
Dynamic Unioning Plural Logic

Ezra Keshet

University of Michigan

Abstract

Popular plural logics based on van den Berg (1996) require complex machinery: a
structured inclusion relation to properly maintain dependencies (e.g., ‘⊑’ in Brasoveanu
(2013)), and maximization and distributivity operators to correctly analyze quantifica-
tion, among others. Systems following van den Berg (1996) introduce even further ma-
chinery (see Nouwen, 2003; Brasoveanu, 2008). Here instead I propose the new Dynamic
Unioning Plural Logic (DUPL) a simpler system that replicates the van den Berg system
(and addresses some of its empirical issues) with only one new operator and one new term
type.

1 Defining Dynamic Unioning Plural Logic

Following van den Berg (1996), I assume an interpretation relation J K :: 〈G,G〉→t over pairs of
states 〈G,H〉, each consisting of sets of assignments. J K is interpreted relative to a model 〈D, I〉
comprising a domain of individuals D :: e and a predicate interpretation function I :: pn→{e}n.
The domain contains only singular individuals, but the predicates expect plural individuals
(sets of individuals) as their arguments, where singleton sets represent singular arguments.
Specifically, I maps each predicate of arity n to an n-tuple of plural individuals, those intuitively
making the predicate true. The assignments g :: v→e|⋆ in each state G :: G map variables
to D∪{⋆}, individuals in the model plus the dummy value ⋆, representing missing values in
the assignment. Finally, we will use two varieties of terms (type τ) in predicate literals: plain
variables like “x” and augmented variables preceded by a plus-sign, like “+x.” See Figure 1 for
a summary of these types and their conventional meta-language notations.

Type Meta-language notation Description
t T, F Truth values
e A1 . . . An, . . . , Z1 . . . Zn Individuals in the model
⋆ ⋆ Dummy value
v ν, a . . . z, a′ . . . z′, . . . Variables
τ τ Terms: “ν” or “+ν”
g = v→e|⋆ g, h Assignments
G = {g} G,H,K,L Sets of assignments
f φ, ψ Formulas
pn P Predicates of arity n

Figure 1: Domains in DUPL

Some useful abbreviations are shown in Figure 2. Namely, “g[x]h” indicates that assignments
g and h differ at most in their value for variable x. Relatedly, “G[x]H indicates that H is a
superset of G where each assignment in H is related to an assignment in G via [x]. Next,
“Gx,+y” (for example) represents that subset of state G where assignments all have defined
values for the variables x and y in the subscript (ignoring the plus signs of terms). “G(x)”
represents a plural individual drawn from all the values in component assignments g ∈ G. This

Proceedings of the 22nd Amsterdam Colloquium 218

DUPL Ezra Keshet

is the only source of plurality, as assignments map variables to singular individuals. Sequences
of terms “(τ1, . . . , τn)” may be abbreviated as “−→τn.” Finally, ⋆© is the “all-star” assignment,
mapping any variable to ⋆.

Notation :: Type Expansion

g[x]h :: t g\{〈x, g(x)〉}=h\{〈x, h(x)〉}

G[x]H :: t G ⊆ H ⊆ {h : ∃g∈G (g[x]h)}

G(+)x,(+)y,... :: G {g∈G : g(x) 6= ⋆ & g(y) 6= ⋆ & . . .}

G(x) :: {e} {g(x) : g∈Gx}
−→τn :: τn (τ1, . . . , τn)

⋆© :: g λx.⋆

Figure 2: Abbreviations

The full definition of DUPL, summarized in Figure 3, defines the following kinds of formulas:

• Random assignment “[x]” relates an input state G to any superset H of G whose assign-
ments differ from assignments in G only in their values for variable x. Thus, random
assignment introduces states with new plural values for x and new dependencies between
these values and existing values in G. This (along with the definitions of conjunction “;”
and the union operator “∪x(. . .)” below) ensures that states always get larger as formulas
progress.

• Predicate literals “P −→τn” are tests over the values of their argument terms τ1 . . . τn. For
plain variable terms x, this is the set of values for x just in the substate where all the
argument variables are defined (i.e., 6=⋆). For instance, P (x, y) evaluated in a state G will
only examine Gx,y. This allows testing a predicate literal to ignore values defined outside
the current context. When global testing is required, augmented terms +x are used, since
their interpretation comprises all values for x throughout the current state.

• Dynamic conjunction is defined, as usual, via relation composition, and negation is a test
ensuring that J K does not relate the input G to any output.

