnot possible.Computation seems to presuppose some kind of state of intermediate nonequilibrium state of entropy.14 Lu
kily we live in a universe that satis�es these
onditions exa
tly. This is no surprise, be
ause in a universe that does not o�erthese possibilities intelligent life would not be possible. This is a variant of theantropi
 prin
iple (Hawking [1988℄). The hypothesis of the 
ooperative howevergoes deeper be
ause she states that su
h a universe would be easy to learn. It12It is possible to develop a thermodynami
s of bit strings along these lines.13See the 
hapter of Bais and Farmer in this book.14This goes against the interpretation of Lloyd and Ng (Lloyd and Ng [2004℄) who 
onsideralmost any physi
al pro
ess as a 
omputer, e.g. bla
k holes and pure plasma. In these 
asesit is better to speak of 
omputational pro
esses than of 
omputers.20



is a number of random pro
esses, but these pro
esses are ne
essarily of limited
omplexity.Out of these observations the following pi
ture emerges. A deterministi

omputer is simply a Lapla
ian system that in itself 
annot add information tothe universe. Its future is 
ompletely determined by its initial 
onditions. Stilla deterministi
 
omputer 
an easily use energy to erase information and therebyredu
e the amount of information in the subsystem (say its tape). The totalentropy in the universe will still grow as a result of this a
tion. For a subje
tiveobserver however the situation is di�erent. He might not know whether a 
ertain
omputation will �nish. If he observes that the 
omputational pro
ess 
omesto a halt this 
ertainly adds to his information, even if he lives in a Lapla
ianuniverse.Suppose on the other hand that a statisti
al observer 
an only make mea-surements of a 
ertain granularity. He 
an for instan
e measure the lo
al densityof bits on the tape with a 
ertain a

ura
y, but not observe individual bits. Insu
h a 
ase the subje
tive entropy generated by a deterministi
 
omputing pro-
ess 
an be mu
h bigger than the entropy of the initial 
onditions. Supposethat the 
omputer writes the binary expansion of the number e on the tape.This is a data set with very low entropy, but for su
h a statisti
al observer it
annot be distinguished form random noise (sin
e he 
annot identify the indi-vidual bits). Here we seem to 
ross the border from theory of 
omputation tothermodynami
s. Very mu
h the same thing happens if we see the generationof a fra
tal. This is a data set of very low entropy, but to our subje
tive eyefull of interesting details. A non-deterministi
 
omputer adds information tothe universe with ea
h randomized 
omputing step it takes.As a last note observe that thermodynami
s only works for systems in a stateequilibrium. Computing systems tend to spe
i�
ally not in an equilibrium so theappli
ability of 
lassi
al thermodynami
s for the understanding of 
omputingpro
esses is limited. At the moment we are missing a theory that helps us tounderstand these matters adequately. The following theoreti
al observationsgive an initial outline of su
h a theory.A universal a priori near optimal Shannon 
ode based onKolmogorov 
omplexityLevin's theorem allows us to explore the relation between Shannon informationand Kolmogorov 
omplexity at a more fundamental level. We de�ne the stan-dard bije
tion b between the set of binary strings f0; 1g� and the set of naturalnumbers N as b(0; �); b(1; 0); b(2; 1); b(3; 00); b(4; 01); : : :Where � denotes the empty word. We 
an de�ne the fun
tion S : f0; 1g� !f0; 1g� as:De�nition 4.9 S(x) = mini2Nfp : b(i; p); U(p; �) = xgHere U is a universal Turing ma
hine. S asso
iates ea
h binary obje
t x withthe �rst program that produ
es x on U with empty input.21



Corollary 4.10 S is a universal a priori near optimal 
ode asso
iated with mfor binary strings in Shannon's sense.Proof: A

