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1 Introduction

CUF (see [DD93]) is one amongst the current breed of typed feature logic based formalisms which
are principally targeted at providing a computational system for implementing HPSG grammars.
We provide a theory neutral comparison of CUF against the formalisms TFS [Zaj92][Zaj91] and
ALE [Car93] drawing out the similarities and differences. Our comparison will be concentrated
mainly on the expressivity of the type system, definite clauses and control scheme which provide
additional control over the SLD resolution engine.

2 Type System

The HPSG grammar formalism is based around the idea of employing a (possibly extended) typed
feature language for the representation of grammatical knowledge. This is a departure from the
rule based approach of other grammar formalisms such as GPSG in which context free rules play a
major part in grammar specification. This means that in HPSG possibly recursive type definitions
are employed to specify grammatical principles. However the potential recursive nature of type
definitions that express grammatical principles is a major source of inefficiency within current typed
feature formalisms. This is due to the fact that consistency checking of recursive type definitions is
in general undecidable.

The fundamental nature of the above problem is the principal reason why different formalisms
employ radically different approaches for dealing with it. In order to differentiate clearly between
the different formalisms we shall fix some terminology in the following.

Type definitions provide a mechanism for storing definitions of, for instance, lexical items or def-
initions of concepts. For example, we may want to store the definition that nouns have [CAT n]
specified. A type definition such as the following can be employed:

(1) nouns = cat : n

*This work was carried out while the author was supported under the ESPRIT project LRE-061-061. I am specially
thankful to Chris Brew for many helpful discussions and comments. Thanks also to Jochen Doérre for helping me
understand CUF and to Marc Moens for reading earlier drafts.
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The symbol nouns is usually referred to as a type symbol.

Thus instead of writing [CAT n] in other parts of the grammar specification the grammar writer
simply re-uses the symbol nouns instead.

One dimension along which typed feature formalisms can be classified is according to the expressivity
of the type definition mechanism.

We say that a type system is general if there are no restrictions imposed on the right hand side of a
type definition i.e. if at least arbitrary conjunctions of type symbols, feature selection and variables
are permitted. On the other hand, we say that the type system is restricted if this is not the case.
The particular design choice taken by a given formalism has a fundamental impact both on the way
HPSG grammars have to be specified and on the design of the rest of the formalism.

The type system of TFS is general since it permits conjunctions of typed feature terms containing
variables in its type definitions. Furthermore TFS permits multiple definitions for the same type
symbol which are interpreted disjunctively. On the other hand, both ALE and CUF provide re-
stricted type systems. In ALE and CUF, type definitions are restricted to conjunctions of typed
feature terms of the form f : s where f is a feature symbol and s is a type symbol in ALE or a
boolean expression over types in CUF. Moreover, in ALE types are placed into a hierarchy using
ordering statements s < t between types. In CUF these statements are generalized to arbitrary
boolean expressions which are stated as axioms (< can be thought of as implication). However the
lack of variables in in the type system of both ALE and CUF makes them quite different from a
language like TFS. In particular, this makes it impossible to define, for instance, the HPSG subcat-
egorisation principle or the head feature principle ([PS87] pp. 148) as a type, since they require the
use of variables.

2.1 Feature Typing

While type definitions provide a definitional mechanism for type symbols, feature typing is another
mechanism that is employed by typed feature formalisms to restrict the possible interpretation
of feature symbols and hence provide typing on feature symbols. Usually, feature symbols are
interpreted as unary partial functions fZ : TZ — TZ. However with feature typing statements such
as:

(2) fis—t

the feature symbol f is interpreted as a total function fZ :s? — tZ.

Within systems such as TFS, ALE and CUF, feature typing information is automatically extracted
from a given set of type definitions. Thus given the type definitions:

(3) agreement = num : number I
per : person
number = sg U pl
person =1120U3

the feature typing specifications:

(4) num : agreement — number
per : agreement — person
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are automatically generated.

The ALE type system is restricted in such a way that every feature symbol has to be declared at
a unique most general type. However the same feature can be redeclared on more specific type
symbols. Thus the following is a valid ALE type definition (modulo ALE specific syntax):

(5) agreement = num : number I
per : person
sg < number
pl < number
1 < person
2 < person
first_sg < agreement
first_.sg = num :sg N
per :1

This generates the following feature typing specifications which are interpreted conjunctively:

(6) num : agreement — number
per : agreement — person
num : first_sg — sg
per : first_.sg — 1

In fact the simplicity of the ALE type discipline means that type definitions can simply be treated
as infix notation for feature typing specifications.

However the above simple strategy does not quite work within CUF and TFS since both formalisms
do not impose any restrictions on where a feature may be declared. Thus the same feature symbol
may occur within two different type definitions. For instance, in addition to the specification of the
agreement type in (3) the following type definition may be specified.

