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Abstract
An important theme in current categorial research is the shift of emphasis
from individual type logics to communicating families of such systems. The
reason for this shift is that the individual logics are not expressive enough for
realistic grammar development: the grammar writer needs access to the com-
bined inferential capacities of a family of logics. See [Morrill 94], [Moortgat 95]
for discussion and motivation. In line with these developments, our objective
in this paper is to develop a uniform labelling discipline for the family of
resource logics NL, L, NLP and LP and the generalizations discussed in
depth in [K& M 95], and to establish a completeness result for the proposed
labelling regime with respect to the general frame semantics for these logics.
Our approach uses a generalization of our earlier [Kurtonina 94] complete-
ness result for the ‘dynamic’ relational semantics of L which was based on a

labelled deductive presentation of the logic.

1 Introduction: labelling for categorial type sys-
tems

Let us situate our approach with respect to related work, before starting with the
technicalities. The technique of labelling has been used in the categorial literature
before, for various reasons. [Buszkowski 86] used labelling as an auxiliary device
to obtain his completeness results for the Lambek calculus. Victor Sanchez in
[Sanchez 90] relied on labelling for semantic reasons in his work on a categorially-
driven theory of natural language reasoning. [Moortgat 91] added string labelling
to type formulas for syntactic reasons, viz. to overcome the expressive limitations
of the standard sequent language in capturing discontinuous forms of linguistic
composition. In a proof theoretic study of categorial logics, [Roorda 91] introduced
labelling to enforce the well-formedness conditions on proof nets. The programmatic
introduction of Labelled Deductive Systems as a general framework for the study
of structure sensitive consequence relations in [Gabbay 92] made it possible to re-
evaluate these scattered earlier proposals. From 1991 on, labelling has been on
the categorial agenda on a more systematic level. For recent studies, we refer to
[Morrill 94, Morrill 95], [Oehrle 94], [Hepple 94], [Venema 94], to mention just a
few.
Consider a consequence relation

Ai,...,An=> B

representing the fact that a conclusion B can be derived from a database of assump-
tions Ay,...,A,. The central idea of the labelled deductive approach is to replace
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the formula as the basic declarative unit by a pair z : A, consisting of a label z and
a formula A. Sequents then assume the form

z1:A1,...,zp A, =>y: B

The label is to be thought of as an extra piece of information added to the formula.
Rules of inference manipulate not just the formula, but the formula plus its label.
We then obtain a whole scala of labelling regimes depending on how we make
precise the intuitive notion of an ‘extra piece of information added to a formula’ —
depending on the degree of autonomy between the formula and the label.

At the conservative end of the spectrum one can find semantic lambda term
labelling in the sense of the Curry-Howard correspondence. The labels, in this ap-
plication, simply record the history of the proof — they do not make an independent
contribution. At the other end of the spectrum are the labelling systems where in
the declarative unit z : A the label z and the formula A each make their own irre-
ducible contribution. Such systems can best be seen as combinations of two logics:
the formula logic and the logic governing the labelling algebra.

Our proposals are somewhere in between these two extremes. In the application
to linguistic reasoning which is the subject of this chapter, a consequence relation
represents a grammaticality judgement: the derivability of an expression of type B
from a database of assumptions, i.e. expressions of type A1,..., A,. Derivability, in
this linguistic sense, has to take into account the structure of the assumptions — for
example: their linear order, and the way they are grouped into hierarchical units or
constituents. We rely on the labelling algebra to make the structure of our linguistic
database explicit. In [K& M 95], we have seen how one obtains the systems L, NLP,
LP from the pure residuation logic NL by removing order sensitivity, constituent
structure sensitivity or both. In order to develop uniform algorithmic proof theory
for this family of type logics we start from the multiset sequent presentation of their
common denominator, the Lambek-Van Benthem system LP, and impose the extra
syntactic fine-tuning in terms of the labelling regime.

Labelling, in this sense, is not uncommon in current categorial work, see for ex-
ample [Morrill 94, Morrill 95] for descriptive and computational applications. But
the labelling systems in use are related to groupoid interpretation, not to the more
abstract ternary frame semantics which is the ‘common ground’ for the general com-
pleteness results for the various individual systems in the categorial landscape, and
for the mixed multimodal logics. From the perspective of ternary frame semantics,
the groupoid models are obtained by specializing the accessibility relation Rz, yz
to £ = y + z, where the binary operation + imposes functionality. The groupoid
models become inappropriate when one wants to consider one-sided structural pos-
tulates (for example: left-associativity without right-associativity), rather than the
two-way inferences for which the groupoid equational reasoning is appropriate!. In
developing labelling for the abstract ternary frame semantics, we can implement
the labelling discipline in such a way that we can manipulate the three components
of the triples (zyz) € R, rather than assuming that z is determined by y + z.

Let us finally insist here on the importance of the completeness result for the
labelled calculus. Labels, just like formulas, are pieces of syntax. Even if the rules of
a labelled system look very much like imitating truth conditions we will never have
a guarantee that the labelling is really appropriate for the intended interpretation
unless we present a completeness proof, which requires an explicit statement of the
relation between the labels and the objects of the domain of interpretation. That
there are real issues here is shown in the discussion of [Venema 94].