ording to Shannon an optimal 
ode for x givenmwould be� logm(x)bits long. A

ording to Levin we have � logm(x) = K(x) + O(1). But thenS(x) is su
h an optimal Shannon 
ode, be
ause by de�nition jS(x)j = K(x)sin
e S(x) is the �rst, and thus the shortest, program that produ
es x on U .The 
ode is near optimal, be
ause of the fa
tor O(1) in Levin's theorem. S(x)will always be maximally O(1) removed from the fa
tual optimal 
ode.The fun
tion S is interesting be
ause it brings the 
on
epts of Shannoninformation and Kolmogorov 
omplexity together. On one hand jS(x)j is theKolmogorov 
omplexity of x, on the other S(x) is an optimal a priori 
odefor x. Of 
ourse S 
an never be 
omputed, but suppose that some Platoni
ora
le would give us S. In that 
ase we would have a universal a priori solutionto the problem of indu
tion. S(x) re
e
ts any regularity (e.g. deviation frommaximal entropy, i.e. 
ompressibility) that 
an be expressed solely in terms ofthe internal stru
ture x. Observe that S(x) will itself always be random (andthus in
ompressible) be
ause it is the �rst program that 
omputes x. If S(x)would be 
ompressible, it would itself have been identi�ed mu
h earlier by S.It is important to note that, although S 
an not be 
onstru
ted, it neverthelessreally exists. S is the 
losest we 
an get to a universal language of s
ien
e, giventhe 
urrent state of resear
h in 
omputer s
ien
e.To give some examples. S would make it easy to �nd binary expansions oftrans
endent numbers like � and e. There are simple programs for these exten-sions. In fa
t S would identify almost any dis
rete obje
t of any mathemati
alinterest for us. On top of that S would give us an optimal 
ode for the textof "A Tale of Two Cities" and indeed of any other 
on
eivable poem, novel,pie
e of musi
, movie or any work of art in digital 
ode. The same would holdfor any digital data set that s
ienti�
 inquiry 
ould produ
e. S would 'explain'the regularities and idiosyn
rasies of these data sets in so far as they 
an beexpressed in terms of deviation of maximal entropy.Intensive and extensive data setsA very interesting 
onsequen
e of having S would be that we are 
apable ofmeasuring the s
ale invarian
e of 
omplexities and entropies. A little thoughtexperiment will help. Suppose that we study some segment L of length l, start-ing at the p-th bit, of the binary expansion of a trans
endental number, say�. Sin
e we are studying an expansion of � the Kolmogorov 
omplexity of thesequen
e is low. In the sense of lemma 4.6 we 
ould analyze this as a sequen
eof l = kn bits, i.e. k messages based on a 
ode system of 2n 
ode words of nbits. The total measured 
omplexity of L using S with granularity n 
ould bede�ned as: K(L)S;n = k�1Xi=0 S(x(i�n)+1; x(i�n)+2; : : : x(i�n)+(n�1))22



           K(L)
 

n

l = n

                       log p + log l + O(1)

     log p + log l/n + O(1)

Figure 1: The size of K(L)S;n in relation to the granularity n while sampling asegment of �If we plot the size ofK(L)S;n in terms of the size of n we will see the followinge�e
t: for small n the fun
tion K(L)S;n will show a slow de
rease that will belinear in n. This is be
ause of the diminished overhead of S per segment. Forsmall n all segments will be random for S, be
ause of the trans
endentality of �.At a 
ertain point, '
lose' to log p+log l=n+O(1), the value of K(L)S;n will dropsuddenly. 15 This is exa
tly the point where n is big enough so that S starts to'sense' the 
ompressibility of L. For n = l the fun
tion K(L)S;n will land at thevalue log p + log l + O(1). What this amounts to is that for 
ertain data sets,e.g. bit representations of trans
endental numbers (but there are many others),
omplexity (and 
onsequently entropy) is non-extensive. Another way of puttingthis is that the Shannon entropy of the 
olle
tion of messages diverges from theKolmogorov 
omplexity as a measure of entropy for the set as a whole. Lo
al15The log p gives us an index in L, log l=n 
ode the length of the individual segment and theO(1) term 
ontains the program for �. This information is suÆ
ient to des
ribe any substringin L. 23



