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Abstract

A form of the aspect calculus hypothesized in Dowty 1979 to explain “the different
aspectual properties of the various kinds of verbs” is reinterpreted by chaining segments
incrementally, as in Landman 2008. Segmenting an interval brings out, it is argued, a
notion of event that can be represented at bounded but variable granularities by strings of
sets of temporal propositions, tracking change. Simple accounts of telicity, durativity and
composition interpreting Moens and Steedman 1988 are given in terms of such strings.

1 Introduction

The hypothesis from [Dow79] that “the different aspectual properties of the various kinds
of verbs can be explained by postulating a single homogeneous class of predicates – stative
predicates – plus three or four sentential operators and connectives” (page 71) has, over the
years, profoundly influenced work on lexical aspect, in spirit, if not always in letter. Propositions
are interpreted relative to interval world pairs, and a proposition ϕ said to be homogeneous when
it holds at an interval world pair 〈I, w〉 precisely if it holds at 〈{t}, w〉 for every t ∈ I. Sentential
operators are then applied for “a reductionist analysis of the aspectual classes of verbs” (page
71). Under a simplified reformulation from [Rot04] (page 35) that departs from the letter, if
not the spirit, of the hypothesis, the operators DO, BECOME and CAUSE yield activities (1a),
achievements (1b), and accomplishments (1c), with CAUSE reworked in (1c) using a culmination
function Cul and a summation operation tS producing singular entities.

(1) a. activities λe.(DO(ϕ))(e)

b. achievements λe.(BECOME(ϕ))(e)

c. accomplishments λe.∃e′[(DO(ϕ))(e′) ∧ e = e′ tS Cul(e)]

As an approximation of the accounts in [Dow79, Rot04], (1) is very rough, but serves to bring
out events e, conspicuously absent in [Dow79]. It is clear from, say, the eventuality structures in
[Lan08] that interpreting propositions as sets of interval world pairs (satisfying the propositions)
does not preclude events. But we can test the reductionism in [Dow79] by asking: are events
not already implicit in the interval world interpretation of propositions? The claim of the
present paper is that they are, and that they can be made explicit along the “segmental” and
“incremental axes” in [Lan08].

The segmental-incremental divide is used in [LR12] to refine the notion of homogeneity
above (for stative ϕ) to an incremental notion for eventive predicates “sensitive to the arrow of
time” (page 97). Turning to telicity, note the arrow of time differentiates the second half of a
run to the post-office from its preceding half. Inasmuch as a run to the post-office is telic, and
its second half (but not its first) is also a run to the post-office, it is problematic to equate telic
predicates with quantized predicates ([Kri98]). Let us represent the arrow of time by a linear
order ≺ on temporal instants, lifted to intervals I and I ′ universally for “whole precedence”

I ≺ I ′ ⇐⇒ (∀t ∈ I)(∀t′ ∈ I ′) t ≺ t′.
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A sequence I1 · · · In of intervals is a segmentation of an interval I if
⋃n

i=1 Ii = I and Ii ≺ Ii+1 for
1 ≤ i < n ([Fer13a]). That is, a segmentation of I is a finite partition of I ordered according to
≺. The point in partitioning an interval is to track changes within the interval in propositions,
including statives that make achievements and accomplishments telic (by culminating).

The importance of choosing a suitable segmentation is illustrated by the rule (2), where we
write I m I ′ to mean the sequence II ′ is a segmentation of I ∪ I ′1

I m I ′ ⇐⇒ I ≺ I ′ and I ∪ I ′ is an interval.

(2) I m I ′ and 〈I, w〉 6|= ϕ and 〈I ′, w〉 |= ϕ =⇒ ϕ becomes w-true between I and I ′

One problem with (2) is that the interval I mentioned there may have a segmentation I1I2 such
that 〈I1, w〉 6|= ϕ, but 〈I2, w〉 |= ϕ, in which case, under (2), ϕ becomes w-true between I1 and
I2 (i.e., within I), as well as between I and I ′. Such circumstances can be avoided through
a negation ¬, called predicate negation in [Ham71] and strong negation in [AF94], with ¬ϕ
w-satisfied by intervals that have no subinterval w-satisfying ϕ

〈I, w〉 |= ¬ϕ ⇐⇒ (∀J v I) 〈J,w〉 6|= ϕ.