ITo accommodate one-way structural postulates, one can move to ordered groupoids, cf.
[Dosen 88,89, Dosen 92a], but in terms of ‘abstractness’ these would be on the same level as
the general frame semantics adopted here.
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The paper is organized as follows. In §2 we introduce uniform labelled sequent
presentation for the logics NL, NLP, L, LP. We prove completeness with respect
to the ternary frame semantics for these logics in §3. Labelled sequent calculus is
presented in two formats which we show to be equivalent. The first format deco-
rates formulas with atomic labels and enriches the sequent language with an explicit
book-keeping component to record the structure of the database. The second for-
mat introduces a language of tree-terms over the atomic labels, and formulates the
labelling discipline as a term assignment system. In §5, we discuss a number of gen-
eralizations, showing how our results can be applied to multimodal architectures,
and to logics extended with one-place multiplicative operators. §6 then moves to
concrete labelling. We use the labelling algebra to add sortal refinements to the
type formulas: the sort labels filter out theorems that would be derivable in an
unlabelled setting.

2 Resource management in labelled sequent cal-
culus

Let us introduce the labelled sequent presentation informally before starting with
the definitions. The new declarative unit, as we said before, now is the labelled
formula z : A, rather than the bare formula A. What kind of labels do we want
to use, and how do we want to interpret them? In our first version of the labelled
calculus the labels are all taken from some set of atomic markers. In a sense to
be made precise below, the labels refer to elements of the domain of interpretation
W. In order to keep track of the way the labels are configured into a structured
database, we add an explicit book-keeping component to the sequent language.
Labelled sequents then will be of the general form

[0]; a1 : A1,a0 : Aa,y...yan i Ay = a: A,

where each label a;(1 < i < n) is a witness of a piece of information attached to A;
and d fixes the configuration of the labels in a tree such that the succedent label
a is its root and the antecedent labels a; the leaves. Because the configuration is
fixed in & the sequent antecedent can be treated simply as a multiset of labelled
formulae. Now for the definitions.

DEFINITION 2.1. Labels and trees. Let Lab be a set of atomic labels. We define
by simultaneous induction the set of trees T over Lab and functions

root: T — Lab
leaves: T — P(Lab)
nodes: T — P(Lab)

e If z € Lab, then z is a tree such that

leaves(z) = {z}
root(z) = z

nodes(z) = {z}
e If {a,bc) € Lab® and a, b, c are distinct, then (a, bc) is a tree such that

root({a, bc)) = a
leaves({a, bc)) = {b,c}
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nodes({a, bc)) = {a, b, c}
e If §; and &, are trees such that

root(ds) € leaves(d;) and
nodes(d1) N nodes(ds)={root(d>)}

then £€=(6162) is a tree and

root(&)=root(d;)
leaves(£)=(leaves(d;) U leaves(d2))-{root(d2)}
nodes(§)=nodes(d;) U nodes(d>)

ExampLE 2.2. £=(({a, bc){c,de))(d, kn)) is a tree with
root(§)=a
leaves(§)={b, k,n, e}
nodes(§)={a, b, c,d, e, k,n}

Thus, each tree turns out to be a bracketed string of triangles. As usual we
often drop the most external pair of brackets. The size (I) of a tree can be defined
as follows:

e l(a)=0
e [({a,bc)) =1
o 1) =18 +1(x)
Now we can give precise definitions of a labelled formula and a labelled sequent.
e a: A is alabelled formula if A is a formula and a € Lab;

o [0]; ar : Aj,az : Aa,...,an 1 A, = a: Als alabelled sequent if a : A4, 4q; :
A;(1 <1 < n) are labelled formulas, and § € T with
— root(d)=a

— leaves(§)={a; ...an}
Note that in a labelled sequent
[6]; a1 : A1,a9 : Ao,...yan Ay = a: A

ai,.-.,an,a are distinct since according to the definition all nodes of § are distinct.
Moreover the presence of § is not conservative, since the rules of the labelled Lambek
calculus include not only manipulations with formulas and labels, but also with
trees.

We are in a position now to define the labelled sequent presentation first of all
for the pure residuation logic NL, then for the systems with structural rules.