• The union operator “∪xφ” is the only new operator in DUPL. It relates an input G to the
union of certain outputs for G in J[x];φK, namely those outputs K that only differ from G
in assignments where x is defined. The expression K\Kx returns the set of assignments

GJ [x] KH iff G[x]H

GJP −→τn KH iff G=H &
〈

G
−→τn(τ1), . . . , G

−→τn(τn)
〉

∈I(P)

GJ φ;ψ KH iff G(JφK◦JψK)H

GJ ¬φ KH iff G=H & G/∈dom(JφK)

GJ ∪xφ KH iff H=
⋃

{K : GJ[x];φKK & K\Kx=G} & H 6=∅

Figure 3: The DUPL System

G
−→τn(x) = G−→τn

(x)

G
−→τn(+x) = G(x)

Figure 4: Terms

2

Proceedings of the 22nd Amsterdam Colloquium 219

DUPL Ezra Keshet

in K where x=⋆ (i.e., x is undefined). This set must be identical to the input G. The
overall output state H will always be a superset of G, since each K will also be a superset
of G. This definition also effectively requires x to be undefined before ∪x; otherwise, each
K\Kx cannot be equal to G (if G had values for x they would be removed by “\Kx”).

This condition on the states K essentially maintains the input state as “read-only”: the
output state H may add assignments, but never remove assignments from G or alter mem-
bers of G without also introducing a value for x. In practice, this feature serves to limit
the operation of random assignment. For instance, inside a union clause ∪x(. . . [y]; . . .), a
clause “[y]” will add values for y only to those assignments that also have a value for x.

Finally, we will call a formula φ true in DUPL iff { ⋆©} ∈ dom(JφK), where ⋆©, again, is the
“all-star” assignment that maps every variable to ⋆.

2 Using DUPL

2.1 Preliminaries

Without “∪x,” and restricting ourselves to singleton values, DUPL roughly replicates Dynamic
Predicate Logic (DPL, Groenendijk and Stokhof, 1991), since each state contains a single con-
tentful assignment, as shown in (1):1

(1) A woman entered. She sat. [w]; 1(w);woman(w); entered(w); sat(w)
∀h : { ⋆©}J(1)K{h} iff h(w) is a woman who entered and sat, and ∀ν 6=w (h(ν)=⋆).

The clause “[w]” introduces all states whose assignments differ from ⋆© at most in their
values for w. For instance, { ⋆©}, {[w→A1]}, { ⋆©, [w→A1]}, {[w→W7]}, {[w→A1], [w→W7]}, and
{ ⋆©, [w→A1], [w→W7]} are all possible output states. The predicate “1” is meant to be true of
only singleton values, and therefore “1(w)” eliminates those states G with non-singleton values
for G(w). The remainder of the formula eliminates those states G in which G(w) is not a
woman who entered and sat. This still may leave several states, each of whose singular value
for G(w) satisfies these requirements.

Such variation among states in DUPL serves roughly the same purpose as in DPL: it models
indeterminacy about the value of variables (sometimes explained as listener uncertainty about
speaker reference). In order to introduce plurality, though, we will need variation within a
DUPL state, among assignments, as shown in (2):

(2) Three women entered. They sat (together). [w]; 3(w);women(w); entered(w); sat(w)
∀H : { ⋆©}J(2)KH iff H(w) is 3 women who entered and sat, and ∀ν 6=w (H(ν)=∅).

Here, the predicate literal 3(w) allows only states G where |G(w)| = 3. Assuming the predicates
women, entered, and sat all apply to (non-singleton) sets of individuals, the output states for
{ ⋆©} generated by (2) will all contain three women who entered and sat together in the model.
Depending on the definitions for the predicates, these sets may even overlap: for instance, if five
women entered and sat together, the outputs of this formula will contain all size-three subsets
of this group of five.

1The output states H may also contain ⋆©, but this will not affect the value for H(w) since ⋆©(w) = ⋆.

3

Proceedings of the 22nd Amsterdam Colloquium 220

DUPL Ezra Keshet

2.2 Introducing Unions

The “∪x” operator converts such state-external variation into state-internal variation, achieving
a sort of maximization. For instance, a formula including “∪w(. . .)” can represent a maximal
version of plural “some,” as shown in (3). The “∪w” flattens several states exhibiting indeter-
minacy (i.e., which women are w?) into one state exhibiting plurality (i.e., G(w) represents all
women who entered).