(where the subinterval relation v is ⊆ restricted to intervals). We then strengthen 〈I, w〉 6|= ϕ
in (2) to 〈I, w〉 |= ¬ϕ in (3).

(3) I m I ′ and 〈I, w〉 |= ¬ϕ and 〈I ′, w〉 |= ϕ =⇒ ϕ becomes w-true between I and I ′

Note that 〈I, w〉 |= ¬ϕ collapses to 〈I, w〉 6|= ϕ if the interval I is (ϕ,w)-homogeneous in that I
has no subintervals J and J ′ such that 〈J,w〉 |= ϕ and 〈J ′, w〉 6|= ϕ — i.e., if

(∃J v I) 〈J,w〉 |= ϕ ⇐⇒ (∀J v I) 〈J,w〉 |= ϕ.

Under the assumptions in (3), I∪I ′ cannot be (ϕ,w)-homogeneous, though I ′ could (along with
I), which would mean ϕ is w-satisfied by every subinterval of I ′. Lest change get buried in a
non-homogeneous interval (such as I ∪ I ′ in (3)), we will chain together homogeneous intervals
(such as I and I ′) for a segmentation (such as II ′) bringing out change.

Change is detected through propositions ϕ, which it will be useful to assume have certain
properties commonly associated with states since [BP72] — the subinterval property

〈I, w〉 |= ϕ and J v I =⇒ 〈J,w〉 |= ϕ

and the additive property

〈I, w〉 |= ϕ and 〈I ′, w〉 |= ϕ =⇒ 〈I ∪ I ′, w〉 |= ϕ whenever I ∪ I ′ is an interval

illustrated by the entailments (4) and (5), respectively.

(4) Ed slept from 1pm to 4pm =⇒ Ed slept from 2pm to 3pm

(5) Ed slept from 1pm to 4pm and from 2pm to 5pm =⇒ Ed slept from 1pm to 5pm

Combining these properties, let us say ϕ is w-segmented if for all intervals I and I ′ whose union
I ∪ I ′ is an interval,

〈I, w〉 |= ϕ and 〈I ′, w〉 |= ϕ ⇐⇒ 〈I ∪ I ′, w〉 |= ϕ.

This is somewhat weaker than the notion of homogeneity for statives ϕ in [Dow79] (mentioned
in the opening paragraph above), under which ϕ is w-pointwise in that for every interval I,

〈I, w〉 |= ϕ ⇐⇒ (∀t ∈ I) 〈{t}, w〉 |= ϕ.

It turns out that if ϕ is w-segmented,

1In [Ham71], m is abutment on the left ; in [KR93] abutment ; and in [AF94] meet .
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(R1) a segmentation of I consists of (ϕ,w)-homogeneous intervals iff it w-tracks ϕ in I

and if moreover, ϕ is w-pointwise,

(R2) an interval I has a segmentation into (ϕ,w)-homogeneous subintervals iff ϕ does not
change its w-truth value infinitely often in I

where the right hand sides of (R1) and (R2) are made precise in the next section, section 2.
(R1) reinforces the view that segmentations into (ϕ,w)-homogeneous intervals are the way to
represent ϕ’s changes in w, whereas (R2) describes the price to be paid for such representations.
But why should we be interested in these representations? Because from representations of
change, we can expect to extract representations of events that are parts of that change. To
carry this out, we will work with not just one w-segmented proposition ϕ but a set X of such.
We shall come under pressure to assume X is finite, and discover that X provides a useful
notion of granularity that is bounded but refinable. Aspectual notions such as telicity and
durativity will focus our attention in section 3 on the propositions in X, reducing, for every
world w,

(i) an interval I to the set

Xw(I) = {ϕ ∈ X | 〈I, w〉 |= ϕ}

of propositions ϕ ∈ X w-satisfied at I, and

(ii) a segmentation I1 · · · In to its (X,w)-diagram, the string

Xw(I1 · · · In) = Xw(I1) · · ·Xw(In)

over the alphabet 2X of subsets of X.