(7 quantity = weight : integer I
per : measure
measure = b kg

CUF combines both type definitions and feature typing definitions into a compact syntax which is
called feature declarations. Similarly ALE’s appropriateness declarations achieve the same effect.
However, we have chosen to make explicit the distinction between type definitions which provide
definitions for type symbols and feature typing which provide typing information for feature symbols.
This we believe provides a clearer understanding of the semantics of typed feature formalisms.

According to the specification in (7) the following feature typing can be assumed.
(8) per : quantity — measure

If we further assume that the type symbols quantity and agreement are disjoint then (assuming
a conjunctive interpretation of feature typing specifications) leads to an inconsistent definition of
both agreement and quantity types.

A fix to the above problem can be obtained as follows.
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Let f ¢ denote the function obtained by restricting the function f to the members of the set
¢. Then a restricted interpretation of feature typing can be obtained by assuming feature typing
specifications of the form:

9) fis—t
which is interpreted as:
(10) Folist — it

Thus the behaviour of the function now is dependent on the domain type symbol. Now we can
interpret the feature per in examples (3) and (7) by the following feature typing definitions:

(11) per : agreement — person

(12) per : quantity — measure

which are interpreted conjunctively. The definition in (11) states that the range of the function per?
when its domain is restricted to the set agreement? is person®. On the other hand, the definition
in (12) states that the range of the function per’ when its domain is restricted to quantity” is
measure”.

2.2 Propositional Constraints

A propositional theorem prover is employed in the Prolog-IIT language [Col87] to provide consistency
checking of propositional formulas involving just constant symbols. This is an efficient alternative
to the depth-first search strategy of Prolog’s SLDNF resolution engine which otherwise generates
a large search space. Since grammatical descriptions often employ propositional formulas, e.g. see
(13), a propositional theorem prover is an important requirement for efficient execution of HPSG
grammars.

(13) ...Mcase : (case N —gen)
case = mnom U acc U gen U dat

Following the incorporation of such a propositional theorem prover in the STUF formalism [DS91],
the current CUF formalism also employs a propositional theorem prover.

In addition CUF permits inheritance specifications and disjointness specifications between type
symbols which meshes cleanly with both the operational and declarative semantics of propositional
type symbols.

Thus in CUF one is allowed to write type definitions of the following forms.

(14) case = nom U acc U dat
(15) case = nom | acc | dat
(16) nom < case

acc < case
dat < case
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(17) nom | acc | dat < case

Each of the above definitions have a different interpretation (see [DD93]) for a description of the
CUF semantics) and only (15) captures precisely the intended specification. Apart from the above
compact syntax, disjointness specifications can be defined in isolation too, as in the following ex-
ample:

(18) nom | acc | dat

which states that nom, acc and dat are disjoint types. In this particular example, disjointness comes
for free if nom, acc and dat were defined as CUF constant types. However note that in the above
examples nom, acc and dat could equally have definitions attached to them. Thus nom could be
additionally defined by:

(19) nom = noml ; nom2.
noml = case : nominative,
role : sub,

voice : active.

nom2 = case : nominative,
role : —sub,
voice : passive.

An interesting feature of the CUF type checking machinery is that it does not create two choice
points for the above two definitions of nom. Instead CUF relies on a lazy constraint propagation
machinery that eliminates disjunctive choices incrementally as new constraints get added. Thus if
voice : active is known then the possibility of role : —sub can be eliminated without actually having
to add role : sub explicitly.

This mechanism cleanly integrates a propositional theorem proving component with the feature
typing component in a fairly efficient manner.

2.3 Consequences for the Grammar Writer

While the availability of all the propositional connectives in the CUF type system provides great
flexibility for the grammar writer, the lack of variables in the type definitions means that a fair
proportion of a realistic grammar cannot be expressed within the type system. For instance, it is
difficult to encode HPSG lexical entries in the type system since they often require variable co-
references e.g. variable coreferences between the values of the SEMANTICS attribute of the verb
and the subcategorised noun, variable coreferences between a subcategorised item and a SLASH
value.

Thus some a priori decisions have to be made regarding which parts of the grammars are to be
written within the type system and which parts are to be relegated to the definite clause component.
In [ED90] it is suggested that both the lexicon and the HPSG grammatical principles are to be
specified via the definite clause mechanism and the rest of the grammar is to be specified within
the type system.
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3 Definite Clauses

For specifying HPSG grammars yet another seemingly different expressive device is employed - re-
lational dependencies. Relational dependencies are employed to state HPSG grammatical principles
such as the subcategorisation principle stated below.

(20) Subcategorisation Principle

SYN|LOC|SUBCAT Y

HEAD-DTR|SYN|LOC|SUBCAT Z || : —append(X,Y, Z)
X

DTRS COMP-DTRS

The append relation is known as a relational dependency. It can be defined as given below in (21).

(21) append(nil, X, X).
append(head : X Mtail : R, Y, head : X Ntail : Z) : —
append(R,Y, Z).

However, if a general type system is available relational dependencies can be translated into a type
definition as shown in (22).

