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1. The Physics of Information

Why cannot we write the entire 24 volumes of the Encyclopedia Brittanica on

the head of a pin?

R.P. Feynman

Information is carried, stored, retrieved and processed, by machines, whether they
be electronic computers or living organisms. The basis for any means of handling
information is physical and it is therefore not surprising that physics and infor-
mation have a rich interface. All information is ultimately carried by a physical
substrate, be it paper, silicon chips or holograms and therefore we know that our
strings of zeros and ones will have to obey the fundamental laws of physics. In our
quest for more and more volume and speed in storing and processing information
we are naturally led to the smallest scales we can physically manipulate, and as
ultimately all of matter is composed of atoms, the laws of quantum mechanics come
into play. We refer to Feynman’s visionary 1959 lecture ”Plenty of room at the bot-
tom” [4] where he already talks about storing and manipulating information on the
atomic level. However, the interface between physics and information is not limited
to the hardware implementation of memory and information processing. It also
involves a common history in the theoretical domain where it comes to the percep-
tion, analysis and understanding of some of the very basic concepts in information
theory. In this brief review we focus on the various subfields of physics in which the
notion of information or entropy is of paramount importance and we’ll highlight
some particular examples. Our strategy is to start from the (theoretical) physics
side and link the relevant concepts to their information scientific counterparts.

The logical structure of the chapter is as follows. We begin by describing the
origin of the concept of entropy in thermodynamics. We discuss how the microscopic
theory of atoms led to statistical mechanics, which makes it possible to derive
and extend thermodynamics. This led to the definition of entropy in terms of
probabilities and provided the inspiration for modern information theory. A close
examination of the foundations of statistical mechanics and the need to reconcile the
probabilistic and deterministic views of the world leads us to a discussion of chaotic
dynamics, where information plays a crucial role in quantifying predictability. We
then discuss a variety of fundamental issues that emerge in defining information
and how one must exercise care in discussing concepts such as order, disorder,
and incomplete knowledge. We also discuss an alternative form of entropy and
its possible relevance for nonequilibrium thermodynamics. Toward the end of the
chapter we make some excursions into cosmology and engineering. One is the
“ultimate information paradox” posed by the physics of Black Holes, the other is
an example of how the notion of information is used in an axiomatic approach to
design engineering.

In this review we have limited ourselves and not all relevant topics that touch on
both physics and information have been covered, notably the subject of quantum
information is not treated.

2. Thermodynamics

The truth of the second law is , therefore, a statistical and not a mathematical

truth, for it depends on the fact that the bodies we deal with consist of millions
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of molecules and that we never can get a hold of single molecules

J.C. Maxwell

Thermodynamics is the study of macroscopic physical systems1. These systems
contain a large number of degrees of freedom, typically of the order of Avogadro’s
number, i.e. NA ≈ 1023. The three laws of thermodynamics describe processes
in which systems exchange energy with each other or with their environment. For
example, the system may do work, or exchange heat or mass through a diffusive
process. A key idea is that of equilibrium, which in thermodynamics is the assump-
tion that the exchange of energy or mass between two systems is the same in both
directions; this is typically only achieved when two systems are left alone for a long
period of time. A process is quasistatic if it always remains close to equilibrium,
which also implies that it is reversible, i.e that the process can be undone and the
system can return to its original state. It may also be that a system goes from
one equilibrium state to another via a nonequilibrium process (think for example
of the free expansion of a gas, or the mixing of two fluids), in which case it is not
reversible. No real system is fully reversible, but it is nonetheless a very useful
concept.

The remarkable property of systems in equilibrium is that the macro states can be
characterized by only very few variables such as volume V , pressure P , temperature
T , entropy S, chemical potential µ and particle number N . Moreover, these state
variables are in general not independent, but rather are linked by an equation of
state. A familiar example the ideal gas law PV = NAkT , where k is the Boltzmann
constant relating temperature to energy (k = 1.4×10−23 joule/sec.). In general the
state variables come in pairs, one of which is intensive (like P, T, ...) while the other,
conjugate variable is extensive2 (V, S, ...). The formulation of thermodynamics owes
its diversity to the fact that the variables are not independent so that according to
the physical setting a suitable choice for the independent variables should be made.
In this lightning review we will only highlight the essential features which are most
relevant in connection with information theory.

2.1. The laws. The first law of thermodynamics reads3

(2.1) dU = d̄Q− d̄W

and amounts to the statement that heat is a form of energy and that energy is
conserved. More precisely, the change in internal energy dU equals the amount of
heat d̄Q absorbed by the system minus the work done by the system, d̄W .

The second law introduces the concept the entropy S, which is defined as the
ratio of heat flow to temperature. It states that the entropy for a closed system (a
system with constant energy, volume and number of particles) can never decrease.
In mathematical terms:

(2.2) dS =
d̄Q

T

dS

dt
≥ 0

1Many details of this brief expose of selected items from thermodynamics and statistical me-

chanics can be found in standard textbooks on these subjects [19, 13, 8, 16].
2Extensive in this context means proportional to system size, whereas intensive means inde-

pendent of system size.
3The bars through the differentials indicate that the quantities following them are not state

variables: the d-bars therefore refer to small quantities rather then proper differentials
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By using a gas as the canonical example, we can rewrite the first law in proper
differentials as

(2.3) dU = TdS − PdV.
It follows from the relation between entropy, heat and temperature that entropy
differences can in principle be measured by determining the temperature and the
change in heat using a thermometer and a calorimeter. This confirms the state-
ment made at the start that thermodynamics involves measurements of macroscopic
systems only.

There are two, different formulations that make clear what the second law actu-
ally means. The Kelvin formulation states that it is impossible to have a machine
whose sole effect is to convert all absorbed heat into work, while the formulation
due to Clausius says that it is impossible to have a machine that only extracts
heat from a reservoir at low temperature and delivers that same amount of heat
to a reservoir at higher temperature. Rephrasing these formulations, Kelvin says
that ideal engines cannot exist and Clausius says that ideal refrigerators can’t exist.
A more modern formulation of the second law, which in the setting of statistical
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Figure 1. The relation between heat and work illustrating the
two formulations of the second law of Thermodynamics. On the
left we have the Kelvin formulation. The ideal engine corresponds
to the diagram with the black arrows only. The second law tells
us that the third grey arrow is necessarily there. The right picture
with only the black arrows corresponds to the ideal refrigerator,
and again the third grey arrow is again a consequence of the second
law.

mechanics is equivalent to the statements of Kelvin and Clausius, it is the so-called
“Landauer principle”, which says that there is no machine whose sole effect is the
erasure of information. There is a price to forgetting: the principle states that
the erasure of information (which is irreversible) is inevitably accompanied by the
generation of heat, one has to generate at least kT ln 2 to get rid of one bit of
information [14, 15]. The second law sets fundamental limits on the possible effi-
ciency of real machines like steam engines, refrigerators and information processing
devices. As everybody knows, real engines give off heat and real refrigerators and
real computers need power to do their job. The second law tells us to what extent
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Figure 2. An illustration of the Landauer principle, using a ther-
modynamical system. We consider a “gas” consisting of a single
atom in a symmetric container in contact with a heat bath. The
atom can be either on the left or on the right, corresponding exactly
to one bit of information. Erasing the information amounts to re-
setting the device to the |1 > state independent of the initial state.
This can be done by first opening a diaphragm in the middle, then
reversibly moving the piston from the right in, and finally clos-
ing the diaphragm and moving the piston back. In the first step
the gas expands to the double volume. The particle doesn’t do
any work, the energy is conserved and therefore no heat will be
absorbed from the reservoir. In the (quasistatic and isothermal)
processes we bring the system back to a state which has the same
entropy as the initial state. During the compression the entropy
has decreased by k log 2. The conclusion is that the system must
have gotten rid of an amount of heat that equals kT log 2. which
is exactly the amount of work done on the system by moving the
piston, as the energy of the system has not changed.

absorbed heat can be used to perform work. The increase of entropy as we go from
one equilibrium situation to another is related to dissipation and the production of
heat, which is intimately linked to the important notion of irreversibility. A given
action in a closed system is irreversible if it makes it impossible for the system to
return to the state it was in before the action took place. Irreversibility is always
associated with production of heat, because heat cannot be freely converted to
other forms of energy (whereas any other form of energy can always be converted
to heat). Irreversibility implies path dependence.

The theory of thermodynamics taken by itself does not connect entropy with
information. This only comes about when the results are interpreted in terms of a
microscopic theory, in which case temperature can be interpreted as being related to
uncertainty and incoherence in the position of particles. This requires a discussion
of statistical mechanics, as done in the next section.

There is another fundamental aspect to the second law which is important from
an operational as well as philosophical point of view. A profound implication of the
second law is that it defines an “arrow of time”, i.e., it allows us to distinguish the
past from the future. This is in contrast to the fundamental laws of physics which
are (except for a few exotic interactions) time reversal invariant. At the microscopic
level of fundamental particles, if one watches a movie it is very difficult to tell
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whether it is running forwards or backwards, except for a few exotic interactions
that are only very rarely seen under normal conditions as we find them on earth.
In contrast, if we watch a movie of macroscopic events, we do not have to look hard
to find irreversible actions such as the curling of smoke, the spilling of a glass of
water, or the mixing of bread dough, which easily allow us to determine whether
we are running in forward or reverse. More formally, even if we didn’t know which
way time were running, we could pick out some systems at random and measure
their entropy at times t1, t2, .... The direction in which entropy increases is the one
that is going forward in time. Note that we didn’t define an a priori direction of
time in formulating the second law. Thus it establishes a time direction on its own,
without any reference to atomic theory or any other laws of physics.

We note that the second law of thermodynamics talks only about the difference
between the entropy of different macro states. The absolute scale for entropy is
provided by the third law of thermodynamics. This law states that when a system
approaches the absolute zero of temperature the entropy will go to zero, i.e.

(2.4) T → 0 ⇒ S → 0

When T = 0 the heat is zero, corresponding to no atomic motion, and the energy
takes on its lowest possible value. We know that such a lowest energy ”ground” state
exists due to the quantum mechanical nature of matter, but it is interesting that
this was already evident from thermodynamics, without any reference to atoms.

Let us conclude by emphasizing that the laws of thermodynamics have a wide
applicability and a rich phenomenology that supports them unequivocally.

2.2. Free energy. Physicists are particularly concerned with what is called the
(Helmholtz) free energy, denoted F . It is a quantity that is relevant when studying
systems in thermal contact with a heat bath. Furthermore the free energy plays
a central role in establishing the relation between thermodynamics and statistical
mechanics as we will discuss in the next section.

The free energy is defined by:

(2.5) F ≡ U − TS .

This implies that in differential form we have

(2.6) dF = dU − TdS − SdT

which, using (2.3) can be written as

(2.7) dF = −PdV − SdT.

The natural independent variables to describe the free energy are evidently volume
and temperature.