estimates of the 
omplexity do not tell us anything about global 
omplexity and
onsequently 
omplexities of various regions of the data set 
an not be added toget a global 
omplexity estimate. The 
omplexity of these data sets is not robustunder statisti
al operations and under re-s
aling of the 
ode system. 16 Clearlyfor the appli
ation of eÆ
ient learning algorithms the non-extensive 
omplexityof su
h data sets is an unsurmountable barrier. No algorithm 
an 
ompress datasets that look random from the outside but are in fa
t highly 
ompressible.Un
ompressibility and extensiveness are in fa
t the same notions, as is 
learfrom the following analysis. A data set D is extensive if the sum of the 
om-plexity of two arbitrary disjoint subsets A and B equals that 
omplexity of theunion of that set: K(A) +K(B) = K(A [ B) + O(1). This is only the 
ase ifD does not 
ontain any redundan
y i.e. if D is random. On the other hand,suppose that D is very 
ompressible. If we know A already, then B would addno information, i.e. K(A) + K(B) = K(A) + log jBj + O(1). In other wordsB would only add its own size to our knowledge. This is for instan
e the 
asewhen D 
ontains extremely simple regular patterns. This suggests the followingde�nitions:De�nition 4.11 A bit string D is extensive for a sample granularity g if forea
h substring A 2 D su
h that jAj � g we have K(A) > jAj�O(1). A bit stringD is intensive if for ea
h substring A 2 D su
h that jAj � g we have K(A) <log jAj+ log jDj+O(1). Sub-extensive data strings have jAj � K(A) +O(1)and super-intensive strings have K(A)� log jAj+ log jDj+O(1).Sub-extensive data sets are the ones from whi
h we 
an learn something.The borderline between extensive, sub-extensive, super-intensive and intensivedata sets is blurry, but the general idea stands. If we sample an extensive dataset we really get value for money, every bit 
ounts. But there is a pri
e to pay.The information is 
ompletely random. Nothing 
an be learned from this set.This 
orresponds with the pi
ture of random noise at the television set that wasdis
ussed earlier in this 
hapter. On the other end of the spe
trum we �nd thepi
ture of the test image: this data set is almost totally intensive. It is a simplerepeatable pattern for whi
h we need only the information about the numberof repetitions to en
ode it. Extensiveness 
orresponds to maximal randomness,intensiveness to maximal redundan
y. Figure 1 shows that we 
an make ea
hstring extensive by taking a small granularity. This 
orresponds to the fa
t that,even if a data set is very regular, there is a learning phase in whi
h we haveto analyze the pattern itself. At this time the data set 
annot be distinguishedfrom a random one. A �nite program produ
ing an in�nite data set has to gothrough loops. If we 
annot 
ompress the data set on the basis of samples thatare in the order of the 
omplexity of a loop of the program that generates thedata we are in trouble. Be
ause the in
rease in information after this phase willbe only logarithmi
. So if we have not spotted the regularity after, say 10, loops16The 
ustom in thermodynami
s to take the averages of values in the sample regions isjust one spe
i�
 form of re
oding. 24



Extensive  K(A) >  |A| - O(1) 

Intensive K(A) <  log |A| + log |D| + O(1)

Size of A

K(A)

            Sub-extensive

 

Super-intensive

Figure 2: The relation between extensive, sub-extensive, super intensive andintensive stringsthen we will probably never spot it be
ause the only new information we getfrom x repetitions is of size logx. This gives rise to the following 
laim:Claim 4.12 From the point of view of intelligent systems of a 
ertain 
omplex-ity, nature is by ne
essity shallow. Intensive data sets 
an either be learned byan intelligent system (a resour
e bounded learning algorithm) that is of the orderof the 
omplexity of the algorithm generating the data set, or not at all.From 
ompletely intensive strings we 
an learn only their generating pro-gram and their size. The program generating an intensive string 
an be seenas its intension.17 Intensive data sets asymptoti
ally have their size as theirmost de�ning 
hara
teristi
. Extensive data sets do not have an intension, orto say this in other words: they only des
ribe themselves. Their extension istheir intension. Super-intensive data sets 
ontain more information, but this17Here we have a 
omputational equivalent of Platos notion of an idea. The intension of anobje
t is the program generating it. 25



