FROM SHARP TO UNSHARP QUANTUM LOGIC: A NEW LOOK AT THE EFFECTS OF A HILBERT SPACE

ROBERTO GIUNTINI

The starting point of the unsharp approach to quantum mechanics (QM) ([2]) is deeply connected with a general problem that naturally arises in the framework of Hilbert space quantum theory. Let us consider an event-state system $(\Pi(\mathcal{H}), \mathcal{S}(\mathcal{H}))$, where $\Pi(\mathcal{H})$ is the set of **projections**, while $\mathcal{S}(\mathcal{H})$ is the set of all density operators of the Hilbert space \mathcal{H} (associated to the physical system under investigation). Do the sets $\Pi(\mathcal{H})$ and $\mathcal{S}(\mathcal{H})$ correspond to an *optimal* possible choice of adequate mathematical representatives for the intuitive notions of event and of state, respectively? Once $\Pi(\mathcal{H})$ is fixed, Gleason's Theorem guarantees that $\mathcal{S}(\mathcal{H})$ corresponds to an *optimal* notion of state: for, any probability measure defined on $\Pi(\mathcal{H})$ is determined by a density operator of \mathcal{H} (provided the dimension of \mathcal{H} is greater than or equal to 3). On the contrary, $\Pi(\mathcal{H})$ does not represent the largest set of operators assigned a probability-value since there are bounded linear operators E of \mathcal{H} that are not projections and that satisfy the Born's rule: for any density operator ρ , $\text{Tr}(\rho E) \in [0,1]$. In the unsharp approach to QM, the notion of quantum event is liberalized and the set $\Pi(\mathcal{H})$ is replaced by the set of all effects of \mathcal{H} (denoted by $\mathcal{E}(\mathcal{H})$), where an effect of \mathcal{H} is a bounded linear operator Ethat satisfies the following condition, for any density operator ρ : $\text{Tr}(\rho E) \in [0,1]$. Clearly, $\mathcal{E}(\mathcal{H})$ properly includes $\Pi(\mathcal{H})$.

The set $\mathcal{E}(\mathcal{H})$ can be naturally structured ([1],[2]) as a *Brouwer-Zadeh poset* (BZ-poset) $\langle \mathcal{E}(\mathcal{H}), \leq, ', ^{\sim}, \mathbb{O}, \mathbb{I} \rangle$, where

- (i) $E \leq F$ iff for any density operator $\rho \in \mathcal{S}(\mathcal{H}) : \text{Tr}(\rho E) \leq \text{Tr}(\rho F)$;
- (ii) $E' = \mathbb{I} E$ (where is the standard operator difference);
- (iii) $E^{\sim} = P_{Ker(E)}$, where $P_{Ker(E)}$ is the projection associated to the kernel of E:
- (iv) \mathbb{O} and \mathbb{I} are the null and the identity projections, respectively.

The BZ-poset $\mathcal{E}(\mathcal{H})$ turns out to be properly fuzzy since the noncontradiction principle is violated $(E \wedge E' \neq \mathbb{O})$. Further, the BZ-poset $\mathcal{E}(\mathcal{H})$ fails to be a lattice ([2]). In a quite neglected paper, however, Olson ([4]) proved that $\mathcal{E}(\mathcal{H})$ can be equipped with a natural partial order \leq_s (called *spectral order*) in such a way that $\langle \mathcal{E}(\mathcal{H}), \leq_s \rangle$ turns out to be a *complete lattice*. In this paper, we will investigate the algebraic properties of the structure $\langle \mathcal{E}(\mathcal{H}), \leq_s, ', \sim, \mathbb{O}, \mathbb{I} \rangle$ and we will introduce a new class of BZ-lattices (called $BZ^* - lattices$) that represents a quite faithful abstraction of the concrete model based on $\mathcal{E}(\mathcal{H})$ (see also [3]). Interestingly enough, in the framework of BZ*-lattices different abstract notions of "unsharpness" collapse into the one and the same concept, similarly to what happens in the concrete BZ*-lattices of all effects.

References

- [1] G. Cattaneo and G. Nisticò, "Brouwer-Zadeh posets and three-valued Lukasiewicz posets", Fuzzy Sets and Systems 33, 165–190, 1986.
- [2] M. L. Dalla Chiara, R. Giuntini and R. Greechie, Reasoning in Quantum Theory, Kluwer, Dordrecht, 2004.
- [3] H. F. de Groote, "On a canonical lattice structure on the effect algebra of a von Neumann algebra", arXiv:math-ph/0410018v2, 2005.
- [4] M. P. Olson, "The selfadjoint operators of a von Neumann algebra form a conditionally complete lattice", *Proceedings of the American Mathematical Society* **28**, 537–544, 1971.

(Giuntini) Dipartimento di Pedagogia, Psicologia, Filosofia Università di Cagliari, Via Is Mirrionis 1, I-09123 Cagliari, Italy

 $E ext{-}mail\ address: giuntini@unica.it}$