For a fixed granularity X, we represent events and reconstruct the connectives DO and BECOME
directly in terms of strings in (2X)+. Events can be conceived as truthmakers [Dav67] (page 91),
relative to a notion |=w of satisfaction between a segmentation I1 · · · In and a string α1 · · ·αm ∈
(2X)+ requiring that m = n and 〈Ii, w〉 satisfy each proposition in αi

I1 · · · In |=w α1 · · ·αm ⇐⇒ n = m and (∀i ∈ [1, n])(∀ϕ ∈ αi) 〈Ii, w〉 |= ϕ

(where [i, j] is the set of integers ≥ i and ≤ j). The world parameter w is largely inactive
throughout (sitting idly along for the ride). In fact, working with strings, we can dispense with
worlds at the outset, constructing as many as we wish from a notion of branching time that
enriches the incremental axis of [Lan08]. But to link up with [Dow79] and the tradition from
which it sprang, we have no choice but to keep the worlds around.

Section 2 provides model-theoretic justification for a string-based approach to a form of the
aspect calculus of [Dow79] close to [MS88]. This approach is taken up in section 3 and can be
understood, up to a point, without section 2’s justification.2 Minimizing the technical fuss, we
can summarize section 2 as follows. Relative to a set Φ of propositions and its family

Fin(Φ) = {X ⊆ Φ | X is finite}

of finite subsets, an interval world pair 〈I, w〉meeting assumptions largely familiar from [Dow79]
is represented by a Fin(Φ)-indexed family {sX}X∈Fin(Φ) of strings sX ∈ (2X)∗ that picture
〈I, w〉 up to granularity X. Suitable substrings of the strings sX represent (up to granularity
X) events that happen within the interval world pair pictured. Section 3 bases its account of
telicity and durativity on a simple choice of X. That account can be refined by expanding X.

2Indeed, a variant of section 3 is described in [Fer13a] without the benefit of Propositions 1 and 2 of section 2.
Instead, [Fer13a] locates segmented propositions in an adjunction with (so-called) whole propositions, applying
that adjunction to the imperfective/perfective divide (analyzed as viewpoint aspect).
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2 From segmentations to strings

Attending promptly to (R1), let us track a w-segmented proposition ϕ in I through segmen-
tations of I satisfying the following definition. A segmentation I1 · · · In of I is (ϕ,w)-fine if
for every subinterval I ′ of I, ϕ holds at 〈I ′, w〉 precisely if I ′ is covered by components Ii that
w-satisfy ϕ

〈I ′, w〉 |= ϕ ⇐⇒ I ′ ⊆
⋃
{Ii | i ∈ [1, n] and 〈Ii, w〉 |= ϕ}.

Proposition 1. Let ϕ be a w-segmented proposition, and I = I1 · · · In be a segmentation of I.

(a) I is (ϕ,w)-fine iff (∀i ∈ [1, n]) Ii is (ϕ,w)-homogeneous.

(b) If I is (ϕ,w)-fine, then so is any segmentation that is a finer partition of I.

(c) If I is (ϕ,w)-fine, then so is any segmentation into n− 1 subintervals obtained from I by
merging two components Ii and Ii+1 such that

(〈Ii, w〉 |= ϕ and 〈Ii+1, w〉 |= ϕ) or (〈Ii, w〉 6|= ϕ and 〈Ii+1, w〉 6|= ϕ).

An easy corollary of Proposition 1(c) is that if I has a (ϕ,w)-fine segmentation, it has a (ϕ,w)-
fine segmentation J1 · · · Jk such that

〈Ji, w〉 |= ϕ ⇐⇒ 〈Ji+1, w〉 6|= ϕ for every i ∈ [1, k − 1]

and this is the coarsest (and shortest) of all (ϕ,w)-fine segmentations of I. But if we want a
(ϕ,w)-fine segmentation of I that is also (ϕ′, w)-fine for a different w-segmented proposition
ϕ′, the coarsest (ϕ,w)-fine segmentation may not do (making Proposition 1(b) relevant).

Collecting w-segmented propositions of interest into a set X, let us call a segmentation
(X,w)-fine if it is (ϕ,w)-fine for every ϕ ∈ X. When does an interval have an (X,w)-fine
segmentation? Clearly, a necessary condition is that no ϕ in X alternate between w-true and
w-false infinitely often in I. More precisely, let us call a sequence I1 · · · In of subintervals of I
a (ϕ,w, n)-alternation in I if for all i ∈ [1, n− 1], Ii ≺ Ii+1 and

〈Ii, w〉 |= ϕ ⇐⇒ 〈Ii+1, w〉 6|= ϕ.