Let us briefly reflect on the meaning of the free energy. Consider a system A in
thermal contact with a heat bath A′ kept at a constant temperature T0. Suppose
the system A absorbs an amount d̄Q from the reservoir. Clearly we may think of
the total system consisting of system plus bath as a closed system: A0 = A+A′. For
A0 the second law implies that its entropy can only increase: dS0 = dS + dS′ ≥ 0.
As the temperature of the heat bath A′ is constant and its ”absorbed” heat is −d̄Q,
we may write dS′ = −d̄ Q/T0. From the first law applied to system A we obtain
that −d̄ Q = −dU − d̄ W , so that we can rewrite the inequality for the entropy
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change as −dU + T0dS ≥ d̄W As the system A is kept at a constant temperature
the left hand side is just equal to −dF so that we arrive at the inequality

(2.8) −dF ≥ d̄W.

The maximum work that can be done by the system in contact with a heat reservoir
is (−dF ). If we keep the system parameters fixed i.e. d̄ W = 0 we obtain that
dF ≤ 0, showing that for a system coupled to a heat bath the free energy tends to
decrease, and consequently in an thermal equilibrium situation the free energy will
acquire a minimum. This statement is to be compared with the statement that for
an isolated system in equilibrium the entropy acquires a maximum.

We can think of the second law as telling us how different kinds of energy are
converted into one another: In an isolated system, work can be converted into heat,
but heat cannot be converted into work. From a microscopic point of view forms of
energy that are “more organized”, such as light, can be converted into those that
are “less organized”, such as the random motion of particles, but the opposite is
not possible.

From Equation (2.7) the pressure and entropy of a gas can be written as partial
derivatives of the free energy

(2.9) P =
(
dF

dV

)
T

S =
(
dF

dT

)
V

So we see that for a system in thermal equilibrium the entropy is a state variable,
meaning that if we reversibly traverse a closed path we will return to the same value
(in contrast to other quantities, such as heat, which do not satisfy this property).
The variables P and S are dependent variables, this can be moist easily seen in the
so called Maxwell relation that is obtained by equating the two second derivatives

(2.10)
∂2F

∂T∂V
=

∂2F

∂V ∂T
yielding the relation

(2.11)
(
∂P

∂T

)
V

=
(
∂S

∂V

)
T

.

3. Statistical mechanics

In dealing with masses of matter, while we do not perceive the individual

molecules, we are compelled to adopt what I have described as the statistical

method of calculation, and to abandon the strict dynamical method, in which

we follow every motion by the calculus.

J.C. Maxwell

We are forced to be contented with the more modest aim of deducing some of

the more obvious propositions relating to the statistical branch of mechanics.

Here there can be no mistake in regard to the agreement with the facts of

nature.

J.W. Gibbs

Statistical mechanics is the explanation of the macroscopic behavior of physical
systems using the underlying microscopic laws of physics even though the micro-
scopic states (such as the position and velocity of individual particles) are unknown.
The key figures in the late 19th century development of statistical mechanics were
Maxwell, Boltzmann and Gibbs [17, 2, 6]. One of the outstanding questions was to
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derive the laws of thermodynamics, in particular to give a microscopic definition
of the notion of entropy. Other objectives were the understanding of transport
phenomena and transport coefficients from the underlying dynamics, which cannot
be computed from thermodynamics alone. For our purpose, which is highlighting
the links with information theory, we will give a brief and somewhat lopsided in-
troduction to some of the relevant concepts. Our main goal is to show the origin of
the famous expression for the entropy, S = −

∑
i pi ln pi, which was later used by

Shannon to define information.

3.1. Definitions and postulates.

Considerable semantic confusion has resulted from failure to distinguish be-

tween prediction and interpretation problems, and attempting a single formal-

ism to do both.

T.S. Jaynes

Statistical mechanics considers systems with many degrees of freedom, such as
atoms in a gas or spins on a lattice. We can think in terms of the microstates of
the system which are, for example, the positions and velocities of all the particles
in a box of gas. The space of possible microstates is called the phase space; for a
monatomic gas with N particles, the phase space is 6N -dimensional, corresponding
to the fact that under Newtonian mechanics there are three positions and three
velocities that must be measured for each particle in order to determine its future
evolution. A microstate of the whole system thus corresponds to a single point in
this phase space.

Statistical mechanics involves the assumption that, even though we know that
the microstates exist, we are largely ignorant of their actual values. The only in-
formation we have about them comes from macroscopic quantities, which are bulk
properties such as the total energy, the temperature, the volume, the pressure, or
the magnetization. Because of our ignorance we have to treat the microstates in
statistical terms. But the knowledge of the macroscopic quantities, along with the
laws of physics that the microstates follow, constrain the microstates and allow us
to compute relations between macroscopic variables that might otherwise not be
obvious. Once the values of the macroscopic variables are fixed there is typically
only a subset of microscopic states that are compatible with them, which are called
the accessible states. The number of accessible states is typically huge, but differ-
ences in this number can be very important. In this chapter we will for simplicity
assume a discrete set of microstates, but the formalism can be straightforwardly
generalized to the continuous case.

The first fundamental assumption of statistical mechanics is that a closed system
has an equal a priori probability to be in any of its accessible states. For systems
which are not closed, for example because they are in thermal contact or their
particle number is not constant, the set of accessible states will be different and
appropriate probabilities for them have to be defined. Another way of saying this
is that with a real macroscopic physical system in equilibrium we associate an
ensemble of systems with a characteristic probability distribution over the allowed
microscopic states. Tolman [22] clearly described the notion of an ensemble:

In using ensembles for statistical purposes, however, it is to be noted that

there is no need to maintain distinctions between individual systems since

we shall be interested merely in the number of systems at any time which
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would be found in the different states that correspond to different regions

of phase space. Moreover, it is also to be noted for statistical purposes

that we shall wish to use ensembles containing a large enough population

of separate members so that the number of systems in such different

states can be regarded as changing continuously as we pass from the

states lying in one region of the phase space to those in another. Hence,

for purpose in view, it is evident that the condition of an ensemble at

any time can be regarded as appropriately specified by the density r with

which we representative points are distributed over phase space

The second postulate of statistical mechanics, called ergodicity, says that time av-
erages correspond to ensemble averages. That is, on one hand we can take the time
average by following the deterministic motion of the all the microscopic variables of
all the particles making up a system. On the other hand, at a given instant in time
we can take an average over all possible accessible states, weighting them by their
probability of occurrence. The ergodic hypothesis says that these two averages are
the same. We return to the restricted validity of this hypothesis in the section on
nonlinear dynamics.

3.2. A simple model system of magnetic spins. In the following example we
show how it is possible to derive the distribution of microscopic states through
the assumption of equipartition and simple counting arguments. The results also
illustrates that the distribution over microstates becomes extremely narrow in the
thermodynamic (i.e. N → ∞ limit). Consider a system of N magnetic spins that
can only take two values sj = ±1, corresponding to whether the spin is pointing
up or down (often called Ising spins). The total number of possible configurations
equals 2N . For convenience assume N is even, and that the spins do not interact.
Now put these spins in a magnetic field H (pointing upward), and ask how many
configurations of spins are consistent with each possible value of the energy. The
energy of each spin is ej = ∓µH, and because they do not interact, the total energy
of the system is just the sum of the energies of each spin. So for a configuration
with k spins pointing up and N − k spins pointing down the total energy can be
written as εm = 2mµH with m ≡ (N − 2k)/2 and −N/2 ≤ m ≤ N/2. The value
of εm is bounded : −NµH ≤ εm ≤ NµH and the difference between two adjacent
energy levels, corresponding to the flipping of one spin, is ∆ε = 2µH. The number
of microscopic configurations with energy εm equals

(3.1) g(N,m) = g(N,−m) =
N !

( 1
2N +m)!( 1

2N −m)!
.

We obviously have the quality:
∑

m g(N,m) = 2N . For a thermodynamic system
N is really large, so we can approximate the factorials by the Stirling formula

(3.2) N ! ∼=
√

2πNNNe−N+1/12N+···

Some elementary math gives the Gaussian approximation for the binomial distri-
bution for large N :

(3.3) g(N,m) ∼= 2N

(
2
πN

) 1
2

e−2m2/N .

We will return to this system later on, but at this point we merely want to show
that for large N the distribution indeed becomes a very strongly peaked Gaussian
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distribution. The degeneracy of the states around m = 0 increases very rapidly,
for example g(50, 0) = 1.264 × 1014, but for N ≈ NA one has g(NA, 0) ∼= 101022

.
Roughly speaking because the width of the distribution grows with

√
N while the

peak height grows as 2N we see that the distribution strongly narrows with in-
creasing N . If we consider a situation where the total energy of the system is fixed
to be U = mµH then the a priori probability for finding it with that particular
energy is pm = 1/g(N,m). We will return to this example in the following section
to calculate the magnetisation of a spin system in thermal equilibrium.

3.3. The Maxwell-Boltzmann distribution. Maxwell and later Boltzmann de-
rived an expression for the probability distribution pi for a system in thermal equi-
librium, i.e. in thermal contact with a heat reservoir kept at a fixed temperature
T . For example, an equilibrium distribution function of an ideal gas without ex-
ternal force applied to it does not depend on either position or time, and thus can
only depend on the velocities of the individual particles. In general there are in-
teractions between the particles that need to be taken into account. A simplifying
assumption, that is well justified by probabilistic calculations, is that processes in
which two particles interact at once are much more common than those in which
three or more particles interact. If we assume that the velocities of two particles are
independent before they interact we can write their joint probability to have veloc-
ities v1 and v2 as a product of the probability for each particle alone. This implies
p(v1, v2) = p(v1)p(v2). The same holds after they interact: p(v

′
1, v

′
2) = p(v′1)p(v

′
2).

Clearly in equilibrium, where nothing can depend on time, the probability has to be
the same afterward, i.e. p(v1, v2) = p(v′1, v

′
2). How do we connect these conditions

before and after the interaction? A crucial observation is that there are conserved
quantities that are preserved during the interaction and the equilibrium distribu-
tion function can therefore only depend on those. Homogeneity and isotropy of
the distribution function selects the (conserved) energy of the particles as the only
function on which the distribution depends. The conservation of energy in this
situation boils down to the simple statement that 1

2mv
2
1 + 1

2mv
2
2 = 1

2mv
′
1
2 + 1

2mv
′
2
2.

From these relations Maxwell derived the well known thermal equilibrium velocity
distribution:

(3.4) p0(v) = n
( m

2πT

)3/2

e−mv2/2kT

The distribution is a Gaussian. As we saw, to derive it Maxwell had to make a
number of assumptions which were plausible but by no means truly fundamental.
Boltzmann generalized the result to include the effect of an external conservative
force, leading to the replacement of the kinetic energy in (3.4) by the total conserved
energy, which includes potential as well as kinetic energy.

Boltzmann’s generalization of Maxwell’s result makes it clear that the probability
distribution pi for a general system in thermal equilibrium is the famous Maxwell-
Boltzmann equilibrium distribution,

(3.5) pi = e−εi/T /Z .

Z is a normalization factor that ensures the conservation of probability, i.e.
∑

i pi =
1. This implies that

(3.6) Z ≡
∑

i

e−εi/T .
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Z is called the partition function. The Maxwell-Boltzmann distribution describes
the canonical ensemble, that is it applies to any situation where a system is in
thermal equilibrium and exchanging energy with its environment. This is in contrast
to the microcanonical ensemble, which applies to isolated systems where the energy
is constant, or the grand canonical ensemble, which applies to systems that are
exchanging both energy and particles with their environment.