DEFINITION 2.3. Labelled sequent calculus: the pure residuation logic NL!*®. Let
a be a labelled formula, X,Y, Z finite multisets of labelled formulas, and let 6, d2,
be members of T. NL!“® has one axiom

[a]; a: A = a: A

and the following inference rules, provided that all sequents involved are well-

defined:
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[61]; X =>b: A [62]; ¢: B)Y = «
[(02{(c,ba})é1]; a: A— B, X,Y = «a

[{c,ba)d];b: A, X = c: B
[0; X =>a:A— B

[61]; X =>b: A [62]; ¢: B)Y =«
[(02{c,ab})d1]; a: A+ B, X, Y = «

[{(c,ab)d]; X, b: A= c¢: B
[0; X=>a:B+ A

[d{a,bc)]; b: A,c: B, X = a
[6; a: Ae B, X = a

[01]; X1 =b: A [62]; X2 = ¢: B
[({a,bc)d1)d2]; X1,Xo =>a: AeB

DEFINITION 2.4. Structural rules as manipulations on labels. Structural options
for resource management have the general format

[0; X = a
[0']; X =«

where 4’ is obtained from § via an operation matching the structural rule in question.
Specifically, L'*? can be obtained from NL'“® by adding the Associativity Rule that
4’ is obtained from § by replacing some subtree ({a, bc){c, de}) by a tree ({a, te)(t, bd))
or vice versa provided that ¢ (resp. c) is fresh. NLP'® can be obtained from NL'“®
by adding the Permutation Rule that &' is obtained from § by replacing some subtree
((a,bc)) by a tree ({a,cb)). Finally, LP"" is obtained from NL' by adding both

Associativity and Permutation.
The following sequents give an example of theorems of NL'.

(1) [{{=z,bc),{d,az)}];a:r+¢q,b:pc:p—q=>d:r
(17) [{{=z,bc),(n,az)};a:r +qg,b:p,c:p—>qg=>n:r

Note that the derivation of (ii) can be obtained from the derivation of (i) by renam-
ing d for n.

LEMMA 2.5. Renaming Lemma. The Lemma consists of two claims.

¢ Claim 1.
If a sequent [6]; 1 : X1,%2 : Xa,...,2n : X, =z : X is derivable,
then [0'];z1:X1,...,¥y: X4, ..., 2n : X = 2z : X where ¢’ is obtained from
é by replacing z; by y is also derivable.

e Claim 2.
If a sequent [d]; z1 : X1,22: Xo,...,2, : X;, = x: X is derivable then
[6); z1: X1,22: Xa,...,2, : X, =y : X where ¢’ is obtained from § by re-
placing z by y is also derivable.
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Both Claims can be proved by straightforward induction on the length of the
derivation. O

INTERPRETING LABELLED SEQUENTS. To obtain an interpretation for our labelled
sequents we add to a ternary model (W, R, V) a function * which assigns exactly
one element of W to each a € Lab.

A sequent [0]; a1 : Aj,a2 : Aa,...yan i Ay > a: Aistruein M ifa* E A
whenever af = Ai(1 < 7 < n) and for each triangle (z,yz) which occurs in §,
Rx* y*z* . A sequent ¢ is semantically valid if it is true in all models.

Note that although on the syntactic level the labels on the nodes of each triangle
are distinct, we do not impose such distinctness as a semantic requirement. Since *
is an arbitrary function it might very well be that in some models the same elements
of the domain are assigned to distinct node labels of the syntactic tree. Thus on
the semantic level the definition of a ternary frame realizes an arbitrary ternary
accessibility relation as required.

As usual it is easy to prove soundness, i.e. each sequent derivable in NL'® is
semantically valid. Completeness is the subject of the following section.

3 Labelling and completeness

We establish completeness of the labelling regime first for NL*®, then for the sys-
tems with extra resource management properties. The general idea behind the
completeness proof can be expressed as follows:

1. Suppose [0]; a1 : A1,a2 : Aa,...,a, : A, = a: A is not derivable in NLlab,

2. Mark all labelled formulas on the left hand side with T and a : A with F. The
resulting T-F set is

Ao ={Tay: A1,...,Ta, : An,Fa: A}.

Construct a model such that each a} supports A4;, but a* does not support A.
In other words, extend Ag to A and prove that z* E X iff Tz : X € A.

To realize this idea of the completeness proof we need to identify some properties
of T — F sets, i.e sets of labelled formulas marked with T or F'.

PROPERTIES OF T-F SETS. Let A be a T — F set, Va the set of all labels that
occur in A, Apg the set of all triangles associated with A, and § € T (i.e. § is a
tree). We loosely say that § C Ag if all triangles that occur in § are members of

Apg.

e A is deeply consistent (d.c.) iff whenever § C Ag , v1,...,7 are T-members
of A and [6]; 71,...,7 = 7 is derivable, then Fy ¢ A.

e A is h-complete (Henkin complete) iff

(i) if Fa: A — B € A, then there are z,y € Va such that (y,za) € Ag,
Tx: A€ Aand Fy: B € A;

(i1) if Fa : A < B € A, then there are z,y € VA such that {y,az) € Ag,
Tx: A€ Aand Fy: B € A;

(iii) if Ta : Ae B € A, then there are z,y € VA such that (a,zy) € Ap,
Trx:Ae Aand Ty: B € A.

e A is r-complete (relatively complete) iff
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(i) if Fa: Ae B € A and (a,zy) € Apg, then
either Fz: A€ Aor Fy: B € A;

(ii) f Ta: A > B € A and (y,za) € Ag, then
either Fz: A€ AorTy: B € A;

(i) if Ta: A < B € A and (y,ax) € Ag, then
either Fz: A€ AorTy: B € A.

e A is mice iff it is d.c., h-complete, r-complete

e Let A be a T-F set, z € VA and A be a non-labelled formula. We say that A
and x are linkedin A iff Te: A€ Aor Fz: A€ A.