An interval I is (X,w)-stable if for every ϕ ∈ X, there is an integer n > 0 such that no (ϕ,w, n)-
alternation in I exists. The necessary condition that I be (X,w)-stable is also sufficient for
finite X, provided we assume that each ϕ ∈ X is not only w-segmented but (as [Dow79] does
for statives) w-pointwise, making (R2) from the introduction precise in

Proposition 2. Fix an interval I, world w and finite set X of w-pointwise propositions.

(a) I has an (X,w)-fine segmentation iff I is (X,w)-stable.

(b) If I is (X,w)-stable, then there is a coarsest (and shortest) (X,w)-fine segmentation of I.

To describe the coarsest (X,w)-fine segmentation of an (X,w)-stable interval, it is helpful to
define a segmentation I1 · · · In to be (X,w)-compressed if for all i ∈ [1, n− 1],

Xw(Ii) 6= Xw(Ii+1)
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where (as mentioned in the introduction) Xw(Ii) is the set of propositions in X that 〈Ii, w〉
satisfy. Given an (X,w)-fine segmentation I1 · · · In of I, we can merge contiguous blocks
IiIi+1 · · · Ii+j of components that w-satisfy the same propositions in X

Xw(Ii) = Xw(Ii+1) = · · · = Xw(Ii+j)

to form an (X,w)-compressed segmentation refined by I1 · · · In, which is, furthermore, the
coarsest (and shortest) (X,w)-fine segmentation of I.

Focusing on strings, including the (X,w)-diagram Xw(I1) · · ·Xw(In) of a segmentation
I1 · · · In, let us call a string α1 · · ·αk stutterless if for all i ∈ [1, k − 1], αi 6= αi+1. Clearly,
a segmentation is (X,w)-compressed iff its (X,w)-diagram is stutterless. Moreover, we can
express the formation above of an (X,w)-compressed segmentation in terms of the block com-
pression bc(s) of a string s, compressing all contiguous blocks αj+1 of a symbol α to α

bc(s) =

 bc(αs′) if s = ααs′

α bc(βs′) if s = αβs′ with α 6= β
s otherwise

so that bc(s) is stutterless. Next, we fix an arbitrary (possibly infinite) set Φ of w-segmented
propositions, and picture a Φ-stable pair 〈I, w〉 through a function ∆I,w with domain the set
Fin(Φ) of finite subsets of Φ such that for every finite X ⊆ Φ, ∆I,w(X) is the (X,w)-diagram
of the coarsest (X,w)-fine segmentation of I. The functions ∆I,w belong to the inverse limit
IL(Φ) of the Fin(Φ)-indexed family {bcX}X∈Fin(Φ) of functions bcX = ρX ; bc : (2Φ)∗ → (2X)∗

mapping s ∈ (2Φ)∗ to the block compression bc(ρX(s)) of the X-restriction ρX(s) intersecting
each component of s with X

ρX(α1 · · ·αk) = (α1 ∩X) · · · (αk ∩X).

An example is (6), where boxes are drawn instead of curly braces {, } for sets as symbols.

(6) bc{E}( E E,R E ) = bc(ρ{E}( E E,R E )) = bc( E E E ) = E

For the record, IL(Φ) is the set of functions f with domain Fin(Φ) such that

f(X) = bcX(f(Y )) whenever X ⊆ Y ∈ Fin(Φ).

Φ-stable pairs 〈I, w〉, all of which are represented in IL(Φ), vary wildly, giving IL(Φ) an
intensional dimension. Incremental inclusion ⊆i from [Lan08] on intervals I and I ′

I ⊆i I ′ ⇐⇒ I v I ′ and not (∃t′ ∈ I ′) {t′} ≺ I

can be rendered into strings s and s′ as the prefix relation

s prefix s′ ⇐⇒ (∃s′′) ss′′ = s′

construing s within a string sα as the past of α. We lift prefix to IL(Φ), building into an
irreflexive relation ≺Φ on IL(Φ) the prefix requirement at every granularity X

f ≺Φ f ′ ⇐⇒ f 6= f ′ and (∀X ∈ Fin(Φ)) f(X) prefix f ′(X).

