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Quantales. The term quantale was introduced by Mulvey as the ‘quantum’ counterpart of the term
locale. Locales can be thought of as pointfree topological spaces, and as such, they are dual to
commutative C*-algebras via the Gelfand duality. Mulvey considered quantales in the context of
a research program aimed at providing dual counterparts to general C*-algebras, and extending
the Gelfand duality in a noncommutative way.

In the Gelfand duality, the algebra-to-space direction consists in associating any commutative
C*-algebra with its maximal ideal space. This construction was extended to noncommutative
C*-algebras by considering the spectrum Maz A of any unital C*-algebra A, i.e. the unital in-
volutive quantale of closed linear subspaces of A. This gives rise to a functor Max which was
extensively studied for more than a decade as it was considered the best candidate for the C*-
algebra-to-quantale direction of a noncommutative Gelfand-Naimark duality. Remarkably, MazA
is a complete invariant of A, i.e. if A and A’ are C*-algebras such that MazA and MaxA’ are
isomorphic, then A and A’ are isomorphic. However, there are several problems with Max: 1) it
has no adjoints, which is a necessary condition for its providing one direction of a duality; 2) it
is not full on isomorphisms, i.e. some isomorphisms of spectra of C*-algebras do not arise from
C*-algebra morphisms [5]; 3) there is no purely algebraic characterization of the class of quantales
isomorphic to quantales of type Max A; 4) there is no canonical way of constructing A from Maz A.
These difficulties motivate the quest for alternative ways of linking C*-algebras and quantales.
Besides their interest in relation to C*-algebras, quantales have been extensively studied in logic
and theoretical computer science: not only do they provide the standard algebraic semantics for
various resource-sensitive logics such as linear logic [2,12], they have also been applied to the study
of the semantics of concurrent systems and their observable behaviour, described in terms of finite
observations. Finite observations are formalized as semidecidable properties, and can therefore be
identified with open sets of a topological space [11]; however, this perspective does not account for
those (quantum-theoretic) situations where performing finite observations on a systems produces
changes in the system itself. In those cases, the set of the finite observations that can be performed
on a system has a natural noncommutative structure of quantale. The basic view on quantales as
generalized topologies can be retrieved also in this context. In [1], this perspective was applied on
quantales to provide a uniform algebraic framework for process semantics and develop a systematic
study of various notions of observational equivalence between processes.

Merging perspectives: the case study of Penrose tilings. Recently, investigation has focused on ways
to integrate the two perspectives on quantales as noncommutative topologies and as algebras of
experimental observations on computational (or physical) systems, and use them to investigate the
connection between quantales and C*-algebras. In [6], an important example was studied, which
concerns a classification of Penrose tilings using quantales. This classification is alternative to the
one previously introduced by Connes (consisting in associating a certain C*-algebra A with the
space (K, ~) of Penrose tilings). The classification in [6] is based on a logic of finite observations
performed on Penrose tilings, the Lindenbaum-Tarski algebra of which is a quantale (denoted by
Pen). This classification arises from a canonical representation of the free quantale Pen as a
quantale Pen of relations on (K, ~). In [6], the exact connection between Pen and A was left as
an open problem, but since Pen is not isomorphic to MarAg, the case study of Penrose tilings
was considered pivotal in finding the alternative connection between quantales and C*-algebras in
the restricted but geometrically significant setting in which they both arise from groupoids.
Etale groupoids and their quantales. In [10], the example of Penrose tilings is generalized to a du-
ality on objects between localic étale groupoids and certain unital involutive quantales referred to
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as inverse quantal frames (indeed, their underlying sup-lattice structure is a frame). An important
feature of inverse quantal frames Q is that, denoting the unit of Q by e, the restriction of the prod-
uct to the subquantale Q. = el coincides with the lattice meet. The groupoid-to-quantale direction
of this correspondence arises from observing that, for every étale localic groupoid G = (Gy, G1),
the groupoid structure-maps induce a structure of unital involutive quantale on the locale Gy,
which becomes an inverse quantale frame. Conversely, the étale localic groupoid associated with
an inverse quantal frame Q is based on the locales Gg := Q. and G, := Q.

Towards a non étale generalization of Resende’s correspondence. In [7], a unital involutive quantale
is associated with any topological groupoid in a way alternative to Resende’s but compatible with
it when the topological groupoid is étale. This route makes it possible to account for the connection
between the quantale Pen and the C*-algebra Ag, which was left as an open problem in [6]. The
quantale associated with a topological groupoid G is the sub sup-lattice of P(G1) generated by
the inverse semigroup S of the images of the local bisections of G.

Spatial SGF-quantales. Building on [7], in [8], a bijective correspondence is established between
certain unital involutive quantales referred to as spatial SGF-quantales and topological groupoids
s.t. G is sober. This class of groupoids includes equivalence relations arising from group actions,
and significantly extends the class of étale topological groupoids. Dually, inverse quantal frames
are exactly those SGF-quantales the underlying sup-lattice of which is a frame. The correspon-
dence defined in [8] extends the theory of [10] to a point-set, non étale setting. Interestingly, this
correspondence also forms the basis of a representation theorem for SGF-quantales into unital
involutive quantales of relations [9], similar to the one for relation algebras in [4].

Etale vs. non étale. The comparison between the correspondences in [10] and [8] is facilitated by
the observation that a topological groupoid is étale iff the images of its local bisections form a
base for the topology on 1. The étale topological setting can be shown to be exactly the one in
which the groupoid-to-quantale routes in [10] and in [8] coincide.

Work in progress. The proposed talk reports on ongoing work [3] aimed at generalizing the cor-
respondence of [8] from a topological to a localic setting. This amounts to defining a bijective
correspondence between general SGF-quantales and localic (non étale) groupoids. The quantale-
to-groupoid direction is the difficult one. In the point-set case of [8], the points of G; are obtained
as equivalence classes of tuples (p, f) such that p is a point of Gy, f is a partial unit of @ (partial
units being those elements which dually correspond to local bisections), and satisfying an algebraic
condition which geometrically means that “f is defined on p”. Any such equivalence class can be
understood a posteriori as the value f(p) of f at p. The pointfree counterpart of the condition
“f is defined on p” is one in which points are replaced by locally closed sublocales of the locale
X associated with the frame Q.. The main strategy consists in defining the restrictions of local
bisection to locally closed subspaces of X in the language of SGF-quantales. This makes it possible
to extend in a unique way any SGF-quantale Q to a quantale Q s.t. the locale corresponding to
Q. is the locale LC(X) generated by the locally closed subspaces of X, and then derive from
the SGF-axiomatization that O is an inverse quantal frame, which hence gives rise to a localic
groupoid G with Gy = LC(X). Finally, the localic groupoid associated with Q will be defined as
the canonical push-forward of this groupoid by the canonical projection LC(X) — X.
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