might be just noise. They are non random, but not 
ompletely regular either.From a physi
al point of view they are asso
iated with systems that are in a nonequilibrium state. It is the kind of information that we �nd in the pi
ture of theforest on our television s
reen. The trees are generated by a program and thushave regular spe
i�
 features. But the program is not 
ompletely deterministi
.Individual trees show random variation. It is interesting to 
hara
terize s
ien
esin terms of the nature of their data sets. Data sets of mathemati
ians and physi-
ists are 
lose to intensive. Data sets of the humanities are super-intensive. Theeternal question whether history repeats itself, 
an be answered by stating thathistory is sub-extensive and super-intensive. There are patterns but they willnever repeat themselves exa
tly. In physi
s we have explanation and predi
tionexa
tly be
ause the data sets are intensive.A 
onsequen
e of this analysis is that the amount of randomness we observeis dependent on the granularity of our measurements. In one sweeping statementone might say: randomness has a s
ale. Suppose we are looking at a movie of ahand 
ipping a 
oin. 18 At normal speed we are looking at a random (or at leasta very 
omplex) pro
ess. This data set 
ertainly has extensive elements. Notethat the data set itself in this 
ase is not random. It is a movie of 
oin 
ippingthat 
ontains a lot of information. We 
ould for instan
e learn a lot aboutNewtonian me
hani
s if we analyze it at an appropriate s
ale. Now supposethat we slow the movie down extremely, say we stret
h out one se
ond to amillion years. In this 
ase the movie will be rather dull on a human s
ale. Itwill be 
lose to a intensive pro
ess that 
ontains very little information. Onthe other hand if we speed the movie up so that a million years is 
ompressedin to one se
ond. Then again the movie would on a human s
ale be redu
edto a meaningless grey blur that 
ontains no information. On this s
ale thedata set would again be intensive. The important thing to noti
e is that thedata set 
ontains the most information if we sample it at a granularity wherethe extensiveness is maximal. Both at a larger and at a smaller granularitywe will lose information. In short: even randomness has a s
ale. Every formof randomness ne
essarily 
an be observed at a granularity in whi
h it is inequilibrium. When we see smoke dissolve in the air, then on a human s
alewe observe in
rease of entropy, on a mole
ular s
ale the in
rease does not existand on the s
ale of, say the solar system, the e�e
t is too small to noti
e. Anoptimal analysis of a data set involves �nding a granularity that optimizes therandomness of the data. 1918Suppose also that this hand does not belong to Persi Dia
onis, the well known matem-ati
ian/magi
ian that has proved that 
oin 
ipping is a
tually a deterministi
 pro
ess. Someof the material in this paragraph is in
uen
ed by the le
ture that professor Dia
onis gave onthe o

asion of re
eiving the Van Wijngaarden award at CWI in 2006.19This insight is related to Jaynes' maximal entropy prin
iple and the minimal randomnessde�
ien
y prin
iple to be dis
ussed later. There is a further analogy with thermodynami
s,where we �nd exa
tly the same s
aling issues. Suppose that we have a number of gas parti
lesin a isolated 
ontainer at low entropy. After some time an equilibrium will be rea
hed. On ami
ro s
ale the entropy 
an not have in
reased be
ause the evolution of parti
les in the 
on-tainer is determined by simple deterministi
 Newtonian physi
s. Ma
ros
opi
 measurementshowever will show an in
rease in entropy. Just like our example of the binary expansion of �,26



Resear
hers in ma
hine learning are familiar with the idea that 
ertain phe-nomena 
an only be explained at 
ertain s
ales. Some stru
tures 
an only belearned when the data set is sampled with a 
ertain granularity. 20 This 
analso be observed in the text of "A Tale of Two Cities". When we only sampleindividual bits of this data set no useful information emerges. When we sam-ple letters, we 
an make good statisti
al estimates based on frequen
y. This isalready somewhat harder for words and next to impossible for senten
es, leavealone paragraphs or 
hapters. There is a 
ertain granularity that reveals thestru
ture of the text optimally.A deeper analysis of these kind of phase transitions and their meaning forlearning algorithms is ne
essary, but it is 
lear from this short analysis that theanalogy between information and thermodynami
s 
an be 
arried further thanis 
ommonly a

epted.Indu
tion and Minimum Des
ription LengthLet us have a 
loser look at the relation between S and the problem of indu
tion.In one spe
ial guise indu
tion amounts to sele
ting the most probable hypothesisto explain a given data set. In terms of Bayesian learning this task 
an beformulated as follows. Mit
hell [1997℄ The prior probability of a hypothesish is P (h). Probability of the data D is P (D). The Posterior probability ofthe hypothesis given the data is:P (hjD) = P (h)P (Djh)P (D)Theorem 4.13 Suppose that h;D 2 f0; 1g�, i.e. both the data set and thehypothesis range over the full 
lass of �nite binary strings. Sele
ting the Max-imum A Posteriori hypothesis (MAP) to explain D, amounts to sele
tingthe hypothesis that minimizes the length in bits ofS(h) + S(Djh).Here S(h) is the universal optimal Shannon 
ode for the hypothesis and S(Djh)is the universal optimal Shannon 
ode for the data set given the hypothesis.the data set will have low 
omplexity at mi
ro level and appear to be random at lager s
ales.In a stri
tly deterministi
 universe randomness takes the form of 
oarse grained unde
idability.20This was one of the more interesting results of the Robosail proje
t, an attempt to usema
hine learning te
hniques to learn to sail automati
ally that I started in 1998 (van Aartrijket al. [2002℄). Measurements of almost all relevant human 
on
epts like 'wave', 'gust of wind','
hange of wind dire
tion' and 'wind strength' were dependent on sele
ting an adequate gran-ularity for the measurements. What you subje
tively experien
e as a wave is dependent on thesize of your boat. Some of the 
on
eptual distin
tions used by sailors depend on sophisti
atedphase transitions in 
haoti
 media that were only observable at 
ertain s
ales. This holds forinstan
e for the distin
tion between light air (laminar 
ow) and breeze (turbulent 
ow). Inthe �nal system we implemented learning agents that were living in a variety of time s
ales:10 Hz, 1 Hz, 10�3 Hz, et
. 27