(22) append = (argl : nilMarg2 : X Marg3 : X)
append = (argl : (head : X Mtail : R) N
arg2:Y M

arg3 : (head : X Ntail : Z)
tmp : (append I

argl : R M

arg2:Y M

arg3d: 7)).

Thus, given a general type system relational dependencies can be treated simply as syntactic sugar.
This means that in a formalism such as TFS, relational dependencies do not provide additional
expressivity other than that already provided by the type system.

However, neither ALE nor CUF provide a general type system and hence needs to provide an addi-
tional expressive device for specifying HPSG relational dependencies. We shall call this additional
mechanism the definite clause mechanism. The choice of a different terminology here is mainly an
indication of the different operational realisation of the definite clause component from that of the
type system.

Both ALE and CUF provide a mechanism to specify relational dependencies via their definite clause
component which is treated as being separate from the type system. The idea is to provide a Prolog-
like language in which first-order terms are replaced by typed feature terms which have to respect
the type definitions that are specified. From a foundational perspective, such a system can be
viewed as an instantiation of the CLP(X) scheme where ¥ is to be identified with the equational

theory of typed feature terms [HS88] [JL87].

Although from the above discussion both ALE and CUF appear similar with respect to their definite
clause component there is a fundamental difference between the CUF definite clause component and
the ALE definite clause component which makes it impossible to execute realistic HPSG grammars
in ALE. This has to do with the operational semantics of definite clauses which we examine next.
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4 Controlling resolution

The depth first nature of the Prolog SLD-resolution engine is the result of employing a selection
function that selects the leftmost goal for resolution. This choice of the selection function is just an
instance of the declarative formulation of the SLD-resolution scheme which does not commit to any
particular selection function. However the selection function plays a crucial role in determining the
operational behaviour of systems based on SLD-resolution which includes both Prolog and typed
feature formalisms.

Due to the highly declarative nature of HPSG grammars a Prolog-like resolution is strategy is inap-
propriate for executing HPSG grammars since grammar specifications do not encode the processing
order of different type symbols.

In this respect ALE differs from both CUF and TFS. ALE employs a Prolog-like resolution strategy
and goes all the way in providing both cuts and negation-by-failure. Although this provides an
interesting and fairly powerful programming language in its own right, executing declaratively
specified HPSG grammars is not feasible within ALE. However ALE provides a DCG backbone
that enables specification of typed unification grammars within which it may very well be possible
to reformulate all HPSG grammatical rules and principles.

CUF differs from Prolog in that it employs a selection function that is based on deterministic closure.
A literal is called deterministic with respect to a program P, if it unifies at most with one head
of the definite clauses in P. The selection function employed by CUF then selects deterministic
goals whenever this is possible falling back to a Prolog-like strategy when every goal to be reduced is
non-deterministic. This simple strategy results in a drastically reduced search space since those non-
deterministic branches that can be pruned with the aid of deterministic information are eliminated.

TFS also employs a delaying scheme that delays goals until the variable (upon which the goal is
delayed) is sufficiently instantiated (see [Zaj92]) resorting to a Prolog-like strategy when all goals
are delayed.

4.1 Delay Statements

Finer control of the resolution strategy is achieved in CUF by employing delay statements defined
by the user. Delay statements in CUF state the features which need to be instantiated in order
that the predicate can be expanded otherwise the resolution engine delays this predicate.

However when all predicates are blocked a Prolog like strategy is employed to select the next goal.
This fall back position is essential in order to guarantee the completeness of the resolution engine.

5 Summary

In summary, TFS provides a rapid prototyping environment for HPSG grammars in a high-level
declarative language that is as close as one could possibly get to the original HPSG definitions.

CUF on the other hand also provides an excellent prototyping environment for HPSG grammars.
Of the two, CUF has the potential of providing better performance. However, CUF requires some
ad hoc choice from the grammar writer on whether a given definition is to be stated via the type
system or the definite clause component. This choice is motivated by whether the given specification
contains variable co-references or not. Thus (for realistic grammars) lexical entries have to specified

51



Figure 1: ALE, TFS and CUF at a glance

as definite clauses losing some of the advantages of hierarchical lexical organisation. Grammatical
principles too need to be specified as definite clauses but as [ED90] has shown this fits fairly cleanly
within the CUF architecture.

ALE on the other hand is oriented towards efficiency and would be a good vehicle for implementing
large grammars. Furthermore, ALE is the only system (amongst the three) that provides excellent
support for context-free grammars.

In effect TFS, CUF and ALE represent 3 different design philosophies for implementing typed
feature formalisms (see fig. 1).

The philosophy behind TF'S is to stay as close as possible to the high-level needs of HPSG grammars
while at the same time achieving reasonable efficiency. The philosophy behind CUF seems to be
to achieve maximum efficiency by sacrificing as little at possible in its ability to specify HPSG
grammars in a high-level language. Finally the philosophy behind ALE seems to be provide a
minimal typed extension to DCGs in order to enable specification of HPSG-like grammars thereby
achieving maximum efficiency.
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