(3) Some women entered. They sat together. ∪w(women(w); entered(w)) ; sat(w)
{ ⋆©}J(3)KH for the H s.t. ⋆©∈H and H(w) comprises all women who entered, H(w) all
sat together, and ∀ν 6=w (H(ν)=∅).

Note that the formula “[w];women(w); entered(w)” alone always relates its input G to outputs
containing G. Therefore, the definition of ∪w requires that the input { ⋆©} be a subset of the
output state in (3), since each for each K being unioned inside ∪w, K will always be a superset
of its input. Since each K must therefore contain ⋆©, the union of all such K will also include
⋆© and the output of the union clause will be a superset of its input. In fact, the outputs of a
union clause ∪x will always be supersets of their inputs. This is reflected in Fact 1:

Fact 1. For any G and H such that GJ∪x(. . .)KH, G ⊆ H.

This fact prevents assignments in the input from being lost in the output of “∪x(. . .)”.
Building on (3), we can introduce a formula for a maximal reading of the indefinite “three

women,” as shown in (4). The clause “3(w)” appears outside the union, and therefore it simply
acts as a test on states. Specifically, it will only be true in models where three women total
entered, since w has already been maximized to all the women in the model who entered.

(4) Three women entered. They sat together. ∪w(women(w); entered(w)); 3(w); sat(w)

2.3 Collective Quantifiers

Generalized quantifiers use the union operator once for their restrictor and once for their nuclear
scope. This process allows later reference to a restrictor set and a nuclear scope / reference
set. For instance, in outputs G of the formula in (5), G(s) will comprise all the students, and
G(s′) all the students who gathered on the quad. As shown in (6), such plural values may be
referenced by future pronouns.

Fact 1 ensures that the embedded union clause of (5) does not erase any of the values for s,
guaranteeing that G(s) will still hold all the students by the end of the formula. The subclause
“s′=s” requires that K(s′) ⊆ K(s) in each of its output states K. Recall that [s′] can introduce
any size plural value for s′ in its output state. Two-variable literals2 like s′=s only check their
truth in the substate where both variables are defined, though. Thus, for the output H of
(5), the values for s where s′ is defined, namely Hs,s′(s), must equal the values for s′, namely
Hs,s′(s

′). This only requires H(s′) to be a subset of H(s), though, since there can be other
values for s, in assignments where s′ is undefined.

Finally, MOST represents an appropriate predicate over sets. Notice that the literal
MOST (+s,+s′) is the first we have seen to use the augmented terms +x. This type of term
is necessary here, because we want to compare all values for s, not just those where s′ is also
defined. An illustration of states used to calculate this sentence is shown in Figure 5, assuming
that S1 . . . S4 are the students in the model and S1 . . . S3 gathered on the quad. The values for

2For simplicity, I will assume that each model provides an appropriate equality predicate.

4

Proceedings of the 22nd Amsterdam Colloquium 221

DUPL Ezra Keshet

s and s′ do not need to line up in any given assignment, as long as they match up correctly
overall.

(5) Most students gathered on the quad.
 ∪s(students(s); ∪s′ (s

′=s; gathered(s′))) ; MOST (+s,+s′)

(6) They waved signs. waved-signs(s′)

s s′

⋆ ⋆
S1 ⋆
S2 ⋆
S3 ⋆
S4 ⋆
S1 S2

S2 S1

S3 S3

s s′

⋆ ⋆
S1 ⋆
S2 ⋆
S3 ⋆
S4 ⋆
S1 S1

S2 S2

S2 S3

Figure 5: Two possible outputs of (5), ignoring unused variables

One more feature of the nested union operators in (5) is that there are no assignments g
in any output state such that g(s)=⋆ but g(s′) 6=⋆. Such an assignment might be part of an
output of the inner union clause, since ∪s′(. . .) does not remove outputs with defined values for
s′. However, the outer union clause will not let such assignments pass, since ∪s(. . .) will not
allow assignments lacking a value for s to add a value for s′. In general, the following fact can
be deduced:

Fact 2. For any G such that Gy=∅ and H such that GJ∪x(. . . [y]; . . .)KH, Hy\Hx = ∅.

This is a relativized form of opacity: variables y introduced inside unions ∪x(. . .) will not be
accessible outside of Gx for output states G.