HENKIN MODEL.

LEMMA 3.1. If A is a nice T — F set, then there exists a model M' = (W, R,* V)
such that if z € VA and X are linked in A, then Tz : X € A iff 2* = X in M'.

PROOF. Define M’ as follows:

W = Va (the set of all labels that occur in A);

Rz,yz iff (z,yz) € Ag.

forallz € Va, z* ==

V is such that Tz :pe Aiff z* =pin M".
The lemma is proved by induction on the length of X. In the atomic case the claim
is a direct consequence of the definition. We have to take care of three cases when
proving the inductive step.
The first case: X = Ae B.

1. Suppose Ta: Ae B € A.

2. Since A is h-complete there are z,y € Va such that (a,zy) € Ag, Tz : A€ A
and Ty : B € A.

3. Therefore Ra,zy;x = A and y = B (by inductive assumption) and a = Ae B
4. Thusa* = Ae B

1. Suppose a* |= A e B and therefore a |= A e B.

2. Then there are =,y € W such that Ra,zy;z = A and y = B.

3. Since a and A e B are linked in A, either Ta: Ae B€ Aor Fa: Ae B € A.
Let us suppose that Fla: Ae B € A.

4. Since A is r-complete, Fa : AeB € A and (a,zy) € Ag (because Ra, zy) imply
that either Fz : A € A or Fy : B € A; in both cases we get a contradiction
with [2.].

Thus Ta: Ae B € A.

The second case: X = A -+ B
1. Suppose Ta: A — B € A.
2. Suppose Re,ba and b = A
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3. Then {(c,ba) € Ap and Tb: A€ A

4. Since A is r-complete, [1.] [2.] and [3.] imply T'c: B € A, and therefore by
the inductive assumption ¢ = B

5. Hence, a* = A — B

1. Suppose a* A — B

2. Suppose Ta : A — B ¢ A. Then since a and A — B are linked in A,
Fa:A— BeA

3. By h-completeness of A, there are b,c € VA such that
Tb: A€ A,Fc: B € A and (c,ba) € Ag

4. By inductive assumption, get a contradiction.

Therefore Ta: A - B € A

The third case can be left to the reader O

Lemma 3.1 enables one to claim that if a sequent u : A = w : B is not derivable
and the corresponding T' — F' set {Tu : A, Fu : B} can be extended to a nice one,
then there exists a model where u : A = u : B is falsified. Now we have to define
how to make the relevant extensions of d.c. sets. We start with the definition of
saturation with h-witnesses and then r-witnesses.

HARMLESS WITNESSES. Formulas of the form Fa: A — B, Fa: A<+ B, Ta: AeB
will be called h-formulas (Henkin formulas). Let A be a d.c. set. By adding h-

witnesses we refer to the following procedure:

(i) if Fa: A — B € A, then add new labels b and ¢ to Va; {(c, ba) to Ag and new
labelled formulas Tb: A and Fc: B to A;

(ii) if Fa : A + B € A, then add new labels b and ¢ to Va ; {(c,ab) to Ag and
new labelled formulas Tb: A and Fc: B to A;

(i) f Ta: Ae B € A, then add new labels b and ¢ to Va; {a,bc) to Ar and new
labelled formulas 7b: A and Tc: B to A.

We say that in (i)-(iil) the point a generates points b and c. The set of successors

of a point z (X,) is defined by (iv)-(v):
(iv) if z generates y, then y € X,;
(v) if u € X, and u generates w, then w € X,.

To saturate some T — F' set A with r-witnesses perform (i)-(iii)

(i) if Fa: Ae B € A and {a,zy) € AR, then add Fz : A to A if it does not
disturb d.c. of A, otherwise add Fy : B

(ii)if Ta: A — B € A and (y,za) € Ag, then add Fz : A to A if it does not
disturb d.c. of A, otherwise add T'y : B

(ii) if Ta : A « B € A and (y,az) € Apg, then add Fz : A to A if it does
not disturb d.c. of A, otherwise add Ty : B.
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Formulas of the form Fa : AeB, Ta: A — B, Ta: A + B will be called r-formulas.
We say that an r-formula Fa : Ae B (resp. Ta: A — B,Ta : A + B) is active
in A if there are b, ¢ € Va such that (a,bc) € Ag (resp. {c,ba) € Ag, {c,ab) € Ag).

Let A be a T — F set, Va be a set of labels that occur in A and Ag be a set
of triangles associated with A such that each member of Apg is a result of some
h-decomposition. Then the following propositions hold.

ProProsITION 3.2. If z € VA and X is the set of all successors of x, then all members
of X are distinct.

PROOF. Direct consequence of the definition of adding h-witnesses. O
ProPOSITION 3.3. If § C Ag, then § is generated by a single point.

PROOF. Straightforward induction on the size of §. Indeed, if § = (a, bc), then it is
generated by a single point according to the definition of adding h-witnesses.