To illustrate the power of the Boltzmann-Gibbs distribution let us briefly return
to the example of the thermal distribution of Ising spins on a lattice in an external
magnetic field. As we pointed out in section (3.2), the energy of a single spin is
±µH. According to the Boltzmann-Gibbs distribution, the probabilities of spin up
or spin down are

(3.7) p± =
e∓µH/T

Z
.

The spin antiparallel to the field has lowest energy and therefore is favored. This
leads to an average field dependent magnetization mH (per spin):

(3.8) mH =< µ >=
µp+ + (−µ)p−

p+ + p−
= µ tanh

uH

T
.

This example shows how statistical mechanics can be used to establish relations be-
tween macroscopic variables that cannot be obtained using thermodynamics alone.

3.4. Free energy revisited. In our discussion of thermodynamics we introduced
in section 2.2 the concept of the free energy F defined by equation 2.5, and argued
that it plays a central role for systems in thermal contact with a heat bath, i.e.
systems kept at a fixed temperature T . In the previous section we introduced the
concept of the partition function Z defined by equation 3.6. The importance of the
partition function Z goes well well beyond its role as a normalization factor, because
from the partition function all thermodynamic quantities can be calculated. The
free energy is of particular importance, because its functional form leads directly
to the definition of entropy in terms of probabilities. At this point it is therefore
possible to directly link the thermodynamical quantities to the ones defined in
statistical mechanics, by postulating the explicit relation between the free energy
and the partition function4,5:

(3.9) F = −T lnZ,

or alternatively Z = e−F/T . From this definition it is possible to calculate basically
all thermodynamical quantities for example using the equations (2.9). We now will
proceed to derive the appropriate expression for the entropy in statistical mechanics
from the previous equation.

4Once we have identified a certain macroscopic quantity like the free energy with a microscopic

expression, then of course the rest follows. Which expression is taken as the starting point for
the identification is quite arbitrary. The justification is a posteriori in that the well known
thermodynamical relations should be recovered, as far as that is actually possible (because the

technical problems that arise in realistic calculations for example if the system is not weakly
interacting and/or dilute can be quite formidable).

5Boltzmann’s constant k relates energy to temperature, it’s value in conventional units is
1.4× 10−23joule/sec. We have set it equal to unity, which amounts to choosing a convenient unit
for energy
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3.5. Gibbs entropy. From the definition of the free energy in equation (2.5) we
obtain that:

(3.10) S =
F − U
T

Now from (3.9) and (3.5) it follows that

(3.11) F = εi + T ln pi ,

while the equilibrium value for the internal energy is by definition given by

(3.12) U =< ε >≡
∑

i

εi pi

With these expressions for S, F and U , and furthermore recalling that
∑

i pi = 1,
we can rewrite the entropy in terms of the probabilities pi and arrive at the famous
expression for the entropy:

(3.13) S = −
∑

i

pi ln pi .

This expression is usually called the Gibbs entropy6.
In the special case where the total energy is fixed, the w different (accessible)

states all have equal a priori probability pi = p = 1/w. Substitution in the Gibbs
formula yields the expression in terms of the number of accessible states, originally
due to Boltzmann (and engraved on his tombstone):

(3.14) S = lnw

We emphasize the general and crucial feature of this expression, namely that the
entropy grows logarithmically with the number of accessible states7.

At this point we should already mention that for any system with states {ψi}
and a given probability distribution {pi}, the Gibbs expression can be considered
and turns out to be of great relevance. The formal definition of the amount of
information H that can be stored in such a system was introduced in the seminal
papers by Shannon [20] in direct analogy to the entropy S,

(3.15) H ≡ −
∑

i

pi log2 pi.

As we will extensively discuss in Section 5, this exact quantitative definition of infor-
mation and its applications transcend the limited origin and scope in conventional
thermodynamics and statistical mechanics.

4. Nonlinear dynamics

The present state of the system of nature is evidently a consequence of

what it was in the preceding moment, and if we conceive of an intelligence

which at a given instant comprehends all the relations of the entities of

this universe, it could state the respective position, motions, and general

6In quantum theory this expression is replaced by S = −Tr ρ ln ρ where ρ is the density matrix
of the system.

7These numbers can be overwhelmingly big. Imagine two macrostates of a system which

differ by 1 millicalory at room temperature: the difference in entropy would be given by ∆S =
−∆Q/T = 10−3/293 ≈ 10−5 the the ratio of the number of accessible states would be given by

w2/w1 = exp(∆S/k) ≈ exp(1018), a big number indeed.
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effects of all these entities at any time in the past or future.

Pierre Simon de Laplace (1776)

A very small cause which escapes our notice determines a considerable

effect that we cannot fail to see, and then we say that the effect is due

to chance.

Henri Poincaré (1903).

From a naive point of view, statistical mechanics seems to contradict the deter-
minism of Newtonian mechanics. Newton’s laws provide a set of differential equa-
tions which define a dynamical system φt, that maps any state x(0) (which is just
a vector of measured positions and velocities) into a future state x(t) = φt(x(0)).
This is completely deterministic. If as Laplace so famously asserted, mechanical
objects obey Newton’s laws, then why do we need to discuss perfect certainties in
statistical terms?

Laplace partially answered his own question:
. . . But ignorance of the different causes involved in the production of

events, as well as their complexity, taken together with the imperfection

of analysis, prevent our reaching the same certainty [as in astronomy]

about the vast majority of phenomena. Thus there are things that are

uncertain for us, things more or less probable, and we seek to compen-

sate for the impossibility of knowing them by determining their different

degrees of likelihood. So it is that we owe to the weakness of the human

mind one of the most delicate and ingenious of mathematical theories,

the science of chance or probability.

This answer is only partially right. As Poincaré later showed, even without hu-
man uncertainty (or quantum mechanics), when Newton’s laws give rise to chaotic
dynamics, we inevitably arrive at a probabilistic description of nature. Although
Poincaré discovered this in the course of studying the three body problem, stimu-
lated by his interest in the stability of solar system, the answer he found turns out
to have relevance for the reconciliation of the deterministic Laplacian universe and
statistical mechanics.

4.1. The ergodic hypothesis. As we mentioned in the previous section, one of the
key foundations in Boltzmann’s formulation of statistical mechanics is the ergodic
hypothesis. Roughly speaking, it is the hypothesis that a given trajectory will
eventually find its way through all the accessible microstates of the system, e.g. all
those that are compatible with conservation of energy. At equilibrium the average
length of time that a trajectory spends in a given region of the state space is
proportional to the number of accessible states the region contains. If the ergodic
hypothesis is true, then time averages equal ensemble averages, and equipartition
is a valid assumption.

The ergodic hypothesis proved to be highly controversial for good reason: It is
generally not true. The first numerical experiment ever performed on a computer
took place in 1947 at Los Alamos when Fermi, Pasta, and Ulam set out to test
the ergodic hypothesis. They simulated a system of masses connected by nonlinear
springs. They perturbed one of the masses, expecting that the disturbance would
rapidly spread to all the other masses and equilibrate, so that after a long time
they would find all the masses shaking more or less randomly. Instead they were
quite surprised to discover that the disturbance remained well defined – although
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it propagated through the system, it kept its identity, and after a relatively short
period of time the system returned very close to its initial state. They had in fact
discovered a phenomenon that has come to be called a soliton, a localized but very
stable travelling disturbance. There are many examples of nonlinear systems that
support solitons.

Clearly statistical mechanics a priori does not apply to such systems. Yet once
the system is well understood, i.e. the reasons for the extraordinary stability of the
collective phenomenon called solitons, it may be possible to incorporate it again
in some statistical mechanical treatment. Without going into detail one may for
example point out that many of systems which exhibit solitonic excitations, have
also very large numbers of (hidden) symmetries leading to many conservation laws
beyond the usual ones, and these are of course causing restrictions on the time
evolution of the system from a given initial state (think of the role that energy
conservation plays). The time evolution of the system then has to obey many
hidden constraints leading to a severe restriction on which parts of phase space can
be visited.

There are in fact many examples where we know that statistical mechanics works
extremely well. There are a few cases, involving idealized models such as the hard
sphere gas, where the ergodic hypothesis can actually be proved. But more typically
this is not the case. The evidence for statistical mechanics is largely empirical: we
know that it works, at least to a very high degree of approximation. But even when
it works, there is a considerable body of lore suggesting that the ergodic hypothesis
is too strong, and is not strictly true. While trajectories may wander in more or
less random fashion around the accessible phase space, they can be blocked from
entering certain regions by what are called KAM (Kolomogorov-Arnold-Moser) tori.
On KAM tori trajectories make regular motions, and are not chaotic. Furthermore,
such trajectories are trapped on the KAM tori, which has a lower dimension than
the full accessible phase space. Nonetheless, via mechanisms that are still not well
understood, in most circumstances, with sufficiently abitrary nonlinearities, as the
number of degrees of freedom increases (e.g. because it contains more particles),
KAM tori become less important. The ergodic hypothesis becomes an increasingly
better approximation, a typical single trajectory can reach almost all accessible
states, and equipartition becomes a good assumption. The necessary and sufficient
conditions for this remain an active field of research.

4.2. Chaos and limits to prediction. The discovery of chaos makes it clear that
Boltzmann’s use of probability is even more justified than he realized. When motion
is chaotic, two infinitesimally nearby trajectories separate at an exponential rate.
This is a geometric property of the nonlinear dynamics. From a linear point of view
the dynamics are locally unstable. To make this precise, consider twoN dimensional
initial conditions x(0) and x′(0) that are initially separated by an infinitesimal
vector δx(0) = x(0) − x′(0). Providing the dynamical system is differentiable, the
separation will grow as

(4.1) δx(t) = Dφt(x(0))δx(0),

where Dφt(x(0)) is the derivative of the dynamical system φt evaluated at the
initial condition x(0). For any fixed time t and initial condition x(0), Dφt is just
an N × N matrix, and this is just a linear equation. If the motion is chaotic the
length of the separation vector δx will grow exponentially with t in at least one
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direction, as shown in Figure 3. Nonetheless, at the same time the motion can

Figure 3. Divergence of nearby trajectories is the underlying rea-
son chaos leads to unpredictability. A perfect measurement would
correspond to a point in the state space, but any real measure-
ment is inaccurate, generating a cloud of uncertainty. The true
state might be anywhere inside the cloud. As shown here for the
Lorenz equations (a simple system of three couple nonlinear differ-
ential equations [?]), the uncertainty of the initial measurement is
represented by 10,000 red dots, initially so close together that they
are indistinguishable; a single trajectory is shown for reference in
light blue. As each point moves under the action of the equations,
the cloud is stretched into a long, thin thread, which then folds
over onto itself many times, until the points are mixed more or less
randomly over the entire attractor. Prediction has now become
impossible: the final state can be anywhere on the attractor. For
a regular motion, in contrast, all the final states remain close to-
gether. We can think about this in information theoretic terms; for
a chaotic motion information is initially lost at a linear rate which
eventually results in all the information being lost – for a regular
motion the information loss is relatively small. The numbers above
the illustration are in units of 1/200 of second.

be globally stable, meaning that it remains contained inside a finite volume in the
phase space. This is achieved by stretching and folding – the nonlinear dynamics
knead the phase space through local stretching and global folding, just like a baker
making a loaf of bread. Two trajectories that are initially nearby may later be
quite far apart, and still later, may be close together again. This property is called
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mixing. More formally, the dynamics are mixing over a given set S and invariant
measure8 µ with support S such that for any subsets A and B

(4.2) lim
t→∞

φtB ∩A = µ(A)µ(B).