2.4 Distributive Quantifiers

Distributivity can be achieved in DUPL by ensuring that states within a union clause contain
at most one value for a particular variable, i.e., ∪x(1(x); . . .). This is illustrated in (7). Internal
to the distributive “∪w′(1(w′); . . .)”, representing the nuclear scope of (7), “w′=w; entered(w′)”
might produce outputs K1 and K2 in Figure 6, assuming only W1 and W2 smiled in the model.
Note that K1(w

′) and K2(w
′) both contain a single woman who smiled.3 Crucially, though,

K1(w) and K2(w) both still contain all women in the domain. Therefore, the union of these
sets creates a state H such that H(w) is all women (here W1 . . .W3) while H(w′) is only those
who smiled.

(7) Most women smiled.
 ∪w(1(w);woman(w); ∪w′ (1(w′);w′=w; smiled(w′))) ; MOST (+w,+w′)

Donkey anaphora follows easily from this set-up, as shown in (8). For example, Figure 7 shows
a component nuclear scope state representing a woman W1 who bought two books B1 and

3Technically, distribution would not be necessary on the nuclear scope if the restrictor is already distributed,
as in this case. Distribution is shown for consistency with other cases and the final version of the system
presented below.

5

Proceedings of the 22nd Amsterdam Colloquium 222

DUPL Ezra Keshet

B2, but only read B1, capturing (weak) donkey anaphora. Notice that the other women who
bought books are also included in this state (along with their books), but the interpretation
of predicate literals like “read(w′, b)” only considers the substate where all their argument
variables are defined. In this state, that substate would be the single assignment represented
by the last row of Figure 7.

For strong donkey anaphora, we can simply replace the nuclear scope with the formula
“∪w′(1(w′);w′=w; ∪b′ (b

′=b) ; read(w′, b′))” which stores in the variable b′ all books read by
the woman w′ and then tests whether she read all these books.4 The reason b′ will only store
values for the current woman w′ is that the outer union ∪w′(1(w′); . . .) will filter out states that
alter assignments where w′=⋆. Since there is only one value for w′ in each state, the only books
stored in b′ in each state that passes this filter will be those bought by this particular woman
w′. The same process could be repeated separately for donkey pronouns other than books, and
therefore mixed cases of weak and strong donkey anaphora can also be handled (van der Does,
1992; Brasoveanu, 2008).

Quantificational subordination is the same process as donkey anaphora, just across sen-
tences, as shown in (9), where SOME is also a set relation. Discourse plurals are also simple
in DUPL, as shown, e.g., by w and w′ in MOST (w,w′); b in the same context would be all
woman-bought and -read books. For instance a following clause “on-table(b)” could assert that
the books the women bought and read are on the table.

(8) Most women who bought a book read it.
 ∪w(1(w);woman(w); [b]; book(b); bought(w, b); ∪w′ (1(w′);w′=w; read(w′, b))) ;

MOST (+w,+w′)

(9) Some of them loved it.
 ∪w2

(

1(w2);w2=w′; ∪w3

(

1(w3);w3=w2; loved(w3, b)
))

; SOME(+w2,+w3)

K1

w w′

⋆ ⋆
W1 ⋆
W2 ⋆
W3 ⋆
W1 W1

K2

w w′

⋆ ⋆
W1 ⋆
W2 ⋆
W3 ⋆
W2 W2

H
w w′

⋆ ⋆
W1 ⋆
W2 ⋆
W3 ⋆
W1 W1

W2 W2

Figure 6: Possible states in (7)

w b w′

⋆ ⋆ ⋆
W1 B1 ⋆
W1 B2 ⋆
W2 B3 ⋆
W3 B4 ⋆
W1 B1 W1

Figure 7: State in the calculation of (8)

3 Discussion

3.1 Multiple Maximal Outputs

Referential indeterminacy may extend to seemingly quantified variables, not just those intro-
duced by indefinites, when collective predicates are involved. For instance, (10) may be true

4This formula assumes read can apply collectively to a set of books; an additional distribution would be
required otherwise.

6

Proceedings of the 22nd Amsterdam Colloquium 223

DUPL Ezra Keshet

where there are multiple separate groups of students who sat together, each comprising one-
third of the students total. This reading is not captured by a straight-forward generalized
quantifier translation like the first translation in (10):

(10) One third of the students sat together.
 1 ∪s(students(s); ∪s′ (s

′=s; sat-together(s′))) ; 1
3 (+s,+s

′)
 2 ∪s(students(s)) ; [s′]; s′=s; 1

3 (+s,+s
′); sat-together(s′)

The “multiple thirds” reading seems to be captured better by an indefinite-like definition for
“one-third”, as shown in the second translation in (10). In general, then, it seems as though
certain determiners are ambiguous between a maximal reading and an indefinite reading. This
distinction is not captured in the current system, although the indefinite reading seems to be
easier with the more numerically precise determiners. For instance, they in (11) cannot refer
to a set of most students that sat together that is not the maximal one:

(11) Most students sat together. They discussed politics.