As noted in [Fer13a], ≺Φ is tree-like ([Dow79]); i.e. transitive and left linear: for all f ∈ IL(Φ),

f1 ≺Φ f2 or f2 ≺Φ f1 or f1 = f2 whenever f1, f2 ≺Φ f.
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No element of IL(Φ) is≺Φ-maximal, which is to say all intervals I that form Φ-stable pairs (I, w)
can be extended further, whether or not they are conceived within w to stretch through an entire
timeline. That said, some small part of IL(Φ) may suffice for a specific purpose. In particular,
a fixed f ∈ IL(Φ) may do, inducing at every granularity X ∈ Fin(Φ) an interpretation of
ϕ ∈ X from f(X) = α1 · · ·αn, with temporal instants t ∈ [1, n] and interval satisfaction

[i, j] |= ϕ ⇐⇒ (∀t ∈ [i, j]) ϕ ∈ αt

whenever 1 ≤ i ≤ j ≤ n. Worlds are absent in this interpretation, and, borrowing a phrase
from [Kah11], what you see is all there is (WYSIATI).3

3 Composing transitions, telicity and durativity

We now step from propositions (interpreted over intervals) that represent states to strings
α1 · · ·αn of length n > 1 (interpreted over segmentations) that represent events with precondi-
tion α1 and postcondition αn. We build on [MS88] for (7) and (8) below.4

(7)

non-durative durative

telic achievement ¬ϕ ϕ accomplishment ¬ϕ ¬ϕ,ψ ¬ϕ,ψ
+
ϕ

atelic semelfactive ψ activity ψ ψ
+

(8) a. α1 · · ·αn is durative if its length n is ≥ 3

b. α1 · · ·αn is telic if there is some ϕ in αn such that for all i ∈ [1, n− 1],

the negation ¬ϕ of ϕ appears in αi

c. iterate;( ψ ) = ψ ψ
+

d. ψ ψ
+

; ¬ϕ ϕ ≈ ¬ϕ ¬ϕ,ψ ¬ϕ,ψ
+
ϕ

(8a) and (8b) give simple definitions of durative and telic strings, examplified in (7). (8c)

reduces an activity in ψ ψ
+

to the iteration of the semelfactive ψ , while (8d) decomposes

an accomplishment into an activity and achievement, not unlike (1c) in the opening paragraph
above (with tS as ;). (8c) and (8d) depend on operations, ; and iterate;, defined in (9). In
(9a), β and α range over subsets of some fixed set Φ of propositions, while s and s′ range over
strings in (2Φ)∗, including the empty string ε mentioned in (9b). L and L′ in (9b) and (9c) are
languages, understood as subsets of (2Φ)∗.

(9) a. sβ ; αs′ = s(β ∪ α)s′

b. L;L′ = {s; s′ | s ∈ L− {ε} and s′ ∈ L′ − {ε}} (regular if L and L′ are)

c. iterate;(L) = the ⊆-least set Z such that L;L ⊆ Z and Z;L ⊆ Z

Observe that ; is essentially string concatenation, except that the last symbol β of the first
string is merged with the first symbol α of the second string. The rationale behind this overlap
is a notion of inertia that is expressed, for instance, in page 49 of [Com76]

3More about (and around) Propositions 1 and 2 in [Fer13b].
4(7) here is comparable to Figure 1, page 17 of [MS88], and (8) to Figure 2, page 18, with non-durative ;

atomic, durative ; extended, telic ; +conseq, atelic ; −conseq, ϕ; consequent state, ψ ; progressive state,
and achievement/accomplishment/semelfactive/activity ; culmination/culminated process/point/process.
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unless something happens to change [a] state, then the state will continue

together with the assumption that in s; s′, nothing happens between the end of s and the start
of s′. That same notion of inertia accounts for the discrepancy behind the wavy ≈ in (8d)

ψ ψ
+

; ¬ϕ ϕ = ψ
+
¬ϕ,ψ ϕ 6= ¬ϕ ¬ϕ,ψ ¬ϕ,ψ

+
ϕ

with ¬ϕ spreading (within the accomplishment) back from the achievement ¬ϕ ϕ . But then

why doesn’t ψ in the activity ψ ψ
n

also spread? Quoting more fully from [Com76], page 49

With a state, unless something happens to change that state, then the state will
continue . . . With a dynamic situation, on the other hand, the situation will only
continue if it is continually subject to a new input of energy.