Proof: hMAP � argmaxh2H P (hjD)= argmaxh2H (P (h)P (Djh))=P (D)(sin
e D is 
onstant) = argmaxh2H (P (h)P (Djh))= argmaxh2H logP (h) + logP (Djh)= argminh2H � logP (h)� logP (Djh)(Sin
e h;D 2 f0; 1g� and a

ording to Shannon � logP (h) is the optimal 
odefor the hypothesis and � logP (Djh) is the optimal 
ode for the data given thehypothesis.) = argminh2HS(h) + S(Djh)This result is 
losely related tot the so-
alled:De�nition 4.14 The Minimum Des
ription Length prin
iple (MDL):The best theory to explain a set of data is the one whi
h minimizes the sum of� the length, in bits, of the des
ription of the theory and� the length, in bits, of the data when en
oded with the help of the theoryThis prin
iple was �rst formulated by Rissanen. Rissanen [1999℄ Resear
h inthis domain is far from �nished and these 
on
epts are still the obje
t of �er
edebate (Domingos [1998℄ Domingos [1999℄). A 
ommon mis
on
eption is theidea that the minimum des
ription length prin
iple 
an be transformed in to amethodology for the 
onstru
tion of a sequen
e of improving theories by meansof an in
remental 
ompression of the data set. Suppose that Si, hj , Sp and hqare arbitrary 
oding s
hemes and hypotheses su
h that:jS(h) + S(Djh)j < jSi(hj) + Si(Djhj)j < jSp(hq) + Sp(Djhq)j < jDjAlthough h is the best theory it is not ne
essarily the 
ase that hi is betterthan hq. This 
ould for instan
e be guaranteed if S = Si = Sp, i.e. when the
ode is optimal (Adriaans and Vit�anyi [2005℄).Translating these observations to the domain of methodology of s
ien
e givesus a number of interesting insights: The regularity of the world we observearound us is extremely improbable. The pro
ess of redu
ing a set of observationsto a general theory explaining these observations 
an be des
ribed as a pro
ess ofdata-
ompression. A universal methodology of s
ien
e would have the followingform:� Represent your data set D in binary format.� Sele
t a hypothesis h in binary format su
h that jS(h) + S(Djh)j is mini-mal. 28



This program fails be
ause of the un
omputability of S but it 
an serve asa regulative ideal for the study of methodology of s
ien
e. In 
ertain 
asesthe theoreti
al results allow us to solve real life problems and to develop moreeÆ
ient algorithms ( Li and Vit�anyi [1997℄). Note that we have 
hara
terizedlearnable data sets as non- and sub-extensive, they 
ontain a mix of randomand deterministi
 elements. MDL aims at �nding a 
ompression for su
h a setthat exa
tly separates the random (extensive) elements (S(Djh)) from the non-random (intensive) ones (S(h)). For intensive data sets the two part 
ode willsimply 
onsist of a des
ription of the program generating the data set (S(h))and the length of the data set (S(Djh)).Another way to look at this is from the perspe
tive of the so-
alled random-ness de�
ien
y(Veresh
hagin and Vit�anyi [2004℄):Æ(DjM;d) = log�md��K(DjM;d); (1)Here M is a model of size m and D �M is a data set of size d. The expressionlog �md � is the measure of the maximum entropy of a subset of M of size d. Theexpression K(DjM;d) is the a
tual entropy of the data set D in the model, i.e.
onditional Kolmogorov 
omplexity of D given M and d. If the a
tual entropyis mu
h smaller than the maximal entropy of an average set of size d in Mthen D still 
ontains a lot of regularity that is not explained by M . In otherwordsM is not an optimal model. A model would be optimal if the randomnessde�
ien
y is minimal. In su
h a 
ase D would be a typi
al element (extensive)ofM andM would explain all that is worth knowing about D, i.e. its intension.The prin
iple of minimal randomness de�
ien
y is very 
lose to Jaynes'maximalentropy prin
iple: in order to explain a set D try to �nd the set M for whi
hthe entropy is maximal under a set of 
onstraints observed in D. 215 The Cooperative Computational UniverseFrom this dis
ussion it is 
lear that the philosophy of learning tou
hes on a num-ber of philosophi
al issues: To name a few: entropy, information, 
omputation,obje
tive and subje
tive probability. In order to study these issues let's de�ne athought experiment. For the sake of argument we will restri
t ourselves to the
ase in whi
h we observe a string of bits from an unknown sour
e. Even in thissimple setting there are some fundamental philosophi
al issues to be dealt with.Suppose that we reserve a room at the university of Amsterdam for thepurpose of this experiment. The room has no windows and the door is 
losed.In the room there is a bla
k box. The bla
k box produ
es a bit every minute. Ifthe bit is '1' the light is swit
hed on, if it is '0' the light is swit
hed o�. This bitis published on a web site. Of 
ourse nobody knows the 
ontents of the bla
kbox, but for the sake of arguments we 
hoose three possible 
on�gurations. Thebox 
ould 
ontain:21See the paper of Bais and Farmer in this book.29