Intuitively, this just means that B is smeared throughout S by the flow, so that
the probability of finding a point originating in B inside of A is just the original
probability of B, weighted by the probability of A. Geometrically, this happens
if and only if the future trajectory of B is finely “mixed” throughout S by the
stretching and folding action of φt.

Mixing implies ergodicity, so any dynamical system that is mixing over S will
also be ergodic on S. It only satisfies the ergodic hypothesis, however, if S is the
set of accessible states. This need not be the case. Thus, the fact that a system has
orbits with chaotic dynamics doesn’t mean that it necessarily satisfies the ergodic
hypothesis – there may be still be subsets of finite volume in the phase space that
are stuck making regular motion on KAM tori.

Nonetheless, chaotic dynamics has strong implications for statistical mechanics.
If a dynamical system is ergodic but not mixing9, by measuring the microstates it
is in principle possible to make detailed long range predictions by measuring the
position and velocity of all its microstates, as suggested by Laplace. In contrast, if
it is mixing then even if we know the initial values of the microstates at a high (but
finite) level of precision, all this information is asymptotically lost, and statistical
mechanics is unavoidable.

4.3. Quantifying predictability. Information theory can be used to quantify pre-
dictability. To begin the discussion, consider a measuring instrument with a uniform
scale of resolution ε. For a ruler, for example, ε is the distance between adjacent
graduations. If such a measuring instrument is assigned to each of the N real vari-
ables in a dynamical system, the graduations of these instruments induce a partition
Π of the phase space, which is a set of non-overlapping N dimensional cubes, la-
beled Ci, which we will call the outcomes of the measurement. A measurement
determines that the state of the system is in a given cube Ci. If we let transients
die out, and restrict our attention to asymptotic motions without external pertur-
bations, let us assume the motion is confined to a set S (which in general depends
on the initial condition). We can then compute the asymptotic probability of a
given measurement by measuring its frequency of occurrence pi, and if the motion
is ergodic on S, then we know that there exists an invariant measure µ such that
pi = µ(Ci). To someone who knows the invariant measure µ but knows nothing
else about the state of the system, the average information that will be gained in
making a measurement is just the entropy

(4.3) I(ε) = −
∑

i

pi log pi.

We are following Shannon in calling this “information” since it represents the el-
ement of surprise in making the measurement. The information is written I(ε) to

8A measure is invariant over a set S with respect to the dynamics φt if it satisfies the condition
µ(A) = µ(φ−t(A)), where A is any subset of S. There can be many invariant measures, but the

one that we have in mind throughout is the one corresponding to time averages.
9A simple example of a system that is ergodic but not mixing is a dynamical system whose

solution is the sum of two sinusoids with irrationally related frequencies.
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emphasize its dependence on the scale of resolution of the measurements. This can
be used to define a dimension for µ. This is just the asymptotic rate of increase of
the information with resolution, i.e.

(4.4) D = lim
ε→0

I(ε)
| log ε|

.

This is often called the information dimension [?]. Note that this reduces to what
is commonly called the fractal dimension when pi is sufficiently smooth, i.e. when∑

i pi log pi ≈ log n, where n is the number of measurement outcomes with nonzero
values of pi.

This notion of dimension can be generalized by using the Renyi entropy Rα

(4.5) Rα =
1

1− α
log

∑
i

pα
i

where α ≥ 0 and α 6= 1. The value for α = 1 is defined by taking the limit as
α → 1, which reduces to the usual Shannon entropy. By replacing the Shannon
entropy by the Renyi entropy it is possible to define a generalized dimension dα.
This contains the information dimension in the special case α = 1. This has proved
to be very useful in the study of multifractal phenomena (fractals whose scalings
are irregular). We will say more about the use of such alternative entropies in the
next section.

The discussion so far has concerned the amount of information gained by an
observer in making a single, isolated measurement, i.e. the information gained in
taking a “snapshot” of a dynamical system. We can alternatively ask how much
new information is obtained per unit time by an observer who is watching a movie
of a dynamical system. In other words, what is the information acquisition rate of
an experimenter who makes a series of measurements to monitor the behavior of a
dynamical system? For a regular dynamical system (to be defined more precisely
in a moment) new measurements asymptotically provide no further information in
the limit t → ∞. But if the dynamical system is chaotic, new measurements are
constantly required to update the knowledge of the observer in order to keep the
observer’s knowledge of the state of the system at the same resolution.

This can be made more precise as follows. Consider a sequence of m measure-
ments (x1, x2, . . . , xm) = Xm, where each measurement corresponds to observing
the system in a particular N dimensional cube. Letting p(Xm) be the probability
of observing the sequence Xm, the entropy of this sequence of measurements is

(4.6) Hm = −
∑

i

p(Xm) log p(Xm)

We can then define the information acquisition rate as

(4.7) h = lim
m→∞

Hm

m∆t
.

∆t is the sampling rate for making the measurements. Providing ∆t is sufficiently
small and other conditions are met, h is equal to the metric entropy, also called the
Kolmogorov-Sinai (KS) entropy10. Note that this is not really an entropy, but an

10In our discussion of metric entropy we are sweeping many important mathematical formalities

under the rug. For example, to make this definition precise we need to take a supremum over all
partitions and sampling rates. Also, it is not necessary to make the measurements in N dimensions

– there typically exists a one dimensional projection that is sufficient, under an optimal partition
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entropy production rate, which (if logs are taken to base 2) has units of bits/second.
If h > 0 the motion is chaotic, and if h = 0 it is regular. Thus, when the system
is chaotic, the entropy Hm contained in a sequence of measurements continues to
increase even in the limit the sequence becomes very long. In contrast, for a regular
motion this reaches a limiting value.

Although we have so far couched the discussion in terms of probabilities, the
metric entropy is determined by geometry. The average rates of expansion and
contraction in a trajectory of a dynamical system can be characterized by the
spectrum of Lyapunov exponents. These are defined in terms of the eigenvalues
of Dφt, the derivative of the dynamical system, as defined in equation 4.1. For a
dynamical system in N dimensions, let the N eigenvalues of the matrix Dφt(x(0))
be αi(t). Because Dφt is a positive definite matrix, the αi are all positive. The
Lyapunov exponents are defined as λi = limt→∞ logαi(t)/t. To think about this
more geometrically, imagine an infinitesimal ball that has radius ε(0) at time t = 0.
As this ball evolves under the action of the dynamical system it will distort. Since
the ball is infinitesimal, however, it will remain an ellipsoid as it evolves. Let
the principal axes of this ellipsoid have length εi(t). The spectrum of Lyapunov
exponents for a given trajectory passing through the initial ball is

(4.8) λi = lim
t→∞

lim
ε(0)→0

1
t

log
εi(t)
ε(0)

.

For an N dimensional dynamical system there are N Lyapunov exponents. The
positive Lyapunov exponents λ+ measure the rates of exponential divergence, and
the negative ones λ− the rates of convergence. They are related to the metric
entropy by Pesin’s theorem

(4.9) h =
∑

i

λ+
i .

In other words, the metric entropy is the sum of the positive Lyapunov exponents,
and it corresponds to the average exponential rate of expansion in the phase space.

Taken together the metric entropy and information dimension can be used to
estimate the length of time that predictions remain valid. The information di-
mension allows an estimate to be made of the information contained in an initial
measurement, and the metric entropy estimates the rate at which this information
decays.

As we have already seen, the metric entropy tells us the information gained in
each measurement in a series of measurements. But if each measurement is made
with the same precision, the information gained must equal the information that
would have been lost had the measurement not been made. Thus the metric entropy
also quantifies the initial rate at which knowledge of the state of the system is lost
after a measurement.

To make this more precise, let pij(t) be the probability that a measurement at
time t has outcome j if a measurement at time 0 had outcome i. (Or another
words, given the state was measured in partition element Ci at time 0, what is the
probability it will be in partition element Cj at time t?). By definition pij(0) = 1
if i = j and pij(0) = 0 otherwise. With no initial information, the information
gained from the measurement is determined solely by the asymptotic measure µ,
and is − logµ(Cj). In contrast, if Ci is known the information gained on learning
outcome j is − log pij(t). The extra information using a prediction from the initial
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data is the difference of the two or log(pij(t)/µ(Cj)). This must be averaged over
all possible measurements Cj at time t, and all possible initial measurements Ci.
The measurements Cj are weighted by their probability of occurrence pij(t), and
the initial measurements are weighted by µ(Ci). This gives

(4.10) I(t) =
∑
i,j

µ(Ci)pij(t) log(
pij(t)
µ(Cj)

).

It can easily be shown that in the limit where the initial measurements are made
arbitrarily precise, I(t) will initially decay at a linear rate, whose slope is equal to
the metric entropy. For measurements with signal to noise ratio s, i.e. with log s ≈
| log ε|, I(0) ≈ DI log s. Thus I(t) can be approximated as I(t) ≈ DI log s−ht, and
the initial data becomes useless after a characteristic time τ = (DI/h) log s.

5. About Entropy

In this section we will discuss various aspects of entropy, its relation with informa-
tion theory and the sometimes confusing connotations of order, disorder, ignorance
and incomplete knowledge. A derivation of the second law using the procedure
called coarse graining is presented. The extensivity or additivity of entropy is con-
sidered in some detail, also when we discuss nonstandard extensions of the definition
of entropy.

5.1. Entropy and information. The important innovation Shannon made was
to show that the relevance of the concept entropy considered as a measure of infor-
mation, was not restricted to thermodynamics, but could be used in any context
where probabilities can be defined. He applied it to problems in communication
theory and showed that it can be used to compute a bound on the information
transmission rate using an optimal code.

When using entropy in information theory it is common to take logarithms in
base two, and to drop the Boltzmann constant11. Base two is a natural choice when
dealing with binary numbers, and the units of entropy in this case are called bits;
in contrast, when using the natural logarithm the units are called nats, with the
conversion that 1 nat =1.443 bits) . For example a memory consisting of 5 bits
(which is the same as a system of 5 Ising spins), has N = 25 states. Without further
restrictions all of these states (messages) have equal probability i.e. pi = 1/N so
that the information content is H = −N 1

N log2
1
N = log2 25 = 5 bits. Similarly,

the naive information content of a DNA-molecule with 10 billion base pairs, each
of which can be one of four combinations (A-T,C-G,T-A,G-C) can a priori be in
any of 41010

configurations, the information becomes H = 2 × 1010 bits. The
logarithmic nature of the definition is almost unavoidable if one wants the additive
property of information under the addition of bits. If in the previous spin example
we add another string of 3 bits then the total number of states is N = N1N2 =
25 × 23 = 28 from which it also follows that H = H1 +H2 = 8. If we add extra ab
initio correlations or extra constraints the information will decrease, we reduce the
number of independent configurations and consequently H will be smaller.