3.2 Reference to the Restrictor Set inside the Nuclear Scope

Nouwen (2003) points out cases where within a distributive nuclear scope, a plural pronoun
seems to refer to a value established in the restrictor, as shown in (12). Failure to capture
such cases is one empirical shortcoming of the original van den Berg (1996) system. DUPL can
handle this case without further modification, though, since even in a distributive context, the
entire previous state is available for reference. (See, for instance, states K1 and K2 in Figure 6
above.)

If we use plain x variable terms, the only reading available is one where the fathers each
give a pep talk only to their own daughters, not all the daughters. This is because plain terms
in predicate literals are always evaluated at the substate where all their arguments are defined;
so, “gave-peptalk(f ′, d)” for instance would exclude any value for d other than f ′’s daughter.

Thus, here is another case where we will use augmented variable terms “+x,” which are
evaluated in the full state, rather than some substate thereof. Using these terms, “+d” in the
literal “gave-peptalk(f ′,+d)” in (12) will refer to all the daughters, rather than only the local
value of d where f ′ is defined:

(12) Each father with a daughter at the meet gave them (all) a pep talk.
 ∪f (∪f (1(f); father(f); [d]; daughter(d, f); at-meet(d)) ;

∪f ′ (1(f ′); f ′=f ; gave-peptalk(f ′,+d))); ALL(+f,+f ′)

Notice that the translation here assumes a second, embedded union term ∪f (1(f); . . .) dis-
tributing over the restrictor. This is so that the full collected / unioned set of fathers and
daughters from the restrictor is available in the calculation of the nuclear scope. The outer,
surrounding union ∪f (. . .) merely serves to restrict where the nuclear scope variable f ′ is de-
fined, as discussed when Fact 2 was introduced. This outer union will have no other effect,
though, since the inner union over f prevents its input state from having any defined value for
f . This is therefore required to be a case where random assignment of f in the outer union
does nothing.

7

Proceedings of the 22nd Amsterdam Colloquium 224

DUPL Ezra Keshet

4 Conclusion and Comparisons

A few small features in the definition of DUPL conspire to allow the behaviors described above.
First, the progression of discourse states in DUPL is monotonically increasing, in the sense that
every output state (where there is one) is a superset of its input. This means that previous
discourse states are always available for reference in later clauses of a formula. For instance,
even when distributing over the nuclear scope of a quantifier, while the nuclear scope variable,
say x′, might only have one value, all previous values for the restrictor variable x will always be
available. This allows reference to the restrictor set inside the nuclear scope. This monotonicity
is due to random assignment always outputting a superset of its input (and no other clause
type interfering with this feature). Although predicate literals still must refer sometimes to
a substate of the current state, this is achieved via plain x variable terms, whose values are
calculated within such a substate.

Second, the union clauses in DUPL provide the maximization necessary for quantification,
but limit changes as follows: the union clauses introduce a new reference variable x and filter
out any states that make changes outside the “scope” of x (where the scope is the substate
where x is defined). This constraint prevents spurious values for a subordinate variable from
projecting beyond the union clause. Instead, any variable y introduced inside the scope of x
will only be available in future contexts where x is defined, as in quantificational subordination.

Further operators, such as complex inclusion relations and distributive operators are not
necessary, given this initial set-up.

4.1 Comparison to previous systems

Random assignment in van den Berg (1996) introduces a new plural value for a variable x,
but does not introduce any dependencies between the new variable and other variables. His
definition also explicitly maintains the dependencies between other variables in the input state.
Nouwen (2003) uses a very similar definition for his plural logic. Brasoveanu (2007), following
earlier work of van den Berg (van den Berg, 1994), introduces both a value and dependencies
for a new variable x, but still explicitly maintains the dependencies between other variables.

Random assignment in DUPL is most similar to Brasoveanu’s version, introducing any value
or dependencies for a new variable. The major difference, as mentioned above, is that DUPL
ensures that the output of random assignment is a superset of its input. This guarantees that
we preserve the input as read-only, a fact which was crucial for correctly capturing generalized
quantifiers and reference to the restrictor set inside the nuclear scope.