CLAIM

If § = &1&2, and z is their common point, then either & or & is generated by z
PROOF. If in both & and & z is a generated point, then z has to be generated
twice: as a daughter and as a root, which is not possible, since by the definition of
adding h-witnesses every point in Apg is uniquely generated. Thus, at least in one
of this trees z is a generator.

Next, suppose § = &1&2, = is their common point, and §; is generated by z, while
& (i,j =1,2) is generated by y. Then either z =y or x is a successor of y or vice
versa. In all this cases § = &5, is generated by a single point. a

PROPOSITION 3.4. Let §1,d52 C Ag with root (d2) € leaves (61). Then 6162 C Ag

PROOF. We have to show that §;> is a well defined tree, or in other words, that d;
and d; have no other points in common besides z. Reasoning by analogy with the
proof of the Proposition 3.3, conclude, that = generates §; or d2 or both of them.
If = generates é; and y generates d,, then no matter if z is a successor of y or vice
versa, the successor would always generate fresh points , therefore §; and §, can
not share any points besides z. If z generates both §; and 5, then in one case the
set of successors would be generated by z as a root (and therefore, by a formula of
the form T'a : A e B) while the second set would be generated by z as a daughter
(and therefore by formula of the form Fa: A — B or Fa : A + B), thus two latter
sets can not share any members. a

LEMMA 3.5. Let A be a d.c. set, and each member of Ag is a result of some h-
decomposition. If 3 is an active r-formula in A, then there always exists an r-witness
of B which can be added to A without disturbing its deep consistency.

PROOF
The first case: Fa: AeB e A

Let 8 be Fa : Ae B and (a,bc) € Ar. Suppose that neither A + Fb : A, nor
A+ Fc: B is d.c. Then clearly

(1) there exist §; C Ag and T-members of A ~q,...,7, such that

(*) [61]’ Yis---3Yn =Y
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is derivable in NL12P and v is an F-member of A + Fb: A. Since A is d.c.,
7 is nothing else but b : A4;, and (x) has actually the form

(*) [0 M, =>bra
Thus, b is the root of §;

(2) there exist 62 C Ag and T-members of A ay,...,a, such that

(%%)  [b2]; @1,..., 00 > @

is derivable in NL12P and « is an F-member of A + Fc : B. Once again, since
A is d.c., « is nothing else but ¢ : B; whence

(x%)  [02]; @1,...,anp =>c: B
is derivable and therefore ¢ is the root of §,
According to Proposition 3.4 ({a, bc)d1)dz is a well defined tree, thus by (1) and (2)
[({a,bc)d1)da]; Y1s--sVhyQ1ye-oyan = AeB

is derivable. Since ({a,bc)d1)ds C Ag and v1,...,vk,a1,--.,a, are T-members of
A but a: A e B is an F-member of A, A can not be d.c..

The second case: Ta: A — Be A

Let Ta: A — B € A and {c,ba) € Ag. Suppose neither A+ Fb: Anor A+Tc: B
is d.c. Then clearly

(1) there exist §; C Ag and T-members of A ~q,. .., such that
[61]’ Yis---s Ve =Y

is derivable in NL12P and v is an F-member of A + Fb: A. Since A is d.c.,
-y is obviously b : A;

(2) there exist 62 C Ag and T-members of A +Tc¢: B aj,...,a, such that
[02]; a1,y.- 00 =

is derivable in NL12P and a is an F-member of A. Since A is d.c., there
exists an index ¢ such that a; coincides with ¢ : B;

Clearly cis a leaf of 62 and b is aroot of §;. According to Proposition 3.4 (d2{c, ba))dy
is a well defined tree. Therefore the sequent

[(02(c,ba))d1]; a1, s ic1, Y1,y Ykr 0t A= Biagyy,...,on =>
turns out to be derivable and A can not be d.c..

The last case (o :=Tb: A « B) is left to the reader. O

LEMMA 3.6. Adding h-witnesses does not disturb d.c..
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PROOF. Suppose Fla : A — B belongs to a d.c. set A. Suppose that adding {c, ba)
(where b and ¢ are fresh) to Ag and adding Tb: A and Fc: B to A does disturb

d.c.. Therefore, there exists a derivable sequent

@) 6 Y- v =

such that § C Agp U {(c,ba)}; 71,-..,vn are T-members of A +Tb: A and v is an
F-member of A + Fc : B. Note, that if (c,ba) does not occur in §, then A is not
d.c.. Thus 6 = (c,ba)dy, for some &; C Ag, moreover b and ¢ can occur only once
in a tree, generated by §. Therefore v coincides with ¢ : B and 7; coincides with
b: A, hence the sequent (#) has actually the form

[(c,ba)é1]; b: A, v2y. ..y n=>c: B

Thus
[01]; 725y =>a: A—> B

is also derivable, and since d; C Ag, 71, --,7n are T-members of A, anda : A — B
is an F-member of A, A can not be d.c.. In the case of adding h-witnesses of
Fa:B <+ AorTa: AeB our argument would not be much different. a

COMPLETENESS PROOF: FROM DEEPLY CONSISTENT SETS TO NICE SETS. Re-
call our initial assumption: a : A = a : B is not derivable in NL!%®. Define

Ag,...Ap,...(n € N) as follows:
Ao ={Ta: A, Fa: B}.
An41: add all possible h-witnesses to A,,, corresponding triangles to Ag,_
A, 42: add all possible r-witnesses to A,,41.