1. A random pro
ess that generates bits (e.g. a person 
ipping a 
oin, orsome other ergodi
 pro
ess.).2. A deterministi
 
omputer program generating bits.3. An in�nite database with a list of bits.These three de�nitions represent radi
ally di�erent views on the phenomenonof a sour
e of information. The �rst is an obje
tive random pro
ess asso
iatedwith an obje
tive form of probability. It generates an extensive data set. All theinformation that is 
ontained in the sequen
e 
an be measured in terms of itsfundamental statisti
al 
hara
teristi
s: mean, varian
e, auto
orrelation fun
tionet
. The se
ond is a deterministi
 pro
ess with a de�nition of �nite length. Themaximal amount of information in a string produ
ed by the program is limitedto the length of the de�nition of the program. It is an intensive data set. It
ould lead to a sequen
e of bits with a 
ertain statisti
al bias (e.g. repeatingpatterns), but this is not ne
essary. Some trans
endental numbers have shortde�nitions (e.g. e and �) but lead after a bit of twisting to bit patterns that
annot be re
ognized as non-random. The third is a deterministi
 pro
ess witha de�nition of in�nite length. The generating data set itself is 
ould be in- orextensive. It potentially 
ontains an in�nite amount of information that 
annever be learned in a �nite amount of time.Theorem 5.1 The three sour
es of information, (a random pro
ess, a deter-ministi
 
omputer program and an in�nite database) 
annot be distinguishedfrom ea
h other by a re
eiver of the information.Proof: Ea
h of the three sour
es 
an produ
e a sequen
e of bits that 
annot bedistinguished from a random sequen
e. 1) The 
ase of the random pro
ess istrivial 2) A deterministi
 program 
an generate strings that 
annot be re
og-nized as non-random. The non-
omputability of Kolmogorov 
omplexity tellsus that there will always be 
ompressible strings for whi
h no 
ompression 
anbe 
omputed. 3) An in�nite database 
an 
ontinue a random set of bits or a setof non-random bits that 
annot be re
ognized as su
h.The philosophi
al importan
e of this result is obvious. We 
annot makea distin
tion between a sour
e of information that is random and a sour
e ofinformation that has high 
omplexity. This makes the traditional 
ontroversybetween determinism and indeterminism from the point of view of informati
ssenseless. It reveals the famous di
tum by Einstein "God does not play di
e"as a real metaphysi
al position. It is not a question that 
an be settled by anyargument. It also shows that it is impossible to assign any form of obje
tiveprobability to a sour
e of information. In this 
ontext one might ask to whi
hextent randomness is in any sense a s
ienti�
 
on
ept. We 
an de�ne random-ness of strings in terms of in
ompressibility, but we do not need the 
on
ept ofrandomness to study in
ompressibility. The notion of 
ipping a 
oin or throwinga di
e are real s
ienti�
 paradigms in the original Kuhnian sense, but au fondthey are deterministi
 pro
esses that in most 
ases are simply too 
omplex to30