One of the most important results that Shannon gave was to show that the choice
of the Gibbs form of entropy is not arbitrary, even in an arbitrary context. Both
Shannon and Khinchin [12] proved that if one wants certain conditions to be met

11In our convention k=1, so H = S/ ln 2.
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by the entropy function then this is the unique choice. The fundamental conditions
as specified by Khinchin are:

(1) For a given n and
∑n

i=1 pi = 1, the required function H(p1, ...pn) is maxi-
mal for all pi = 1/n.

(2) The function should satisfy H(p1, ...pn, 0)H(p1, ...pn). the inclusion of an
impossible event should not change the value of H.

(3) If A and B are two finite sets of events, not necessarily independent, the
entropy H(A,B) for the occurrence of joint events A and B shall be the
entropy for the set A alone plus the weighted average of the conditional
entropy Hi(B) for B given the occurrence of the ith event in A,

(5.1) H(A,B) = H(A) +
∑

i

piHi(B)

where event Ai occurs with probability pi.
The important result is that given these conditions the function H (eqn. 3.15) is the
unique solution. Shannon’s key insight was that the results of Boltzmann and Gibbs
in explaining entropy in terms of statistical mechanics had unintended and profound
side-effects, with a broader and more fundamental meaning that transcended their
physical origin of entropy. The importance of the abstract conditions formulated by
Shannon and Khinchin show the very general context in which the Gibbs-Shannon
function is the unique answer. Later on we will pose the question of whether there
are situations in physics c.q. information theory, where not all three conditions have
to be imposed, leading to alternative expressions for the entropy (or information).

5.2. The entropy as a relative concept.
Irreversibility is a consequence of the explicit introduction of ignorance into the

fundamental laws.

M. Born

There is a surprising amount of confusion about the interpretation and meaning
of the concept of entropy [7, 3]. To what extent is the “entropic principle” just an
“anthropocentric principle”? That is, does entropy depend only on our perception,
or is it something more fundamental? Is it a subjective attribute in the domain of
the observer or is it an intrinsic property of the physical system we study? Let us
consider the common definition of entropy as a measure of disorder. This definition
can be confusing unless we are careful in spelling out what we mean by order or
disorder. For instance, consider the crystallization of a supercooled liquid. Assume
a closed system, where no energy is exchanged with the environment. Initially the
molecules of the liquid are free to randomly move about, but then (often through
the addition of a small perturbation that breaks the symmetry) the liquid crystal-
lizes, the liquid turns into a solid, and the molecules get pinned to the sites of a
regular lattice. From one point of view, this a splendid example of creation of order
out of chaos. Yet from standard calculations in statistical mechanics we know that
the entropy increases during crystallization. This is because what meets the eye
is only part of the story. During crystallization entropy is generated in the form
of latent heat, which is stored in the vibrational modes of the crystal. Thus, even
though in the crystal the individual molecules are constrained to be roughly in a
particular location, they randomly vibrate around their lattice sites more energeti-
cally than when they were free to wander. From a microscopic point of view there
are more accessible states in the crystal than there were in the liquid, and thus the
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entropy increases. The thermodynamic entropy is indifferent to whether motions
are microscopic or macroscopic – it only counts the number of accessible states and
their probabilities.

In contrast, to measure the sense in which the crystal is more orderly, we must
measure a different set of probabilities. To do this we need to define probabilities
that depend only on the positions of the particles and not on their velocities. To
make this even more clear-cut, we can also use a more macroscopic partition, large
enough so that the thermal motions of a molecule around its lattice site tend to
stay within the same partition element. The entropy associated with this set of
probabilities, which we might call the “spatial order entropy”, will behave quite
differently from the thermodynamic entropy. For the liquid, when every particle
is free to move anywhere in the container, the spatial order entropy will be high,
essentially at its largest possible value. After the crystallization occurs, in contrast,
the spatial order entropy will drop dramatically. Of course, this is not the ther-
modynamic entropy, but rather an entropy that we have designed to quantitatively
capture the aspect of the crystalline order that we intuitively perceive.

As we emphasized before, Shannon’s great insight was that it is possible to
associate an entropy with any set of probabilities. However, the example just given
illustrates that when we use entropy in the broader sense of Shannon we must
be very careful to specify the context of the problem. Shannon entropy is just a
function that reduces a set of probabilities to a number, reflecting how many nonzero
possibilities there are as well as the extent to which the set of nonzero probabilities
is uniform or concentrated. Within a fixed context, a set of probabilities that is
smaller and more concentrated can be interpreted as more “orderly”, in the sense
that fewer numbers are needed to specify the set of possibilities. Thermodynamics
dictates a particular context – we have to measure probabilities in the full state
space. Thermodynamic entropy is a special case of Shannon entropy. In the more
general context of Shannon, in contrast, we can measure probabilities however we
want, depending on what we want to do. But to avoid confusion we must always
be careful to keep this context in mind, so that we know what our answer means.

5.3. The Gibbs paradox. Another aspect of the debate on the interpretation of
entropy goes back to the very origins of thermodynamics as for example in the
’Gibbs paradox’. In its simplest form it concerns the mixing of ideal gases (kept
at the same temperature and pressure) after removing a partitioning in a gas con-
tainer. If the gases on both sides of the partition are different the gases will mix
after the partition is removed and because this is an irreversible process the entropy
will increase. However, if the gases would have been identical, the partition could
be placed back, the system would return to the same situation and the change in
entropy would jump to zero. Maxwell imagined the situation where the gases were
initially supposed to be identical, and only later recognized to be different, in one
case one would have no mixing and in the other there would be. In the one case
removing the partitioning would be reversible and in the other not, leading to differ-
ent results for the total entropy. This reasoning led to the uncomfortable conclusion
that the notion of irreversibility and entropy would depend on our knowledge. He
concluded that the entropy would thus depend on the state of mind of the experi-
menter and therefore lacked an objective ground. The early accounts of Gibbs and
others also echo this subjectivity judgement, talking about “imperfect knowledge
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of the system” reflecting “ignorance”. On the other hand one could hardly main-
tain that more knowledge about the system would actually change the course of
(physical) events. This fierce debate about whether the statistical nature of our
observations was a reflection of the way nature works or just of our imperfect way
of dealing with it, our methodology, is still lingering on. The would be “subjectiv-
ity” of the notion entropy as a consequence of our incompleteness of knowledge still
has its proponents. Others, from a more pragmatic point of view, have made the
in our view relevant remark that the notion of entropy depends certainly on what
macroscopic constraints are put on the system, and as the formula’s for entropy
show: if we release some constraints that means that the number of accessible states
increases and the entropy will increase and if we add constraints the entropy will
be smaller. So entropy does not talk about what we know, but rather about what
we (can) impose, what the precise physical context is [11].

In the end it all boils down to the crucial question on what physical characteristics
(labels) are assigned to the different degrees of freedom making up the system. This
has very much to do with the actual modelling of the system and to what extend the
micro states are distinguishable12. Macroscopic measurements and manipulations
may or may not be able to distinguish these microscopic features in which case the
analysis has to be adapted appropriately (the atoms may or may not have color,
carry electric charge or magnetic spins).

We conclude that the adequate definition of entropy reflects the objective physi-
cal constraints we put on the system, these have nothing to with our lack of knowl-
edge. The ’incompleteness of our knowledge’ is an exact and objective reflection
of a particular set of macroscopic constraints deliberately imposed on the physical
system we want to describe. The system’s behavior depends on these constraints
as does the calculated and measured entropy.

5.4. Adding the entropy of subsystems. We have mentioned the property that
entropy is an extensive quantity. Generally speaking the extensivity of entropy
means that it has to satisfy the fundamental linear scaling property:

(5.2) S(T, qV, qN) = qS(t, V,N), 0 < q <∞
Extensivity translates in additivity of entropies: if we combine two noninteracting
(sub)systems (labelled 1 and 2) with entropies S1 and S2, then the total number
of states will just be the product of those of the individual systems and taking the
logarithm, the entropy of the total system S becomes:

(5.3) S = S1 + S2.

Applying this to two spin systems without an external field, the number of states
of the combined system is w = 2N1+N2 , we clearly have w = w1 w2 and taking the
logarithm establishes the additivity of entropy.

However if we allow for a nonzero magnetic field, this result is no longer obvious
and requires some more calculation. In Section 3.2 we calculated the number of
configurations with a given energy εk = −kµH as g(N, k). If we now allow two
systems to exchange energy but keep the total energy fixed, then this generates a

12The complete resolution of Gibbs’ paradox involved the essential quantum mechanical feature
of many body systems that identical particles are indistinguishable. For example, there is no such

thing as labelling individual electrons, i.e. there is only one state describing a system of N electrons

different occupying N different one electron states. This introduces a crucial factor N! compared
to the “classical” expressions which gave rise to the inconsistencies.
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dependence between the two systems and it is not instantly clear what will happen
to the total entropy after equilibrium has established itself. Strictly speaking this
simple example will show that the extensivity of entropy is not self evident and
should be considered as an additional requirement on the theory, which may or
may not give an adequate description of physical situation in some given context.

Let the number of spins pointing up in system 1 be k1 and the number of particles
be N1, and similarly let this be k2 and N2 for system 2. The total energy k = k1+k2

is conserved, but the energy in either subsystem (k1 and k2) is not conserved. The
total number of spins, N = N1 + N2 is fixed, and so are the spins (N1 and N2)
in either subsystem. Because the systems only interact when the number of up
spins in one of them (and hence also the other one) changes, we can write the total
number of states for the combined system as

(5.4) g(N, k) =
∑
k1

g1(N1, k1)g2(N2, k2),

where we are taking advantage of the fact that as long as k1 is fixed, systems
one and two are independent. Taking the log of the above formula clearly does
not lead to the additivity of entropies because we have to sum over k1. This
little calculation illustrates the remark made before, that since we have relaxed
the constraint that each system had a fixed energy to the condition that only the
sum of their energies is fixed, the number of accessible states for the total system
is increased (the subsystems themselves are no longer closed) and therefore the
entropy will increase.

Let us now indicate that extensivity or better additivity of entropy is recovered
in the thermodynamic limit in the above example: the conclusion depends on the
large sizes of the systems. Let us consider the contributions to the sum in (5.4) as
a function of k1 where the maximal term corresponds say to k1 = k̂1 We can now
write the contribution in the sum where k1 deviates an amount δ from k̂1 as,

(5.5) ∆g(N, k) = g1(N1, k̂1 + δ)g2(N2, k̂2 − δ) = f(δ)g1(N1, k̂1)g2(N2, k̂2) ,

where the correction factor can be calculated by expanding the g function in the
terms around their respective k̂ values. It turns out that f is on the order of
f ∼ exp(−2δ2) so that the contributions to g(N, k) of the nonmaximal terms in the
sum (5.4) are exponentially suppressed. Apparently, in the limit that the number
of particles goes to infinity we obtain that entropy is again an additive quantity.
This exercise shows also that when a system gets large we may replace the averages
of a quantity by its value in the most probable configuration, as our intuition would
have suggested. From a mathematical point of view this result follows from the fact
that the binomial distribution approaches a gaussian for large values of N.