By Lemma 3.5 and Lemma 3.6, A = UA;(¢ € N) is nice. Now our Completeness
Theorem becomes just a direct consequence of the previous results.

Completeness theorems for NLP!® L%t and LP'"’ require the additional proof
that taking the associative or permutational closure of some d.c. set does not disturb
its deep consistency. But this is guaranteed due to the presence of the corresponding
structural rule in the sequent presentation of the labelled version of the Lambek
Calculus. Note, that the Cut rule was not used in our completeness proof, which
means that we have obtained semantical proof of Cut Elimination theorem. For the
constructive procedure of Cut Elimination we refer to [Kurtonina 95].

4 Labelling with Kripke tree terms

The labelling preceding subsection decorated the formulas always with atomic la-
bels: the structure of the database was accounted for by adding to the sequent
language an explicit representation of the tree configuration of the atomic labels.
The alternative labelling regime to be introduced below has a term language to
build structured labels out of the atomic labels. The term language now directly
captures the structure of the database, so that we can remove the book-keeping
component from the sequent language.

DEFINITION 4.1. Elementary tree terms, tree terms, proper tree terms.
(i) If z € Lab, then z is an elementary tree term

(i1) If x is an elementary tree term, then x is a tree term;
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(iil) If &, x are tree terms and z € Lab,, then r(z,&, x) is a tree term.

A tree term t is called proper if all its elementary subterms are distinct.
We define the size (1) of the tree term as follows:

(i) if z is an elementary tree term, then [(z) =0

(i) I(r(=,&x)) = 1) +100) +1

Example r(a,r(z,r(y,bc),d)e) is a proper tree term which corresponds to the
following tree: ({a,ze)(z,y,d)){y,b,c).

To prove that each proper tree term corresponds to some tree and vice versa, one
proceeds by induction on the length of a tree term for one direction and on the
length of a tree for the other one.

DEFINITION 4.2. Labelled sequents with Kripke tree terms. Let a, b, c be elementary
tree terms, and ¢, u,v proper tree terms. A labelled sequent is an expression of the
form

a;:Ay,as: Ag,..,an A, >t A

where each a;(1 < i < n) is an elementary tree term and t is a proper tree term.

DEFINITION 4.3. Labelled sequent calculus. Let X,Y be finite multisets of formulas
labelled with elementary tree terms. And let a, b, c be elementary tree terms, ¢, u,v
proper tree terms as before. We write ¢ = ¢'[u/v] if ¢ is obtained from the proper
tree term t' by replacing the subterm v by wu.

The labelled sequent presentation for the basic system NL12P has one axiom-
scheme and the following inference rules:

a:A =>a:A
X=>t:4 c:B)Y=>t:« b: A, X = r(c,bt): B

a:A—->B, X)Y=>t:a X=t:A—> B
where t = t5[r(c, t1a)/c]

X=t:4 c:B,)Y =t :a b: A, X =r(c,bt): B
a: A+~ B X, Y= t:a X=>a:B+ A
where t = ta[r(c, at;)/c]

b:A,c:B,X=>t:«a Xi=>t: A Xo = t2: B
a:AeB, X =>t:«a X1,Xs = r(a,ti1tz): Ae B
where t = t1[a/r(a, bc)]

As before, one obtains labelled presentation for the systems L, NLP and LP by
adding Associativity, Permutation or their combination:

X=>t:A
X=>t:A

where (Associativity) ¢’ can be obtained from ¢ by replacing a subterm r(a, t1, (b, t2t3))

by a tree term r(a,r(c,t1t2)t3), provided that c is fresh, or (Permutation) where ¢'
can be obtained from t by replacing a subterm r(a, t1t2) by a tree term r(a, tat1).
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Clearly via translation of proper tree terms into trees and vice versa one can
easily prove the equivalence of the two formulations of the Lambek Calculus. A di-
rect consequence of this fact is soundness and completeness of the Lambek Calculus
with tree terms as labels with respect to ternary relation semantics.

5 Generalizations

In the preceding section we have looked at the systems NL, L, NLP, LP and
presented uniform labelled sequent calculus for these logics, with completeness re-
sults for the relevant classes of ternary frames. The methods used are quite general:
they can be straightforwardly applied to a number of related systems. Two gen-
eralizations seem especially relevant in view of current linguistic applications: the
move from unimodal to multimodal architectures, and the introduction of unary
multiplicative operators in addition to the familiar binary ones. We discuss these
in turn.