predi
t and therefore 
an a
t as pla
e holders for supposedly real random pro-
esses. They serve as ane
doti
 topoi in the s
ienti�
 dis
ourse, nothing more.The notions of extensiveness and in
ompressibility still have an exa
t meaningin a deterministi
 Lapla
ian universe, so they seem to be more fundamentalthan the 
on
ept of randomness. Ma
ros
opi
 measurements of mi
ros
opi
 de-terministi
 pro
esses might subje
tively be interpreted as random. Even in aLapla
ian universe there are data sets that are both stri
tly deterministi
 andextensive (e.g. the Halting set).In su
h a world however there is a form of subje
tive probability that isrelevant. Suppose that we want to form a hypothesis about the internal stru
tureof the bla
k box and the bla
k box produ
es a string that shows some regularity.In that 
ase it is extremely unlikely that the sour
e of bits is random. Supposethat our bla
k box produ
es a string of n ones 1112 : : : 1n. The probability of
reating this string with n 
ips of a perfe
t 
oin is 2�n. So, intuitively, withea
h one that is produ
ed by our bla
k box the hypothesis that it 
ontains arandom pro
ess be
omes more unlikely in favor of the hypothesis that the bitsare produ
ed by some deterministi
 pro
ess. Yet this argument is 
awed be
auseany bit string of length n produ
ed by 
ipping a perfe
t 
oin has probability 2�nand therefore is extremely unlikely. We have no 
lear ground to favor any regularstring over a random one as a ground for sele
ting between hypotheses about the
ontent of the bla
k box. As we have seen, the theory of Kolmogorov 
omplexityallows us to de�ne the 
on
ept of randomness de�
ien
y of a string. The idea isthe following. A string like, say, 11100101000100 is typi
al for a random sour
e.Su
h a string is produ
ed by a sour
e that is perfe
tly 
ompatible with thehypothesis that the sour
e is random. A string like 11111111111111 is atypi
alfor a random sour
e. When produ
ed by a sour
e it makes the hypothesis thatthe sour
e is random unlikely. A high randomness de�
ien
y 
orroborates thetheory that the pro
ess in the bla
k box is non-random.This analysis suggests that the best thing we 
an do in s
ien
e is: observea set of phenomena, estimate the randomness de�
ien
y and formulate a the-ory. Unfortunately in the 
ase of the Amsterdam room the situation is more
ompli
ated. This be
omes 
lear if we analyze the following 
laims.Claim 5.2 We get exa
tly one bit of obje
tive information ea
h minute.It is 
lear that ea
h bit that is published on the web by the bla
k box 
ontainsreal information about the a
tual binary situation in the room: the light is onor o�.Claim 5.3 The meaning of the message 
ontained in the bit and the knowledgegenerated as a 
onsequen
e of re
eiving the message is not dependent on the
ontent of the bla
k box.Yet there is a subtle interplay between the growth of our subje
tive infor-mation and our theories about the nature of the bla
k box.Claim 5.4 The obje
tive amount of information we get is dependent upon ourinterpretation of the nature of the sour
e of information.31



The three possible interpretations of the 
ontent of the box 
ould be seen asthree di�erent types of senders of messages. I will de�ne three possible re
eiversalong the same line:1. A forgetful re
eiver that determines the statisti
al 
hara
teristi
s of the se-quen
e: mean, varian
e, auto
orrelation fun
tion et
. Here our subje
tiveinformation grows in
rementally at a very slow rate with ea
h obje
tive bitthat is re
eived. This observer 
orresponds with an interpretation of thesour
e as a system in equilibrium. The statisti
al (ma
ros
opi
) qualitiesof the system are all that we 
an know about the system.2. A ma
hine learning program with bounded 
omputing time and memory,that tries to re
onstru
t the �nite stru
ture of the bla
k box. Here oursubje
tive information grows in an irregular but monotone way with ea
hbit of obje
tive information that is re
eived. This observer 
orresponds toan interpretation of the data set as intensive. After some �nite point intime our information will only grow with the fa
tor logx where x is thenumber of bits we have seen so far.3. An in�nite database with a list of bits re
ording every bit that is re
eived.Here our subje
tive information grows with exa
tly 1 bit per bit that isre
eived, if the data set itself is 
onsidered to be extensive.This example shows that we 
an not restri
t ourselves to a purely subje
tiveinterpretation of information when we analyze a sour
e of messages. We needto make an a priori de
ision about the nature of our sour
e.Our analysis shows that nature and s
ien
e play an asymmetri
al game.Non-random strings are very rare. To make this more spe
i�
: in the limit thedensity of 
ompressible strings x in the set f0; 1g�k for whi
h we haveK(x) < jxjis zero. Data sets that appear to be random may be a
tually 
ompressible, butthe o