The general statement is as follows. When two subsystems interact, it is cer-
tainly possible that the entropy of one decreases at the expense of the other. This
can happen, for example because system one does work on system two, so the en-
tropy of system one goes up while that of system two goes down. This is very
important for living systems, which collect free energy from their environment and
expel heat energy as waste. Nonetheless, the total entropy S of an organism plus its
environment still increases, and in fact so would have the sum of the independent
entropies of the non interacting subsystems. That is, if at time zero

(5.6) S(0) = S1(0) + S2(0) ,
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then at time t it may be true that

(5.7) S(t) ≤ S1(t) + S2(t) ,

This is due to the fact that only interactions with other parts of the system can
lower the entropy of a given subsystem. In such a situation we are of course free
to call the difference between the entropy of the individual systems and their joint
entropy a negative correlation entropy. However, despite this apparent decrease of
entropy, we should keep in mind that both the total entropy and the sum of the
individual entropies can only increase, i.e.

S(t) ≥ S(0)(5.8)
S1(t) + S2(t) ≥ S1(0) + S2(0).

The point here is thus that equations (5.7) and (5.8) are not in conflict.

5.5. The maximal entropy principle of Jaynes.
The statistical practice of physicists has tended to lag about 20 years behind

current developments in the field of basic probability and statistics.

E.T. Jaynes (1963)

There are two equivalent sets of postulates that can be used as a foundation to
derive an equilibrium distribution in statistical mechanics. One is to begin with the
hypothesis that equilibrium corresponds to a minimum of the free energy, and the
other is that it corresponds to a maximum of the entropy. The latter approach is a
relatively modern development. Inspired by Shannon, Jaynes turned the program
of statistical mechanics upside down [10]. Starting from a very general set of axioms
he showed that under the assumption of equilibrium the Gibbs expression for the
entropy is unique. Under Jaynes’ approach, any problem in equilibrium statistical
mechanics is reduced to finding the set of pi for which the entropy is maximal, under
a set of constraints that specify the macroscopic conditions, which may come from
theory or may come directly from observational data [9]. This variational approach
removes some of the arbitrariness that was previously present in the foundations
of statistical mechanics. The principle of maximum entropy is very simple and has
broad application. For example if one maximizes S only under the normalization
condition

∑
i pi = 1, then one finds the unique solution that pi = 1/N with N

the total number of states. This is the uniform probability distribution underlying
the equipartition principle. Similarly, if we now add the constraint that energy is
conserved, i.e.

∑
i εipi = U , then the unique solution is given by the Maxwell-

Boltzmann distribution, eqn (3.5). Choosing the maximum entropy principle as a
starting point shows that a clear separation should be made between the strictly
physical input of the theory and purely probabilistic arguments.

The maximal entropy formalism has a much wider validity than just statisti-
cal mechanics. It is widely used for statistical inference in applications such as
optimizing data transfer and statistical image improvement. In these contexts it
provides a clean answer to the question, “given the constraints I know about in the
problem, what is the model that is as random as possible (i.e. minimally biased)
subject to these constraints?”. A common application is missing data: Suppose
one observes a series of points xi at regular time intervals, but that somehow some
of these observations are missing. By treating the known points as constraints, one
can ask for the distribution of the value of the missing points that maximizes the
entropy, subject to these constraints.
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One must always bear in mind, however, that in physics the maximum entropy
principle only implies to equilibrium situations, which are only a small subset of
the problems in physics. For systems that are not in equilibrium one must take a
different approach. Attempts to understand non-equilibrium statistical mechanics
have led some researchers to explore the use of alternative notions of entropy, as
discussed in Section 5.9.

5.6. Ockham’s razor.
Entia non sunt multiplicanda praeter neccessitatem

( Entities should not be introduced except when strict necessary))

William van Ockham (1285-1347)

Another interesting and important application of information is to “Ockham’s
razor”. This principle states that if two models have equal predictive power, the
simplest model is preferable. While this seems like something we can probably all
agree on, real problems are typically not this easy, since while model A may have
more parameters than model B, it may also fit the data better. In trying to find
a model that is most likely to generalize to data that has not been seen, how does
one trade off goodness of fit against number of parameters? Building on earlier
work of Akaike, Rissenen introduced a framework to think about this problem in
information theoretic terms [?, ?]. The basic idea is to treat the deviations between
the model and the data as probabilistic events. A model that gives a better fit has
less deviation from the data, and hence implies a tighter probability distribution,
which translates into a lower entropy. This entropy is then added to the information
needed to specify the parameters. A model with lots of parameters will have more
information. The best model is the one with the lowest sum. By characterizing
the goodness of fit in terms of bits, this approach puts the complexity of the model
and the goodness of fit on the same footing, and gives the correct tradeoff between
goodness of fit and model complexity, so that the quality of any two models can be
compared. This shows how at some level the concept of entropy underlies the whole
scientific method, and indeed, our ability to make sense out of the world. Everytime
we make a correct judgement about a pattern in the world, we have correctly made
a tradeoff between overfitting (fitting every bump even if it is a random variation)
and overgeneralization (identifying events that really are different). Even if we do
not make the accounting between model complexity perfectly, when we discover and
model regularities in the world, we are implicitly relying on a model selection process
of this type, and are intuitively making a judgment trading off the information
needed to specify the model and the entropy of the fit of the model to the world.

5.7. Coarse graining and irreversibility.
Our aim is not to ‘explain irreversibility’ but to describe and predict the ob-

servable facts. If one succeeds in doing this correctly, from first principles, we

will find that philosophical questions about the ’nature of irreversibility’ will

either have been answered automatically or else will be seen as ill considered

and irrelevant.

E.T. Jaynes

The second law of thermodynamics says that for a closed system the entropy will
increase until it reaches its equilibrium value. This corresponds to the irreversibility
we all know from daily experience. If we put a drop of ink in a glass of water the
drop will diffuse through the water and dilute until the ink is uniformly spread
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through the water. The increase of entropy is evident in the fact that the ink is
initially in a small region (with pi = 0 except for this region, leading to a probability
distribution concentrated on a small region of space and hence a low entropy). The
system will not return to its original configuration. Although this is not impossible
in principle, it is so improbable that it will never be observed13.

This irreversibility is hard to understand from the microscopic point of view
because the microscopic laws of nature that determine the time evolution of any
physical system on the fundamental level are all symmetric under time reversal.
That is, the microscopic equations of physics, such as F = ma, are unchanged
under the substitution t → −t. How can irreversibility arise on the macroscopic
level if it has no counterpart on the microscopic level?

In fact, if we compute the entropy at a completely microscopic level it is con-
served, which seems to violate the second law of thermodynamics. This follows
from the fact that momentum is conserved, which implies that volumes in phase
space are conserved. This is called Liouville’s theorem which in turn implies that
the entropy S is conserved. This doesn’t depend on the use of continuous variables
– it only depends on applying the laws of physics at the microscopic level. It re-
flects the idea of Laplace, which can be interpreted as a statement that statistical
mechanics wouldn’t really be necessary if we could only measure and track all the
little details.

The ingenious argument that Gibbs used to get around this, and thereby to
reconcile statistical mechanics with the second law of thermodynamics, was to in-
troduce the notion of coarse graining. This procedure corresponds to a systematic
description of what we could call “zooming out”. As we have already mentioned,
this zooming out involves dividing phase space up in finite regions δ according to
a partition Π. Suppose, for example, that at a microscopic level the system can
be described by discrete probabilities pi for each state. Let us start with a closed
system in equilibrium, ie we have a uniform distribution over the accessible states.
For the Ising system, for example, pi = 1/g(N, i) is the probability of particular
configuration of spins. Now we replace in each little region δ the values of pi by its
average value p̄i over δ:

(5.9) p̄i ≡
1
δ

∑
i∈δ

pi,

and consider the associated coarse grained entropy

(5.10) S̄ ≡ −
∑

i

p̄i ln p̄i.

At time t = 0 we have per definition that S(0) = S̄(0). Next we change the situation
by removing a constraint of the system so that it is no longer in equilibrium. In other

13“Never say never” is a saying of unchallenged wisdom. What we mean here by “never”, is

inconceivably stronger then “never in a lifetime”, or even “never in the lifetime of the universe”.
Let’s make a rough estimate: consider a dilute inert (say helium) gas that fills the left half of a

container of volume V . Then we release the gas in the full container and ask what the recurrence
time would be, i.e. how long it would take before all particles would be in left half again. A
simple argument giving a reasonable estimate, would be as follows. At any given instant the

probability for a given particle to be in the left half is 1/2, but since the particles are independent,

the probability of N ∼ NA particles to be in the left half is P = (1/2)10
23 ≈ 10(−1020). The time

estimate is then given τ0/P = 101017
sec, where τ0 is some typical time scale in the system (here

we took 1 milisec.).
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words we enlarge the space of accessible states but choose as an initial condition that
the probabilities are zero for the new states. We can then compare the evolution of
the fine-grained entropy S(t) and the coarse-grained entropy S̄(t). The evolution
of S(t) is governed by the reversible microscopic dynamics and therefore it stays
constant, so that S(t) = S(0). To study the evolution of the coarse-grained entropy
we can use a few simple mathematical tricks. First, note that because p̄i is constant
over each region with δ elements,

(5.11) S̄(t) =
∑

i

p̄i ln p̄i =
∑

i

pi ln p̄i

Then we may write

(5.12) S̄(t)− S̄(0) =
∑

i

pi(ln pi − ln p̄i) =
∑

i

pi ln
pi

p̄i
=

∑
i

p̄i(
pi

p̄i
ln
pi

p̄i
)

The mathematical inequality x lnx ≥ (x− 1) implies that

(5.13) S̄(t)− S̄(0) ≥
∑

i

pi −
∑

i

p̄i = 1− 1 = 0

The equal sign only occurs if pi/p̄i = 1 throughout, so except for the special case
where this is true, this is a strict inequality and the entropy increases. We see how
the second law is obtained as a consequence of coarse graining.

The second law describes mathematically the irreversibility we witness when
somebody blows smoke in the air. Suppose we make a film of the developing smoke
cloud. If we film the movie at an enormous magnification, so that what we see are
individual particles whizzing back and forth, it will be impossible to tell which way
the movie is running – from a statistical point of view it will look the same whether
we run the movie forward or backward. But if we film it at a normal macroscopic
scale of resolution, the answer is immediately obvious – the direction of increasing
time is clear from the diffusion of the smoke from a well-defined thin stream to a
diffuse cloud.

From a philosophical point of view one should ask to what extent coarse graining
introduces an element of subjectivity into the theory. One could object that the
way we should coarse grain is not decided upon by the physics but rather by the
person who performs the calculation. The key point is that, as in so many other
situations in physics, we have to use some common sense, and distinguish between
observable and unobservable quantities. Entropy does not increase in the highly
idealized classical world that Laplace envisioned, as long as we can observe all the
microscopic degrees of freedom and there are no chaotic dynamics. However, as soon
as we violate these conditions and observe the world at a finite level of resolution
(no matter how accurate), chaotic dynamics ensures that we will lose information
and entropy will increase. While the coarse graining may be subjective, this is not
surprising – measurements are inherently subjective operations. The important
point is that in the limit where the coarse graining is sufficiently fine, the results
are independent of it. The increase of entropy is an invariant that will be the same
for any sensible coarse graining.

A closely related point is that a system is never perfectly closed – there are
always small perturbations from the environment that act as a stochastic pertur-
bation of the system, thereby continuously smearing out the actual distribution
in phase space and simulating the effect of coarse graining. Coarse graining cor-
rectly captures the fact that entropy is a measure of our uncertainty; the fact that
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this uncertainty does not exist for regular motions and perfect measurements is
not relevant to most physical problems. Surprisingly this point has not been fully
understood by many authors, even in contemporary times [18].