5.1 Multimodal architectures

In the preceding paragraphs, we have studied the systems NL, L, NLP, LP in iso-
lation: each of these systems characterizes a distinct resource management regime
in terms of a package of structural rules — rules for the manipulation of labels in
our labelled presentation. It has been argued in the linguistic literature (see for ex-
ample [Moort. & Morrill 91], [Moort. & Oehrle 94], [Morrill 94] and [Moortgat 95]
that for purposes of actual grammar development, one wants to have access to the
combined inferential capacity of these various systems.

On the model-theoretic level, such a mixed style of inference requires a move from
unimodal frames (W, R) to multimodal frames (W, {R;}:cr). We now distinguish a
family of accessibility relations: each of these R; can have its own individual resource
management properties, or if R; and R; have the same resource management regime
they can still be kept distinct in virtue of their indexes ¢ and j. On the syntactic
level, we also index the connectives with ¢ € I, so that we can interpret each e;
(and its residual implications —; and <;) in terms of its own accessibility relation
R;. Structural postulates, and the corresponding frame conditions, are relativized
to the mode indexes. Apart from the standard structural options differentiating
NL, L, NLP and LP, the multimodal architecture supports mized forms, where
Associativity or Commutativity apply when two modes are in construction with each
other. Such mixed structural principles greatly enhance the linguistic expressivity
of the framework. See [Moort. & Oehrle 94], [Morrill 94] for concrete illustrations.
We will treat the labelled version of such principles in a moment.

Our framework for labelled deduction directly accommodates the multimodal
categorial architecture. We sketch the necessary changes for the tree term labelling.
In the definition of tree terms, we now have a family of term constructors r; instead
of the one r of the unimodal setting

DEFINITION 5.1. Multimodal systems: elementary tree terms, tree terms, proper
tree terms. Let Lab, be a set of atomic markers, as before, and I a set of resource
management mode indices.

(i) If z € Lab, then z is an elementary tree term
(i1) If x is an elementary tree term, then x is a tree term;

(iii) If £, x are tree terms , z € Lab, and ¢ € I, then r(z,&, x) is a tree term.
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Similarly, in the definition of the multimodal labelled sequent calculus, we harmo-
nize the mode information on the connectives and on the associated tree term labels.
Below the logical rules for the connectives.

X=>t:A4 c:BY =>t:a b: A, X = ri(c,bt) : B
a:A—=;B, X,)Y=>t:«a X=>t:A—; B
where t = ta3[r;(c, t1a) /]

X=>t:A c:B)Y =t :a b: A, X = ri(c,bt) : B
a:A+—; B, XY= t:a X=>a:B+; A
where t = t3[r;(c, aty)/c]

b:A,C:B,Xitlla X1:>t1:A X2:>t2:B
a:Ae; B X=t:a X1,Xo = ri(a,ti1ts) : Ae; B
where ¢t = t1[a/7i(a, bc)]

The structural rules, in the multimodal setting, are mode restricted: they refer to
specific resource management mode labels. Our earlier versions of Associativity and
Permutation would now assume the following form (for obvious mode labels).

X=>t: A
X=>t:A (t)

¢ Associativity Rule: (1) wheret' = [rgss(a, Tass(c, t1t2)t3) /Tass(a, t1,Tass (b, t2t3))],
provided that c is fresh.

e Permutation Rule: (f) where t' = t[rperm (a, tat1)/Tperm(a, t1t2)].

Apart from these familiar unimodal structural options, our language is now
expressive enough to also formulate mixed version for situations where different
modes are in construction with each other. As an illustration, we present versions of
Mixed Associativity and Mixed Commutativity for communication between modes
1 and j. The structural postulates are as follows.

Mixed Commutativity Ae; (Be; C)F Be;(Ae; ()
Mixed Associativity Ae;(Be;C)F (Ae;B)e; ()

Translated in the labelling format, these structural postulates become rules for
manipulating term labels:

o Mixed Associativity Rule: (f) where t' = t[r;(a,r;i(c,t1t2)ts)/ri(a, t1,7;(b, t2t3))]
, provided that c is fresh.

e Mixed Permutation Rule: (f) where t' = t[r;(a, tar;i(c, tits))/ri(a, t1,7; (b, t2t3))].

For a linguistic application of this type of communication principle, the reader can
turn to [Moort. & Oehrle 94], who give a multimodal analysis of head-adjunction
phenomena such as can be found in the Germanic Verb-Raising construction. In a
sentence such as

dat Jan (een boek (wil lezen))
(that J. a book wants read) i.e.
that John wants to read a book
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the verb ‘wil’ (want) has to be combined semantically with the combination of the
main verb ‘lezen’ (read) and its direct object ‘een boek’ (a book). But on the syn-
tactic level, ‘wil’ does not combine with the phrase ‘een boek lezen’ but just with
its head, viz. ‘lezen’. Let the main verb combine with its arguments in mode i,
and the modal auxiliary ‘wil’ in mode 7, then the Mixed Commutativity rule makes
it possible to proceed from the surface syntactic organization to the configuration
required for semantic interpretation.