The reason ¬ϕ flows in (8d) while ψ does not is that ¬ϕ represents a state in ¬ϕ ϕ , whereas

in an activity ψ ψ
n
, the proposition ψ represents a dynamic situation that persists only

if forced (moving loosely from a scalar, energy, to a vector, force). A precise mechanism for
regulating inertial flow in the absence and presence of force is described in [Fer08], under which
¬ϕ is inertial, whereas ψ is not.

But just what is ψ? For an answer, it is instructive to cast ¬ϕ ϕ as ϕ̂ with ϕ̂ set to

ϕ ∧ 〈mi〉¬ϕ, where 〈mi〉 is the diamond modal operator given by the inverse mi of meet m

〈I, w〉 |= 〈mi〉χ ⇐⇒ (∃I ′ m I) 〈I ′, w〉 |= χ

so that ϕ̂ describes a dynamic situation

〈I, w〉 |= ϕ ∧ 〈mi〉¬ϕ ⇐⇒ (∃I ′ m I) I ′I |=w ¬ϕ ϕ .

A segmentation cannot w-satisfy ϕ̂
n

for n ≥ 2 any more than it can w-satisfy a string in

¬ϕ ¬ϕ,ϕ +
ϕ , which under (9c), is iterate;( ¬ϕ ϕ ). But we can modify ϕ̂ so that strings

in the set ψ ψ
+

= iterate;( ψ ) are w-satisfiable. One way is through a linearly ordered

set D of degrees to which a function degDϕ,w maps temporal instants. Propositions d < ϕ-deg
and ϕ-deg ≤ d are then interpreted over intervals by universal quantification (as with whole
precedence ≺)

〈I, w〉 |= d < ϕ-deg ⇐⇒ (∀t ∈ I) d < degDϕ,w(t)

〈I, w〉 |= ϕ-deg ≤ d ⇐⇒ (∀t ∈ I) degDϕ,w(t) ≤ d

(conflating, for simplicity, semantic entities d, < and ≤ to the left of |= with their syntactic

representations to the right of |=). It is natural to assume a contextually given threshold d̂

reducing ϕ to d̂ < ϕ-deg. Existentially quantifying degrees, we put

ϕD
↑ = (∃d ∈ D) (d < ϕ-deg ∧ 〈mi〉ϕ-deg ≤ d)

and stretch instantaneous change ¬ϕ ϕ to a more graduated sequence ϕD
↑

n

associating an

increasing sequence d1 < d2 < · · · < dn of degrees with a segmentation I0I1 · · · In

I0I1 · · · In |=w ϕD
↑

n

⇐⇒ (∃d1 ∈ D) · · · (∃dn ∈ D)(∀i ∈ [1, n])

(∀t ∈ Ii−1)(∀t′ ∈ Ii) degDϕ,w(t) ≤ di < degDϕ,w(t′).
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But is ϕD
↑ w-segmented? Not necessarily. Let us say that degDϕ,w is increasing within an interval

I if for all t, t′ ∈ I, if t ≺ t′ then degDϕ,w(t) < degDϕ,w(t′). Given 〈I, w〉 |= ϕD
↑ , one can show

degDϕ,w is increasing within I ⇐⇒ (∀J v I) 〈J,w〉 |= ϕD
↑

⇐⇒ 〈I, w〉 |= [w]ϕD
↑

where [w] is the necessity operator induced by the inverse of the subinterval relation. The
proposition [w]ϕD

↑ can be assumed to be w-segmented, whereas ϕD
↑ cannot (unless interpreted

against say, a string supporting WYSIATI, as described in the previous section). It is not
entirely obvious that as a representation of a dynamic situation, the proposition ψ in an activity

ψ ψ
n

should be required to be w-segmented. What is clear from the lively literature on

aspectual composition is that there is much more to say about what ψ to box (not to mention
how to do so compositionally from syntactic input) under the scheme (7) – (9) or some revision
thereof. The strings in (7) are simple examples of how to flesh out (8) and (9) based on a
minimal set X of propositions that we can, under the inverse limit IL(Φ) in section 2, expand
indefinitely, refining granularity (to express, for instance, forces and grammatical aspect).5
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