5.8. Coarse graining and renormalization. In a written natural language not
all finite combinations of letters are words, not all finite combinations of words are
sentences, and not all finite sequences of sentences make sense. So by identifying
what we call meaningful with accessible, what we just said means that compared
with arbitrary letter combinations, the entropy of a language is extremely small.

In modern science something similar is happening. We are used to think of the
rich diversity of biological, chemical and physical structures as being enormous,
yet in terms of the most fundamental degrees of freedom the structures realized
in nature only occupy an extremely tiny part of the unconstrained phase space of
the fundamental building blocks. The complete hierarchy starting with the most
elementary building blocks of matter such as leptons and quarks, all the way up
to living organisms for that matter, is surprisingly restricted. This has to do with
the very specific nature of the interactions between these building blocks, of which
to our knowledge there are only four. The interactions lead to the formation of a
whole hierarchy of bound states, stable composites of increasing complexity. For by
now well understood reasons only very particular stable structures are formed. At
each new structural level (think of the subsequent level of quarks, of protons and
neutrons, of nuclei, of atoms, of molecules etc) there is a more or less autonomous
theory describing the physics at that level involving only the relevant degrees of
freedom at that scale. At the higher, more macroscopic levels of the hierarchy only
the long range interactions (electromagnetism and gravity) play an important role.
So moving up one level corresponds indeed to throwing out an enormous part of
the phase space available to the fundamental degrees in the absence of interactions.

We may call the structural hierarchy we just described as ”coarse graining” at
large. In theoretical physics, however, there is a more subtle but also very successful
application of coarse graining called renormalization [24]. This procedure has also
the aim to understand the large scale behavior of certain dynamical systems which
have many degrees of freedom. Here one should think for example of quantum field
theories of elementary particles or certain many body systems in statistical physics,
where one wants to integrate out the effect of small scale thermal or quantum
fluctuations and establish how these effect the large scale properties.

The partition function (as dependent on external parameters as temperature an
volume but also on external fields etc) is a weighted sum over all micro states.
The probability is given by the exponential Boltzmann factor involving the energy
function which specifies the microscopic degrees of freedom and all their interaction
parameters such as masses and couplings etc. One can systematically study the
effect of averaging over the small scale fluctuations (quantum or thermal) after
which one obtains an effective theory with (scale dependent) fields and parameters.
This is basically what the term renormalization means. Rescaling the theory (i.e.
rescaling the relevant physical distance or momentum scale), drives the effective
theory along trajectories in the space of parameters i.e. the space of mass and
coupling parameters of the effective (rescaled) degrees of freedom. There are many
interesting cases where the asymptotic behavior of the theory is then characterized
by some (stable) fixed point in the parameter space. This fixed point can be very
different in nature, it may describe the ultraviolet (small distance) or infrared (large
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scale) asymptotics. We speak of critical behavior, if for example one of the mass
parameters in the fixed point goes to zero because in which case the system will
exhibit long distance power law correlations. The physics around the fixed point is
determined by the eigenvalues of linearized rescalings: these eigenvalues determine
the scaling properties (critical dimensions) of the essential correlation functions
and these may differ substantially from what one would have expected naively.
One speaks of a nontrivial fixed point where the fields exhibit anomalous (scaling)
dimensions.

The renormalization approach just described goes back to the work of Wilson
and Kadanoff in the sixties and unifies in an essential way the formalism of quantum
field theory and statistical mechanics, it has a wide spectrum of applications. The
renormalization program explained why theories which on a small scale could be
very complicated with lots of couplings between the different degrees of freedom will
migrate through the parameter space where many parameters would renormalize to
zero (thus describing interactions which become irrelevant at long distance scales)
while others would migrate to certain characteristic asymptotic values. It even
explained the universality of in the observed critical behavior, where in very different
situations the same scaling dimensions show up. If we want to study macroscopic
behavior a lot of the microscopic details turn out to be irrelevant and many very
different microscopic theories may on large scales give rise to identical effective
theories. That was the main lesson taught by the renormalization program in
quantum field theory (of elementary particles but also of condensed matter systems)
and statistical mechanics. It is a subtle formalism by which one in many cases is
able to separate the relevant from the irrelevant microscopic information.

5.9. Beyond the Boltzmann, Gibbs and Shannon entropy: the Tsallis
entropy .

The equation S = k log W + const appears without an elementary theory - or

however one wants to say it - devoid of any meaning from a phenomenological

point of view.

A. Einstein (1910)

As we have already stressed, the definition of entropy as −
∑

i pi log pi and the
associated exponential distribution of states apply only for systems in equilibrium.
Similarly, the requirements for an entropy function as laid out by Shannon and
Khinchin are not the only possibilities. By modifying these assumptions there are
other entropies that are useful. We have already mentioned the Renyi entropy,
which has proved to be valuable to describe multi-fractals. Another context where
this has been shown to be true concerns power laws. Power laws are ubiquitous
in both natural and social systems. A power law14 is something that behaves for
large x as f(x) ∼ x−α, with α > 0. Power law probability distributions decay
much more slowly for large values of x than exponentials, and as a result have very
different (and less well-behaved) statistical properties. Power law distributions are
observed in phenomena as diverse as the energy of cosmic rays, fluid turbulence,
earthquakes, flood levels of rivers, the size of insurance claims, price fluctuations,
the distribution of individual wealth, city size, firm size, government project cost
overruns, film sales, and word usage frequencies. Many different detailed models

14It is also possible to have a power law at zero or any other limit, and to have α < 0, but for

our purposes here most of the examples of interest involve the limit x→∞ and positive α.
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can produce power laws, but so far there is no unifying theory, and it is not yet clear
whether any such unifying theory is even possible. It is clear that power laws can’t
be explained by equilibrium statistical mechanics, where the resulting distributions
are always exponential. In fact, a common properties of all the physical systems
that are known to have power laws, and the models that purport to explain them,
is that they are nonequilibrium systems. The ubiquity of power laws suggest that
there might be a nonequilibrium generalization of statistical mechanics for which
they are the standard probability distribution in the same way that the exponential
is the standard in equilibrium systems.

From simulations of model systems with long-range interactions (such as stars
in a galaxy) or systems that remain for long periods of time at the “edge of chaos”,
there is mounting evidence that such systems can get stuck in nonequilibrium meta-
stable states with power law probability distributions of their states for very long
periods of time before they finally relax to equilibrium. Alternatively, power laws
also occur in many systems that are driven away from equilibrium, and will never
relax to equilibrium.

From a purely statistical point of view it is interesting to ask what type of
entropy functions are allowed if we alter the last Khinchin postulate, which is the
least obvious. Which entropy functions satisfy the remaining two conditions, and
some sensible alternative for the third? It turns out that there is at least one
interesting class of solutions called q-entropies introduced in 1988 by Tsallis [23, 5].
The parameter q is usually referred to as the bias or correlation parameter. For
q 6= 1 the expression for the q-entropy Sq is:

(5.14) Sq[p] ≡
1−

∑
i p

q
i

q − 1
For q = 1, Sq reduces to the standard Gibbs entropy by taking the limit as q → 1.
Following the Jaynes’ approach to statistical mechanics, one can maximize this
entropy function under suitable constraints to obtain distribution functions that
exhibit power law behavior for q 6= 1. These functions are called q-exponentials
and are defined as:

(5.15) eq(x) ≡
{

[1 + (1− q)x]1/(1−q) (1 + (1− q)x > 0)
0 (1 + (1− q)x < 0).

An important property of q-exponentials is that for q < 1 and x � 0 or q > 1
and x� 0 1 they have a power law decay. The inverse of the q-exponential is the
lnq(x) function which is given by:

(5.16) lnq ≡
x1−q − 1

1− q
.

The q-exponential can also be obtained as the solution of the equation

(5.17)
dx

dt
= xq.

This is the typical behavior for a dynamical system at the edge of linear stability,
where the first term in its Taylor series vanishes. This gives some alternative
insight into one possible reason why such solutions may be prevalent. Other typical
situations involve long range interactions (such as the gravitational interactions
between stars in galaxy formation) or nonlinear generalizations of the central limit
theorem.
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At first sight a problem with q-entropies is that for q 6= 1 they are not additive
for systems that are statistically independent. In fact the following equality holds:

(5.18) Sq[p(1)p(2)] = Sq[p(1)] + Sq[p(2)] + (1− q)Sq[p(1)]Sq[p(2)]

with the corresponding product rule for the q-exponentials:

(5.19) eq(x)eq(x) = eq(x+ y + (1− q)xy)
This is why the q-entropy is often referred to as non-extensive entropy. However,
this is probably a blessing in disguise, namely, if the appropriate type of scale in-
variant correlations between subsystems are typical, then the q-entropies for q 6= 1
are strictly additive. The question remains how generic such correlations are and
which physical systems exhibit them, though at this point quite a lot of empir-
ical evidence is accumulating to suggest that such functions are at least a good
approximation in many situations.

This alternative statistical mechanical theory involves another convenient defi-
nition which makes the whole formalism look like the “old” one. Motivated by the
fact that the Tsallis entropy weights all probabilities according to pq

i , it is possible
to define an “escort” distribution P (q)

i [1]

(5.20) P
(q)
i ≡ (pi)q∑

j(pj)q
,

as introduced by Beck. One can then define the corresponding expectation values
of a variable A in terms of the escort distribution as

(5.21) < A >q=
∑

i

P
(q)
i Ai.

With these definitions the whole formalism runs parallel to the Boltzmann-Gibbs
program.

The framework described above is still in development and may well turn out to
be relevant to ‘statistical mechanics’ not only in nonequilibrium physics, but also
in quite different arenas, such as economics.

6. Black Holes: a space time information paradox

In this section we make a small excursion into the realm of curved space-time.
Einstein’s theory of general relativity unified the concepts of space-time and gravity
such that the gravitational force manifests itself through the curvature of space-
time. It is the curvature of space-time that determines how matter and radiation
propagate, while at the same time it is the matter and radiation content of space-
time that determines how space-time is curved. Under general relativity, gravity
is no longer an external force, but instead is completely taken into account by
the curvature of space-time, and the fact that matter and radiation move along
geodesics (shortest paths) in space-time.

A totally unexpected result from general relativity was the prediction of new
mysterious objects called black holes. A black hole is what is left after a very
massive star has burnt all of its nuclear fuel and subsequently collapses under its
own gravitational pull into an ultra compact object. The space-time curvature is
so strong that not even light can escape - hence the term “black hole”. The escape
velocity from a black hole is larger then the speed of light, which means that - at
least classically - no information from inside the black hole can ever reach us. The
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physical size of a black hole is defined by its event horizon, which is an imaginary
sphere centered on the black hole with a radius (called the Schwarzchild radius)

(6.1) Rs = 2GNM ,

where GN is Newton’s gravitational constant and M is its mass. For a black hole
with the mass of the sun this would correspond to RS = 3km, and for the earth
only RS = 1cm! From a classic point of view, nothing can ever escape from inside
the event horizon. The only measurable quantities of a black hole are its mass, its
charge and its angular momentum. From a purely classical point of view, all other
information that falls into the black hole, such as the shape of table, a person’s
face, or the Encyclopedia Britannica is lost, and no trace is left except insofar
the addition of these to the black hole influence the mass, charge, and angular
momentum.