5.2 Unary multiplicatives

The labelling method and completeness proof of the previous sections was formu-
lated for families of binary residuated connectives and their ternary accessibility
relation. Residuation can be generalized to n-ary families of connectives inter-
preted with respect to n + 1-ary accessibility relations, [Dunn 91] for an excellent
survey, and [Moortgat 95, K& M 95] for the categorial application. Our labelling
approach can be applied straightforwardly in the generalized residuation setting.
Especially relevant for the linguistic applications is the case of unary residuated
operators, interpreted with respect to a binary accessibility relation. The basic
residuation pattern for the unary operators assumes the following form:

CA=B iff A=0O'B

Semantically, we have the usual truth conditions below:

z = CAiff Jy(Rzy & y = A)
z = OVYA iff Vy(Ryz = y E A)

DEFINITION 5.2. Labelled sequent calculus: unary residuated connectives. Labelled
sequent presentation for unary multiplicatives requires a generalization of the notion
of a tree term to include binary tree terms built with the constructor 72 next to
the ternary case we had before: if £ is a tree terms, z € Lab, then r%(z,£) is a tree
term. The logical rules for the new connectives <&, 0% then assume the following
form.

b: A, X =1t :B X =r%(a,t): A
a:YA, X =>t:B X =t:0M4
where t = t;[r%(b, a)/b]

b:A,X=t:B X=>t:A
a: A, X=>1t:B X = r?(a,t) : OA
where t = t;[a/r*(a,b)]

6 Concrete uses of labelling: sortal refinement

The use of labelling in the previous sections is still on the conservative side: we have
given a uniform presentation for a family of categorial type logics with different
resource management properties by introducing a division of labour between the
sequent language and the labelling discipline: the sequent language is kept uniform,
and the syntactic fine-tuning is taken care of by the labels.

In this section we want to give a very simple illustration of a form of labelling
where the label has acquired a greater degree of independence from the formula,
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i.e. where the label allows one to incorporate additional information relevant to
the process of linguistic inference. We show how one can decorate simple type as-
signment with labels capturing morphophonological sortal information. The sortal
decoration makes it possible to rule out derivations that would go through if we
restricted the attention to unlabelled type assignments.

Compare the adjective modifier very and the prefix un-. On the syntactic level,
they are both functors taking adjectives into adjectives. We could assign them
the type a + a and type a to happy. But given this type assignment both the
grammatical very unhappy and the ungrammatical un-very happy are derivable
according to the scheme

a+a,a¢a,a=>a

Can we refine the type assignment in such a way as to take into account the differ-
ent combinatory possibilities of affix, words, and phrases? To block the undesired
derivation and to keep the desired one we decorate the type formulas with sort
labels, characterizing very and happy as syntactic words and un- as an affix. Our
assignments in labelling format could take the form

very word : a<+a
un- affix : a<+a
happy word : a

Moreover, we have to impose constraints on the composition relation in order to
characterize the well-formed combinations on the morphophonological sort level:

(i) (word, affix word)
(ii) (phrase, word phrase)
(iii) (phrase, word word)

Next, to express the fact that a syntactic word can do the duty as a phrasal expres-
sion (but not vice versa, of course) we adopt the following rule:

Let ¥ be a set of constraints and a triangle § € ¥ has a root —word, then
there exists 6’ € ¥ with the same leaves as ¢ and with the root—phrase.

In our case that means that (i) adds one more triangle to the set of constraints:
(¢") (word, affix word)

Now using suitable abbreviations and marks to distinguish tree points we can

present a derivation of very unhappy:

phi:a=phy:a pha :a = phs:a
wyia= w :a [{(phz2,waphi)]ws : @ < a,phy : a = pha : a
[(pha, waphi ){phi,afwi)];ws 1 a < a,af :a + a,w; :a = phy:a

On the other hand un- very unhappy turns out to be underivable since our
constraints on composition relation do not allow to combine affix with phrase.

Formally passing from the abstract style of labelling to the concrete style exem-
plified here we have to specify the definition of a model (W, R, V') of interpretation
by taking W as a set of sorts and imposing frame constraints on R which are indi-
cated above.

Thus on the level of interpretation, filtering out derivations that would be valid
in the non-labelled setting is realized by restricting the class of all ternary models
to those satisfying the constraints formulated above.

As we remarked at the beginning of this paragraph, our objective here was just to
provide a simple illustration of ‘autonomous’ forms of labelling. For an elaboration
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of this style of labelling on a much more fundamental and wide-ranging level, we
can refer to Ruth Kempson’s work on combining syntactic and semantic inference

[Kempson 95].

7 Conclusion

Our main objective in this paper has been to develop a uniform labelling regime
for the landscape of categorial resource logics, and to establish completeness of the
labelling discipline with respect to the general frame semantics. As remarked at the
beginning of this paper, in computational studies of categorial grammar, labelling
is often introduced as a tool to obtain efficient parsing strategies. We leave it as
a topic for further research how the general labelling method developed in this
paper can be combined with the compilation techniques of [Morrill 95] that allow
for efficient checking of subproblems of the general labelling problem in terms of
optimal data-structures.
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