Predicate literals in van den Berg’s system (and Nouwen’s) always take the entire state-wide
value for their argument variables. Brasoveanu introduces both a distributive and a state-wide
version of predicate literal interpretation, building on the “abstraction” operation of Kamp and
Reyle (1993).

DUPL uses a different definition, restricting variable values in a predicate literal to those in
the substate where all the predicate’s argument variables are defined. In addition, “+x” style
variable terms allow reference to the complete state. This small change allows reference to local
contexts via plain terms and global contexts via augmented terms.

Existing plural logics all help themselves to further operators defined as relations over states,
rather than as abbreviations for more basic operations. DUPL is a reaction against this, an
attempt to derive as much as possible from a smaller basic set of operations.

The other systems all include a distributive operator. Distribution in van den Berg’s system
is over a variable x, and explicitly applies a given formula to all substates where x has only one
value, before unioning / stitching these values back together. Nouwen updates this definition

8

Proceedings of the 22nd Amsterdam Colloquium 225

DUPL Ezra Keshet

only to allow reference to the restrictor set. Brasoveanu distributes down to the individual
assignment level, rather than relativizing the distribution to the value of a particular variable.

Existing systems also include a maximization operator, somewhat akin to ∪x(. . .) above. For
van den Berg and Brasoveanu, maximizing a formula with respect to a variable x outputs only
those states whose values for x is not smaller than any other output’s value for x. Nouwen’s
version of maximization (ς) is closer to DUPL, since his is a combination distributive and
maximization operator.

DUPL, instead, takes advantage of the fact that the union operation inherently stitches
together states. Then, distribution can be defined without a new operator, simply by requiring
substates within a union clause to contain at most one value for a given variable.

The systems due to van den Berg and Brasoveanu define a special inclusion operator “⊆”
or “⊑” to ensure the correct relationship between the restrictor set variablex (e.g., x) and the
nuclear scope set variable (e.g., x′). (Nouwen has a different view on projection of the restrictor
set.) Clauses like “w′=w” in DUPL replicate van den Berg’s inclusion operator, ensuring that
if w′ has a non-⋆ value, this value will match w. Since random assignment always carries along
the full input state, even if w′ does not comprise all values in w, all values in w will nevertheless
be available for later use. No special inclusion operator is required.

There are other differences. Brasoveanu allows individual assignments to return plural
values. Nouwen’s system eschews variables and assignments in preference to indexed stacks of
values. These choices are largely orthogonal to the points in this paper, though. In addition, the
other systems introduce further operators that cannot be defined as abbreviations of multiple
simpler operations (for instance, Brasoveanu (2007) has a relativized “atom” operator to capture
certain scope effects). Although DUPL aims to avoid the introduction of further such operators,
I leave to future work the examination of whether DUPL already captures the empirical cases
that drove the creation of each such operator.

References

Martin H. van den Berg. A direct definition of generalized dynamic quantifiers. In MJB Stokhof
and P Dekker, editors, Proceedings 9th Amsterdam Colloquium, pages 121–140. ILLC, 1994.

Martin H. van den Berg. Some aspects of the internal structure of discourse. The dynamics of

nominal anaphora. PhD thesis, University of Amsterdam, 1996.

Adrian Brasoveanu. Structured nominal and modal reference. PhD thesis, Rutgers, The State
University of New Jersey, 2007.

Adrian Brasoveanu. Donkey pluralities: plural information states versus non-atomic individuals.
Linguistics and philosophy, 31(2):129–209, 2008.

Adrian Brasoveanu. The grammar of quantification and the fine structure of interpretation
contexts. Synthese, 190(15):3001–3051, 2013.

Jacob Maarten van der Does. Applied quantifier logics. PhD thesis, University of Amsterdam,
1992.

Jeroen Groenendijk and Martin Stokhof. Dynamic predicate logic. Linguistics and Philosophy,
14(1):39–100, 1991.

9

Proceedings of the 22nd Amsterdam Colloquium 226

DUPL Ezra Keshet

Hans Kamp and Uwe Reyle. From discourse to logic: Introduction to modeltheoretic semantics

of natural language, formal logic and discourse representation theory, volume 42. Kluwer
Academic Dordrecht,, The Netherlands, 1993. ISBN 0792310276.

Rick Nouwen. Plural pronominal anaphora in context. PhD thesis, University of Utrecht, 2003.

10

Proceedings of the 22nd Amsterdam Colloquium 227