Quantum mechanics makes a somewhat different prediction. This is because the
quantum mechanical states are described by wave functions which evolve in time via
dynamics that preserves volume in phase space (a so called unitary time evolution
of the wave function). Under essentially parallel arguments to Liouville’s theory
mentioned earlier, this means that quantum mechanical information is preserved.
How can this be compatible with the fact that nothing can escape from the black
hole? This gave rise to fundamental debate in physics between the two principle
theories of nature: the theory of relativity describing space-time and the theory
of quantum mechanics describing matter and radiation. Would the geometry of
Einstein’s theory of relativity overthrow quantum theory, or visa versa?

The first encounter between these two theories was due to Steven Hawking, who
in 1975 showed that if we take quantum theory into account black holes aren’t black
at all! Instead, he showed that they would emit black body thermal radiation (just
like a black stove) at a specific temperature, called the Hawking temperature, given
by

(6.2) TH ≡ ~c
4πRS

=
~c

8πGNM

This temperature of the black hole is inversely proportional to its mass, which
means that a black hole radiates more energy as it becomes lighter. In other words,
a black hole will radiate and lose mass at an ever-increasing rate until it finally
explodes 15. Bekenstein and Hawking furthermore showed that it is possible to
assign an entropy to a black hole through thermodynamic arguments. This entropy
is proportional to the area A of the event horizon, which is A = 4π(RS)2):

(6.3) S =
A

4GNh
.

This gives rise to a controversy about information: If we throw
an encyclopedia into a black hole, containing say, a gigabit of information, what

happens to it? it disappears in the black hole, gets chewed up, and then as the
black hole evaporates, the material substance of the encyclopedia provides some
mass that may be later emitted as radiation. But does this radiation contain any

15We think of blackholes are very massive objects like collapsed stars. The lifetime of such very

heavy objects is enormous, so the radiation process is exponentially slow meaning that the lifetime

of such a black hole would be ≥ 1040 years. Theoretical physicists consider also microscopic black
holes and that is where the information paradox we are discussing really leads to a principal
contradiction.
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trace of the what was originally in the encyclopedia? Could a clever detective
making careful measurements with very fancy equipment ever recover it? If not,
it would seem that the information is lost, and the laws of quantum mechanics
are violated. What cherished principles must be given up to resolve this? One
aspect that comes to mind is the striking parallel with thermodynamics, strongly
suggesting that one needs to look for an underlying statistical mechanics to explain
the formula for black hole entropy. But what are the corresponding microscopic
degrees of freedom that exist inside the black hole?

This leads to yet another peculiarity of black holes. As we explained before, the
entropy of systems that are not strongly coupled is an extensive property, which is
proportional to volume. Here the entropy is indeed extensive, but it is proportional
to the area of the event horizon rather than the volume of the black hole. This
dimensional reduction of the number of degrees of freedom is highly suggestive that
all the physics of a black hole takes place at its horizon, an idea that is called the
“holographic principle”. Woth a perfect hologram it would be hard two distinguish
the three dimensional object from the essentially two dimensional surface of the
hologram.

Resolving the clash between the quantum theory of matter and the general rela-
tivity of space-time is one of the main motivations for the great effort to search for
a theory that overarches all of fundamental physics. At this moment the main line
of attack is superstring theory, which is a quantum theory in which both matter
and space time are a manifestation of extremely tiny strings (l = 10−35m). This
theory incorporates microscopic degrees of freedom that might provide a statistical
mechanical account of the entropy of black holes. In 1996 Andrew Strominger and
Cumrun Vafa managed to calculate the Bekenstein-Hawking entropy for certain
simple black holes in terms of microscopic strings and related concepts, by count-
ing the number of accessible quantum states. The answer they found is that for the
exterior observer information is preserved on the surface of the horizon. This means
nothing less than that the would be lost information can in principle be recovered
fully consistent with the postulates of quantum theory. The solution formed an
example of the holographic principle and the communis opinio - at least for the
moment - is that the principles of quantum theory have successfully passed a severe
test16.

7. Information in design and engineering

Also in many engineering disciplines the notion of information flourishes. As
an example we briefly discuss the use of the information concept in the formal
(even axiomatic) approach to design problems [21]. Starting point in a rational
design process is a chain of functional relationships or mappings, for example one
may break up the trajectory from customer demands to final product design into
different rather independent subprocesses

(1) Customer demands ⇒ Functional requirements
(2) Functional requirements ⇒ Physical domain design parameters
(3) Physical domain ⇒ Production domain

16A long standing bet between Steven Hawking and John Presskil of Caltech was settled in

2004 when Hawking officially declared defeat
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Each step has its own functional relationship which ought to be optimized by the
’designer’. At each level the variables on the left of the arrow are expressed as
functions of the variables on the right hand side and the challenge is to meet the
specifications on the left hand side by adjusting the domain and parameter values
on the right hand side. In other words a generic step in the design hierarchy can
now be described as:

• an initial set of functional requirements F1, F2..., which we can collect into
a vector

−→
F with corresponding components {Fi | i = 1, ..., N}. These

requirements should be independent.
• there will be a set of initial design parameters D1, D2... collected in a vector−→
D with components {Dj | j = 1, ...,M}

The goal of the design process is clearly to find an optimal matching between the
functional requirements and some point in design parameter space. A priori we
can make the following general remarks. The first is usually referred to as the first
axiom of design theory, which is the statement that functional requirements should
be independent. In mathematical terms they span an orthogonal basis for the
vector space in which

−→
F lives. The second remark concerns the dimensionalities

of the various spaces: let us consider the dimension M of the design parameter
space and the dimension N of the requirement space. Clearly, if M < N it will in
general be hard to find a satisfactory solution to all requirements, while if M > N ,
then generically the opposite will be the case, there is a redundancy in the design,
which usually means that we are nor heading for the most efficient solution to our
design problem. A simpler design should be possible which meets all requirements.
Indeed, the optimal situation appears to occur if M = N . Therefore the designer
will strive for a situation where N = M .

Let us now focus on a single step of the design chain mentioned before. So, a
set of functional requirements will be systematically coupled to the set of design
parameters. In general we may think of the Fi as functions of the {Dj}in other
words the functional requirements

−→
F form a vector field over the design parameter

space. The designer chooses an initial point in design space Di = D0
i (i = 1, ...N)

and then will study the linearized problem around that point. Indeed this choice of
D0

i underscores the importance of the preferences and the qualities of the designer
or the team of designers. This dependence can be expressed in the following way:

(7.1) dFi =
∑

j

[
∂Fi

∂Dj

]
−→
D=

−→
D0

dDj

This design equation can now be used to calculate the variation in ∆
−→
F also called

system range corresponding to the given design parameter tolerances ∆
−→
D . Clearly

∆
−→
F is here defined as a quantity derived from the design parameter tolerances.

On the other hand the “client” will from the onset have specified the design range
in the functional requirements as δ

−→
F , and the designer clearly wants to maximize

the overlap between
−→
F 0 + δ

−→
F 0 and

−→
F (
−→
D0) + ∆

−→
F at minimal cost. In principle

we can introduce a system probability density function ps(F1, F2, ..., FN ) on the
system range. This probability density is measure for the relative success of the
design depending on the specific values of the design parameters. The overlap
between the system probability density function and the design range is called the
common range. Integrating the system probability density over the common (or
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design range) produces a total probability which is a measure for the success of the
design.

(7.2) pd =
∫

design range

ps(F1, F2, ..., FN ) dF1dF2...dFN

Here we can introduce the notion of information again as minus the log of the total
probability of the design.

(7.3) Id = − log2 pd

The meaning of this definition is best characterized by the notion of information
need, this follows from the following considerations. Imagine the overlap range to
be equal to the design range then one can obviously meet the requirement without
additional information (or effort), if one makes the tolerance smaller, one clearly
needs additional information (or ’skill’) to meet the requirements. So from this
point of view it is clear that in the design process we want to minimize the infor-
mation content of the process. So information in context of design is the measure
of knowledge required to satisfy a given functional requirements Fi at a given level
in the design chain/hierarchy. To have the largest probability for success (with the
least effort i.e. costs) we therefore have to minimize the information associated with
the design. This is the second axiom of design theory.

The question of how - if at all - this can be done is crucially dependent on the
precise form of the design equation (7.1), that is on the structure of the matrix

(7.4) Aij =
[
∂Fi

∂Dj

]
−→
D=

−→
D0

We conclude this section by making the following observations: Firstly we note
that we are free in choosing the order in which we put the the requirements in the
vector

−→
dF and similarly for the entries of the vector

−→
dD. The fact that we may

permute the elements of both vectors independently amounts to the possibility of
introducing two permutation matrices P and P ′ such that F̃ ≡ P

−→
F and D̃ ≡ P ′

−→
D .

The problem is then equivalent to the problem d̃F = Ãd̃D , where Ã is defined
as Ã = PA(P ′)−1. At this point the following remark should be made: one may
want to keep the order of the elements in the vectors for example because the order
indicates the relative importance of the requirements and of the design parameters.
This does not affect the following discussion in any essential way.

In design theory the following important distinctions are made regarding the
structure of the matrix Ã, i.e. after suitable permutations have been made (where
from now on we also assume N = M) :

• If the matrix Ã is diagonal, the problem trivializes because the system is
uncoupled, which means that each Fi is only dependent on a single design
parameter. So, either the requirement can be met by an adjustment of
each parameter or not, in the latter case one has to go back one step in the
process.

• If the matrix Ã is triangular then the problem is decoupled and there is a
systematic approach to the problem.

• If the matrix Ã is “randomly filled” then the system is essentially coupled
and it is very hard to develop a systematic design strategy.
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So it is clear that in the nonlinear space we have to search for a point where the
problem becomes decoupled. Then we should continue from there. Let us look at
the optimal strategy for a simple example of a decoupled system: F1

F2

F3

 =

 a1 0 0
a2 b2 0
a3 b3 c3

 D1

D2

D3

(7.5)

Clearly We first choose D1 to satisfy F1, having fixed D1 we subsequently choose
D2 to satisfy the second member of the vector equation, in this context written
appropriately as

b2D2 = F2 − a2D1 .

This procedure should then be continued. In other words the structure of the
matrix tells us what the strategy towards a successful design, is.

8. Conclusion

In this chapter we have briefly reviewed the extensive interface between physics
and information theory. This lead us naturally back to some of the long standing
debates in physics on the nature of the concept of entropy in its many guises. Af-
ter introducing the key elements of classical thermodynamics, statistical mechanics
and nonlinear dynamics, we touched on the foundational work of Shannon on infor-
mation theory and the powerful impact it had in turn on physics as manifested in
the work of Jaynes. We spent an important part of the chapter on several, rather
philosophical aspects of entropy and tried to give an up to date account of how we
think about this in various scientific contexts. We concluded with some excursions
on special topics such as alternative expressions for the entropy applicable in cer-
tain nonequilibrium situations, the black hole entropy and its paradoxes and the
use of information theory in design theory.

It is clear that the notions of entropy and information are alive and well, and
there are many new areas in science where new uses of them are explored with
remarkable success.
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