urren
e of su
h obje
ts in nature is extremely unlikely. If a data set looksrandom, we may with high probability assume that it is random. On the otherhand if a data set from the point of view of an intelligent agent appears to beregular then it is with extremely high probability not random and 
an be learnedbe
ause of the shallowness 
laim 4.12. Therefore a learning system that simplys
ans the environment for areas of low entropy and tries to 
ompress the datasets it �nds there will be su

essful with high probability, if the 
omplexity ofdata sets is of the same order of magnitude as the agent. Lo
al low entropy datasets 
orrespond with energy 
onsuming non-equilibrium systems that with highprobability 
an be des
ribed in terms of 
omputational models. Learning is notas hopeless as our formal models seem to imply. We are 
omputational pro
essesof limited 
omplexity analyzing 
omputational pro
esses of limited 
omplexityin a universe that generates 
omputational pro
esses of limited 
omplexity. Inthis sense we live in a 
ooperative 
omputational universe. This is as 
lose as we
an get to the solution of 
ertain philosophi
al problems in terms of informationand 
omputer s
ien
e.So why is this the 
ase? Why do we live in a world that is intelligible at all?This question pervades philosophy from its early 
on
eption on (Herakleitos vs32



Parmenides). In form of a sweeping statement: prima fa
ie, the god of Leib-niz might very well have 
reated a universe in whi
h the Minimum Des
riptionLength prin
iple would not hold. There seems to be no theoreti
al ne
essity tofavor simpli
ity. The extreme regularity of the universe 
ould be a 'lo
al' 
ondi-tion a

identally observed by us. In terms of modern information theory: everyin�nite random string has an in�nite number of regions of extreme regularity.If we transpose this idea to the analysis of our world we might just a

identallylive in su
h a regular region in a purely random universe. Li and Vit�anyi [1992℄A rather horrifying thought.On the other hand imagine the following thought experiment: an in�niteset of universal Turing ma
hines working in parallel with input tapes that are
reated by means of some random pro
ess (e.g. 
ipping a 
oin). The set of inputtapes is in�nite so every �nite pre�x free program will o

ur an in�nite numberof times. Yet the density of 'shorter' programs will be exponentially higher thanthat of 'longer' ones. Some programs will run for ever, others will stop in �nitetime. After n time steps a number of 'simple' programs will have stopped andprodu
ed a �xed output. This means that the set of outputs we observe in thisthought experiment will have a strong bias for simpli
ity. In other words evena universe that 
onsists of purely random 
omputational pro
esses has a strongbias for simpli
ity. The distribution of phenomena it produ
es is 
ooperativein the sense that we get examples of the simple stru
tures �rst. This is thehypothesis of the 
ooperative universe in another guise: nature produ
es theinformation that we need to interpret her in su
h a way that hypotheses weform are right with high probability. In su
h a universe MDL therefore will be aviable methodologi
al prin
iple. It 
oin
ides with another well known di
tum ofEinstein: Subtle is the Lord, but mali
ious He is not. The exa
t relation betweenvarious 
omputational models of the universe, 
ooperative distributions, theuniversal distributionm and the problem of indu
tion is, in my view, one of themost important open problems in the philosophy of information.These issues (subje
tive versus obje
tive probability, regularity versus ran-domness, information versus meaning) are far from resolved and should be atthe 
enter of a philosophi
al resear
h program of a philosophy of information.6 Con
lusionThe resear
h on learning and indu
tion that has emerged be
ause of the growinginterest in arti�
ial intelligen
e is still developing. The results do not only leadto useful industrial appli
ations, but also in
uen
e the way we think aboutfundamental philosophi
al questions about the origin of human knowledge, thestru
ture of our brain and methodology of s
ien
e. A formal analysis of themathemati
s of learning helps us to understand the eÆ
ien
y of human learning.Human beings 
an only learn 
omplex stru
ture like language and the lawsof nature if the underlying probabilities are 'benign'. The hypothesis of the
ooperative universe is an attempt to explain why we live in a world that 
anbe learned eÆ
iently. 33



Finally a tongue in 
heek observation. Our human brain 
an 
ontain about1014 bits of information. The total storage 
apa
ity of the known universe isestimated to be about 1092 bits (Lloyd and Ng [2004℄). The old philosophi
alambition of understanding the universe as a whole amounts to the wish to �nda 
ompression of the universe of the following nature: a stru
tural des
riptionof less than 1014 bits (the laws of nature) and an ad ho
 des
ription of morethan 1078 bits (the a
tual stru
ture given the laws of nature) . There is only one
on
lusion possible. The universe 
an only be understood by human beings if itis extremely 
ompressible -in other words- if almost nothing of any signi�
an
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